
Paradigms of
Artificial Intelligence

Programming:

C A S E S T U D I E S IN C O M M O N L I S P

Peter Norvig

M O R G A N K A U F M A N N P U B L I S H E R S ^ S A N F R A N C I S C O , C A L I F O R N I A

Sponsoring Editor Michael B. Morgan
Production Manager Yonie Overton
Cover Designer Sandra Popovich
Text Design/Composition SuperScnpt Typography
Copyeditor Barbara Beidler Kendnck
Proofreaders Lynn Meinhardt, Shanlyn Hovind, Gary Morus
Printer Malloy Lithographing

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office:
340 Pine Street, Sbcth Floor
San Francisco, CA 94104-3205
USA
Telephone 415/392-2665
Facsimüe 415/982-2665
Internet mkp@mkp.com
Web site http://mkp.com

© 1992 Morgan Kaufmann Publishers, Inc.
All rights reserved

Printed in the United States of America

03 02 Ol 8 7 6

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means-electronic, photocopying, recording, or
otherwise—without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Norvig, Peter.
Paradigms of artificial inteUigence programming: case studies in

common Lisp / Peter Norvig.
p. cm.

Includes bibliographical references and index.
ISBN 1-55860-191-0:
1. Electronic digital computers-Programming. 2. COMMON LISP

(Computer program language) 3. Artificial intelligence. I. Title.
QA76.6.N6871991
006.3-dc20 91-39187

CIP

mailto:mkp@mkp.com
http://mkp.com

To my family,..

Preface

paradigm η 1 an example or pattern; esp an outstandingly clear or typical example.
-Longman's Dictionary of the EngUsh Language, 1984

This book is concerned with three related topics: the field of artificial intelligence, or AI; the skill
of computer programming; and the programming language Common Lisp. Careful readers of
this book can expect to come away with an appreciation of the major questions and techniques
of AI, an understanding of some important AI programs, and an ability to read, modify, and
create programs using Common Lisp. The examples in this book are designed to be clear
examples of good programming style—paradigms of programming. They are also paradigms
of AI research—historically significant programs that use widely applicable techniques to solve
important problems.

Just as a liberal arts education includes a course in "the great books" of a culture, so this book
is, at one level, a course in "the great programs" that define the AI culture.^

At another level, this book is a highly technical compendium of the knowledge you will need
to progress from being an intermediate Lisp programmer to being an expert. Parts I and II are
designed to help the novice get up to speed, but the complete beginner may have a hard time
even with this material. Fortunately, there are at least five good texts available for the beginner;
see page xiii for my recommendations.

^This does not imply that the programs chosen are the best of all AI programs—just that
they are representative.

νίίί PREFACE

All too often, the teaching of computer programming consists of explaining the
syntax of the chosen language, showing the student a 10-line program, and then
asking the student to write programs. In this book, we take the approach that the
best way to learn to write is to read (and conversely, a good way to improve reading
skills is to write). After the briefest of introductions to Lisp, we start right off with
complex programs and ask the reader to understand and make small modifications
to these programs.

The premise of this book is that you can only write something useful and inter
esting when you both understand what makes good writing and have something
interesting to say. This holds for writing programs as well as for writing prose. As
Kernighan and Plauger put it on the cover of Software Tools in Pascal:

Good programming is not learned from generalities, but by seeing how signif
icant programs can be made clean, easy to read, easy to maintain and modify,
human-engineered, efficient, and reliable, by the application of common sense
and good programming practices. Careful study and imitation of good programs
leads to better writing.

The proud craftsman is often tempted to display only the finished work, without
any indication of the false starts and mistakes that are an unfortunate but unavoidable
part of the creative process. Unfortunately, this reluctance to unveil the process is
a barrier to learning; a student of mathematics who sees a beautiful 10-line proof in
a textbook can marvel at its conciseness but does not learn how to construct such a
proof. This book attempts to show the complete programming process, "warts and
all." Each chapter starts with a simple version of a program, one that works on some
examples but fails on others. Each chapter shows how these failures can be analyzed
to build increasingly sophisticated versions of the basic program. Thus, the reader
can not only appreciate the final result but also see how to learn from mistakes and
refine an initially incomplete design. Furthermore, the reader who finds a particular
chapter is becoming too difficult can skip to the next chapter, having gained some
appreciation of the problem area, and without being overwhelmed by the details.

This book presents a body of knowledge loosely known as "AI programming
techniques," but it must be recognized that there are no clear-cut boundaries on this
body of knowledge. To be sure, no one can be a good AI programmer without first
being a good programmer. Thus, this book presents topics (especially in parts III
and V) that are not AI per se, but are essential background for any AI practitioner.

Why Lisp? Why Common Lisp?

Lisp is one of the oldest programming languages still in widespread use today. There
have been many versions of Lisp, each sharing basic features but differing in detail.
In this book we use the version called Common Lisp, which is the most widely
accepted standard. Lisp has been chosen for three reasons.

PREFACE IX

First, Lisp is the most popular language for AI programming, particularly in the
United States. If you're going to learn a language, it might as well be one with a
growing literature, rather than a dead tongue.

Second, Lisp makes it easy to capture relevant generalizations in defining new
objects. In particular. Lisp makes it easy to define new languages especially targeted
to the problem at hand. This is especially handy in AI applications, which often
manipulate complex information that is most easily represented in some novel form.
Lisp is one of the few languages that allows full flexibility in defining and manipu
lating programs as well as data. All programming languages, by definition, provide
a means of defining programs, but many other languages limit the ways in which a
program can be used, or limit the range of programs that can be defined, or require
the programmer to explicitly state irrelevant details.

Third, Lisp makes it very easy to develop a working program fast. Lisp programs
are concise and are uncluttered by low-level detail. Common Lisp offers an unusually
large number of useful predefined objects, including over 700 functions. The pro
gramming environment (such as debugging tools, incremental compilers, integrated
editors, and interfaces to window systems) that surround Lisp systems are usually
very good. And the dynamic, interactive nature of Lisp makes it easy to experiment
and change a program while it is being developed.

It must be mentioned that in Europe and Japan, Prolog has been as popular as
Lisp for AI work. Prolog shares most of Lisp's advantages in terms of flexibility and
conciseness. Recently, Lisp has gained popularity worldwide, and Prolog is becom
ing more well known in the United States. As a result, the average AI worker today is
likely to be bilingual. This book presents the key ideas behind Prolog in chapters 11
and 12, and uses these ideas in subsequent chapters, particularly 20 and 21.

The dialect of Lisp known as Scheme is also gaining in popularity, but primarily
for teaching and experimenting with programming language design and techniques,
and not so much for writing large AI programs. Scheme is presented in chapters 22
and 23. Other dialects of Lisp such as Franz Lisp, MacLisp, InterLisp, ZetaLisp,
and Standard Lisp are now considered obsolete. The only new dialect of Lisp to be
proposed recently is EuLisp, the European Lisp. A few dialects of Lisp live on as
embedded extension languages. For example, the Gnu Emacs text editor uses elisp,
and the AutoCad computer-aided design package uses AutoLisp, a derivative of Xlisp.
In the future, it is likely that Scheme will become a popular extension language, since
it is small but powerful and has an officially sanctioned standard definition.

There is a myth that Lisp (and Prolog) are "special-purpose" languages, while
languages like Pascal and C are "general purpose." Actually, just the reverse is
true. Pascal and C are special-purpose languages for manipulating the registers and
memory of a von Neumann-style computer. The majority of their syntax is devoted
to arithmetic and Boolean expressions, and while they provide some facilities for
forming data structures, they have poor mechanisms for procedural abstraction
or control abstraction. In addition, they are designed for the state-oriented style

PREFACE

of programming: computing a result by changing the value of variables through
assignment statements.

Lisp, on the other hand, has no special syntax for arithmetic. Addition and
multiplication are no more or less basic than list operations like appending, or string
operations like converting to upper case. But Lisp provides all you will need for
programming in general: defining data structures, functions, and the means for
combining them.

The assignment-dominated, state-oriented style of programming is possible in
Lisp, but in addition object-oriented, rule-based, and functional styles are all sup
ported within Lisp. This flexibihty derives from two key features of Lisp: First, Lisp
has a powerful macro facility, which can be used to extend the basic language. When
new styles of programming were invented, other languages died out; Lisp simply
incorporated the new styles by defining some new macros. The macro facility is
possible because Lisp programs are composed of a simple data structure: the list.
In the early days, when Lisp was interpreted, most manipulation of programs was
done through this data structure. Nowadays, Lisp is more often compiled than in
terpreted, and programmers rely more on Lisp's second great flexible feature: the
function. Of course, other languages have functions, but Lisp is rare in allowing the
creation of new functions while a program is running.

Lisp's flexibility allows it to adapt as programming styles change, but more impor
tantly. Lisp can adapt to your particular programming problem. In other languages
you fit your problem to the language; with Lisp you extend the language to fit your
problem.

Because of its flexibility. Lisp has been succesful as a high-level language for rapid
prototyping in areas such as AI, graphics, and user interfaces. Lisp has also been
the dominant language for exploratory programming, where the problems are so
complex that no clear solution is available at the start of the project. Much of AI falls
under this heading.

The size of Common Lisp can be either an advantage or a disadvantage, depending
on your outlook. In David Touretzky's (1989) fine book for beginning programmers,
the emphasis is on simplicity. He chooses to write some programs slightly less
concisely, rather than introduce an esoteric new feature (he cites pushnew as an
example). That approach is entirely appropriate for beginners, but this book goes
well past the level of beginner. This means exposing the reader to new features of
the language whenever they are appropriate. Most of the time, new features are
described as they are introduced, but sometimes explaining the details of a low-
level function would detract from the explanation of the workings of a program.
In accepting the privilege of being treated as an "adult," the reader also accepts a
responsibility—to look up unfamiliar terms in an appropriate reference source.

PREFACE Χ"

Outline of the Book

This book is organized into five parts.

Part I introduces the Common Lisp programming language.
Chapter 1 gives a quick introduction by way of small examples that demonstrate

the novel features of Lisp. It can be safely skipped or skimmed by the experienced
programmer.

Chapter 2 is a more extended example showing how the Lisp primitives can be
put together to form a program. It should be studied carefully by the novice, and
even the experienced programmer will want to look through it to get a feel for my
programming style.

Chapter 3 provides an overview of the Lisp primitives. It can be skimmed on first
reading and used as a reference whenever an unfamiliar function is mentioned in
the text.

Part I has been kept intentionally brief, so that there is more room for presenting
actual AI programs. Unfortunately, that means that another text or reference book
(or online help) may be needed to clarify some of the more esoteric features of the
language. My recommendations for texts are on page xiii.

The reader may also want to refer to chapter 25, which offers some debugging
and troubleshooting hints.

Part II covers four early AI programs that all use rule-based pattern-matching
techniques. By starting with relatively simple versions of the programs and then
improving them and moving on to more complex programs, the reader is able to
gradually acquire increasingly advanced programming skills.

Chapter 4 presents a reconstruction of GPS, the General Problem Solver. The
implementation follows the STRIPS approach.

Chapter 5 describes ELIZA, a program that mimics human dialogue. This is
followed by a chapter that generalizes some of the techniques used in GPS and ELIZA
and makes them available as tools for use in subsequent programs.

Chapter 7 covers STUDENT, a program that solves high-school-level algebra word
problems.

Chapter 8 develops a small subset of the MACSYMA program for doing symbolic
algebra, including differential and integral calculus. It may be skipped by those who
shy away from heavy mathematics.

Part III detours from AI for a moment to present some general tools for more
efficient programming. The reader who masters the material in this part can be
considered an advanced Lisp programmer.

Chapter 9 is a detailed study of efficiency techniques, concentrating on caching,
indexing, compilation, and delaying computation. Chapter 10 covers lower-level effi
ciency issues such as using declarations, avoiding garbage generation, and choosing
the right data structure.

χίί PREFACE

Chapter 11 presents the Prolog language. The aim is two-fold: to show how to
write an interpreter for another language, and to introduce the important features
of Prolog, so that they can be used where appropriate. Chapter 12 shows how a
compiler for Prolog can be 20 to 200 times faster than the interpreter.

Chapter 13 introduces object-oriented programming in general, then explores the
Common Lisp Object System (CLOS).

Chapter 14 discusses the advantages and limitations of both logic-oriented and
object-oriented programming, and develops a knowledge representation formalism
using all the techniques of part III.

Part IV covers some advanced AI programs.
Chapter 15 uses the techniques of part III to come up with a much more efficient

implementation of MACSYMA. It uses the idea of a canonical form, and replaces the
very general rewrite rule approach with a series of more specific functions.

Chapter 16 covers the EMYCIN expert system shell, a backward chaining rule-
based system based on certainty factors. The MYCIN medical expert system is also
covered briefly.

Chapter 17 covers the Waltz line-labeling algorithm for polyhedra (using Huffman-
Clowes labels). Different approaches to constraint propagation and backtracking
are discussed.

Chapter 18 presents a program that plays an excellent game of Othello. The
technique used, alpha-beta searching, is appropriate to a wide variety of two-person
games.

Chapter 19 is an introduction to natural language processing. It covers context-
free grammar, top-down and bottom-up parsing, chart parsing, and some semantic
interpretation and preferences.

Chapter 20 extends the linguistic coverage of the previous chapter and introduces
logic grammars, using the Prolog compiler developed in chapter 11.

Chapter 21 is a fairly comprehensive grammar of English using the logic grammar
formalism. The problems of going from a simple idea to a realistic, comprehensive
program are discussed.

Part V includes material that is peripheral to AI but important for any serious
Lisp programmer.

Chapter 22 presents the Scheme dialect of Lisp. A simple Scheme interpreter is
developed, then a properly tail-recursive interpreter, then an interpreter that explic
itly manipulates continuations and supports cal 1 / c c . Chapter 23 presents a Scheme
compiler.

Chapter 24 presents the features that are unique to American National Standards
Institute (ANSI) Common Lisp. This includes the 1 oop macro, as well as error
handling, pretty printing, series and sequences, and the package facility.

Chapter 25 is a guide to troubleshooting and debugging Lisp programs.

PREFACE XIII

The bibUography Hsts over 200 sources, and there is a comprehensive index. In
addition, the appendix provides a directory of publicly available Lisp programs.

How to Use This Book

The intended audience for this book is broad: anyone who wants to become an ad
vanced Lisp programmer, and anyone who wants to be an advanced AI practitioner.
There are several recommended paths through the book:

• In an Introductory AI Course: Concentrate on parts I and II, and at least one
example from part IV.

• Inan Advanced AI Programming Course: Concentrate on parts I, II and IV, skipping
chapters that are of less interest and adding as much of part III as time permits.

• In an Advanced Programming Languages Course: Concentrate on parts I and V,
with selections from part III. Cover chapters 11 and 13 if similar material is not
presented with another text.

• For the Professional Lisp Programmer: Read as much of the book as possible, and
refer back to it often. Part III and chapter 25 are particularly important.

Supplementary Texts and Reference Books

The definitive reference source is Steele's Common Lisp the Language. From 1984
to 1990, this unambiguously defined the language Common Lisp. However, in
1990 the picture became more complicated by the publication of Common Lisp the
Language, 2d edition. This book, also by Steele, contains the recommendations of
ANSI subcommittee X3J13, whose charter is to define a standard for Lisp. These
recommendations include many minor changes and clarifications, as well as brand
new material on object-oriented programming, error condition handling, and the
loop macro. The new material doubles the size of the book from 465 to 1029 pages.

Until the ANSI recommendations are formally accepted. Common Lisp users
are in the unfortunate situation of having two distinct and incompatible standards:
"original" Common Lisp and ANSI Common Lisp. Most of the code in this book is
compliant with both standards. The most significant use of an ANSI function is the
1 oop macro. The ANSI map- i nto, compi ement, and reduce functions are also used,
although rarely. Definitions for all these functions are included, so even those using
an "original" Common Lisp system can still run all the code in the book.

While Common Lisp the Language is the definitive standard, it is sometimes terse
and can be difficult for a beginner. Common Lisp: the Reference, published by Franz
Inc., offers complete coverage of the language with many helpful examples. Common
LISPcraft, by Robert Wilensky, and Artificial Intelligence Programming, by Charniak

x iv PREFACE

et al., also include brief summaries of the Common Lisp functions. They are not
as comprehensive, but that can be a blessing, because it can lead the reader more
directly to the functions that are important (at least in the eyes of the author).

It is a good idea to read this book with a computer at hand, to try out the examples
and experiment with examples of your own. A computer is also handy because Lisp
is self-documenting, through the functions apropos, descri be, and documentati on.
Many implementations also provide more extensive documentation through some
kind of 'help' command or menu.

The five introductory Lisp textbooks I recommend are listed below. The first is
more elementary than the others.

• Common Lisp: A Gentle Introduction to Symbolic Computation by David Touret-
zky. Most appropriate for beginners, including those who are not computer
scientists.

A Programmer's Guide to Common Lisp by Deborah G. Tatar. Appropriate for
those with experience in another programming language, but none in Lisp.

Common LISPcraft by Robert Wilensky. More comprehensive and faster paced,
but still useful as an introduction as well as a reference.

Common Lisp by Wade L. Hennessey. Somewhat hit-and-miss in terms of the
topics it covers, but with an enlightened discussion of implementation and
efficiency issues that do not appear in the other texts.

• LISP (3d edition) by Patrick H. Winston and Bertold Horn. Covers the most
ground in terms of programming advice, but not as comprehensive as a refer
ence. May be difficult for beginners. Includes some AI examples.

While it may be distracting for the beginner to be continually looking at some
reference source, the alternative—to have this book explain every new function in
complete detail as it is introduced—would be even more distracting. It would interrupt
the description of the AI programs, which is what this book is all about.

There are a few texts that show how to write AI programs and tools, but none
that go into the depth of this book. Nevertheless, the expert AI programmer will
want to be familiar with all the following texts, listed in rough order of increasing
sophistication:

• LISP (3d edition). (See above.)

Programming Paradigms in Lisp by Rajeev Sangal. Presents the different styles
of programming that Lisp accommodates, illustrating them with some useful
AI tools.

PREFACE XV

Programming for Artificial Intelligence by Wolfgang Kreutzer and Bruce McKenzie.
Covers some of the basics of rule-based and pattern-matching systems well,
but covers Lisp, Prolog, and Smalltalk, and thus has no time left for details in
any of the languages.

• Artificial Intelligence Programming (2d edition) by Eugene Charniak, Christo
pher Riesbeck, Drew McDermott, and James Meehan. Contains 150 pages of
Lisp overview, followed by an advanced discussion of AI tools, but no actual
AI programs.

• Λ7 in Practice: Examples in Pop-11 by Allan Ramsey and Rosalind Barrett. Ad
vanced, high-quality implementations of five AI programs, unfortunately using
a language that has not gained popularity.

The current text combines the virtues of the last two entries: it presents both actual
AI programs and the tools necessary to build them. Furthermore, the presentation is
in an incremental fashion, with simple versions presented first for clarity, followed
by more sophisticated versions for completeness.

A Note on Exercises

Sample exercises are provided throughout. Readers can test their level of under
standing by faithfully doing the exercises. The exercises are graded on the scale [s],
[m], [h], [d], which can be interpreted either as a level of difficulty or as an expected
time it will take to do the exercise:

Code Difficulty Tune to Do
[s] Simple Seconds
[m] Medium Minutes
[h] Hard Hours
[d] Difficult Days

The time to do the exercise is measured from the point that the concepts have
been well understood. If the reader is unclear on the underlying concepts, it might
take hours of review to understand a [m] problem. Answers to the exercises can be
found in a separate section at the end of each chapter.

Acknowledgments

A great many people contributed to this book. First of all I would like to thank my
students at USC and Berkeley, as well as James Martin's students at Colorado and
Michael Pazzani's students at Irvine, who course-tested earlier versions of this book.
Useful suggestions, corrections, and additions were made by:

xvi PREFACE

Nina Amenta (Berkeley), Ray S. Babcock and John Paxton (Montana State),
Bryan A. Bentz (BBN), Mary P. Boelk (Johnson Controls), Michael Braverman (Berke
ley), R. Chandrasekar and M. Sasikumar (National Centre for Software Technology,
Bombay), Mike Clancy (Berkeley), Michael Covington (Georgia), Bruce D'Ambrosio
(Oregon State), Piew Datta (Irvine), Shawn Dettrey (USC), J. A. Durieux (AI En
gineering BV, Amsterdam), Joseph Faletti (ETS), Paul Fuqua (Texas Instruments),
Robert Goldman (Tulane), Marty Hall (Johns Hopkins), Marti Hearst (Berkeley), Jim
Hendler (Maryland), Phil Laird (NASA), Raymond Lang (Tulane), David D. Loef-
fler (MCC), George Luger (New Mexico), Rob MacLachlan (CMU), Barry Margolin
(Thinking Machines), James Mayf ield (UMBC), Sanjay Manchandi (Arizona), Robert
McCartney (Connecticut), James Meehan (DEC), Andrew L. Ressler, Robert S. Rist
(University of Technology, Sydney), Paul Snively (Apple), Peter Van Roy (Berkeley),
David Gumby Wallace (Cygnus), and Jeff Wu (Colorado).

Sam Dooley and Eric Wefald both wrote Othello-playing programs without which
I would not have written chapter 18. Eric also showed me Aristotle's quotes on means-
ends analysis. Tragically, Eric died in August 1989. He is sorely missed by his friends
and colleagues. Richard Fateman made suggestions for chapter 8, convinced me to
write chapter 15, and, with help from Peter Klier, wrote a substantial program from
which I adapted some code for that chapter. Charley Cox (Franz Inc.), Jamie Zawinski
(Lucid Inc.), and Paul Fuqua (Texas Instruments) explained the inner workings of
their respective companies' compilers. Mike Harrison, Paul Hilfinger, Marc Luria,
Ethan Munson, and Stephan Slade helped with MgK. Narciso Jarimillo tested all the
code and separated it into the files that are available to the reader (see page 897).

During the writing of this book I was supported by a grant from the Defense
Advanced Research Projects Agency (DoD), Arpa Order No. 4871, monitored by
Space and Naval Warfare Systems Command under Contract N00039-84-C-0089.
Special thanks to DARPA and to Robert Wilensky and the rest of my colleagues and
students at Berkeley for providing a stimulating environment for research, program
ming, and writing.

Finally, thanks to Mike Morgan and Yonie Overton for overseeing the production
of the book and encouraging me to finish on time.

CHAPTER 1

Introduction to Lisp

You think you know when you learn, are more sure
when you can write, even more when you can teach,

hut certain when you can program.
—Alan Perils

Yale University computer scientist

τ 1 his chapter is for people with little or no experience in Lisp. Readers who feel confident
in their Lisp programming ability can quickly skim the chapter or skip it entirely. This
chapter necessarily moves quickly, so those with little programming experience, or any

reader who finds this chapter tough going, should seek out a supplementary introductory text.
My recommendations are in the preface.

Computers allow one to carry out computations. A word processing program deals with
words while a calculator deals with numbers, but the principles are the same. In both cases,
you provide the input (words or numbers) and specify the operations (such as deleting a word
or adding two numbers) to yield a result (a completed document or calculation).

We will refer to anything that can be represented in the memory of a computer as a computa
tional object, or just an object. So, words, paragraphs, and numbers can be objects. And because
the operations (deleting and adding) must be represented somewhere in the computer's memory,
they are objects, too.

INTRODUCTION TO LISP

Normally, the distinction between a computer "user" and a computer "program
mer" is that the user provides new input, or data (words or numbers), while the
programmer defines new operations, or programs, as well as new types of data. Every
new object, be it datum or operation, must be defined in terms of previously defined
objects. The bad news is that it can be quite tedious to get these definitions right.
The good news is that each new object can in turn be used in the definition of future
objects. Thus, even complex programs can be built out of smaller, simpler objects.
This book covers a number of typical AI problems, showing how each problem can
be broken down into manageable pieces, and also how each piece can be described in
the programming language Common Lisp. Ideally, readers will learn enough through
studying these examples to attack new AI problems with style, grace, and success.

Let's consider a simple example of a computation: finding the sum of two num
bers, let's say 2 and 2. If we had a calculator handy, we would type "2 - f 2 = " and see
the answer displayed. On a calculator using reverse Polish notation, we would have
to type " 2 2 + " to see the same answer. In Lisp, as with the calculator, the user carries
out an interactive dialog with the computer by typing in an expression and seeing the
computer print the value of that expression. This interactive mode is different from
many other programming languages that only offer a batch mode, wherein an entire
program is compiled and run before any output can be seen.

We start up a pocket calculator by flipping the on/off switch. The Lisp program
must also be started, but the details vary from one computer to another, so I can't
explain how your Lisp will work. Assuming we have managed to start up Lisp, we
are likely to see a prompt of some kind. On my computer. Lisp types " > " to indicate
it is ready to accept the next computation. So we are faced with a screen that looks
like this:

We may now type in our computation and see the result displayed. It turns out that
the Lisp convention for arithemtic expressions is slightly different: a computation
consists of a parenthesized list with the operation name first, followed by any number
of operands, or arguments. This is called prefix notation.

> (+ 2 2)
4
>

We see that Lisp has printed the answer, 4, and then another prompt, >, to indicate
it is ready for the next computation. Throughout this book, all Lisp expressions will
be displayed in typewriter font. Text on the same line as the " > " prompt is input
typed by the user, and text following it is output printed by the computer. Usually,
input that is typed by the programmer will be in 1 owercase letters, while output that

INTRODUCTION

is printed back by the computer will be in UPPERCASE letters. Of course, with symbols
like + and 4 there is no difference.

To save space on the page, the output will sometimes be shown on the same line
as the input, separated by an arrow which can be read as "evaluates to," and
can also be thought of as standing for the return or enter key that the user presses to
complete the input:

> (+ 2 2) ^ 4

One advantage of parenthesized prefix notation is that the parentheses clearly mark
the beginning and end of an expression. If we want, we can give + more than two
arguments, and it will still add them all:

> (+ 1 2 3 4 5 6 7 8 9 10) 55

This time we try (9000 + 900 + 90 - f 9) - (5000 + 500 + 50 + 5):

> (- (+ 9000 900 90 9) (+ 5000 500 50 5)) =^ 4444

This example shows that expressions can be nested. The arguments to the -
function are parenthesized lists, while the arguments to each + are atoms. The
Lisp notation may look unusual compared to standard mathematical notation, but
there are advantages to this notation; since Lisp expressions can consist of a function
followed by any number of arguments, we don't have to keep repeating the More
important than the notation is the rule for evaluation. In Lisp, lists are evaluated
by first evaluating all the arguments, then applying the function to the arguments,
thereby computing the result. This rule is much simpler than the rule for evaluating
normal mathematical expressions, where there are many conventions to remember,
such as doing multiplications and divisions before sums and differences. We will see
below that the actual Lisp evaluation rule is a little more complicated, but not much.

Sometimes programmers who are familiar with other languages have preconcep
tions that make it difficult for them to learn Lisp. For them, three points are worth
stressing here. First, many other languages make a distinction between statements
and expressions. An expression, like 2 + 2, has a value, but a statement, like χ =
2 + 2, does not. Statements have effects, but they do not return values. In Lisp,
there is no such distinction: every expression returns a value. It is true that some
expressions have effects, but even those expressions also return values.

Second, the lexical rules for Lisp are much simpler than the rules for other
languages. In particular, there are fewer punctuation characters: only parentheses,
quote marks (single, double, and backward), spaces, and the comma serve to separate
symbols from each other. Thus, while the statement y=a*x+3 is analyzed as seven
separate tokens in other languages, in Lisp it would be treated as a single symbol. To

INTRODUCTION TO LISP

get a list of tokens, we would have to insert spaces: (y = a * χ + 3).^
Third, while many languages use semicolons to delimit statements. Lisp has no

need of semicolons, since expressions are delimited by parentheses. Lisp chooses
to use semicolons for another purpose—to mark the beginning of a comment, which
lasts until the end of the line:

> (+ 2 2) ; t h i s i s a comment
4

1.1 Symbolic Computation
All we've done so far is manipulate numbers in the same way a simple pocket
calculator would. Lisp is more useful than a calculator for two main reasons. First,
it allows us to manipulate objects other than numbers, and second, it allows us
to define new objects that might be useful in subsequent computations. We will
examine these two important properties in turn.

Besides numbers. Lisp can represent characters (letters), strings of characters,
and arbitrary symbols, where we are free to interpret these symbols as referring to
things outside the world of mathematics. Lisp can also build nonatomic objects
by combining several objects into a list. This capability is fundamental and well
supported in the language; in fact, the name Lisp is short for LISt Processing.

Here's an example of a computation on lists:

> (append ' (Pat Kim) ' (Robin Sandy)) (PAT KIM ROBIN SANDY)

This expression appends together two lists of names. The rule for evaluating this
expression is the same as the rule for numeric calculations: apply the function (in
this case append) to the value of the arguments.

The unusual part is the quote mark (') , which serves to block the evaluation of the
following expression, returning it literally. If we just had the expression (Pat K im),
it would be evaluated by considering Pat as a function and applying it to the value of
the expression Ki m. This is not what we had in mind. The quote mark instructs Lisp
to treat the list as a piece of data rather than as a function call:

> ' (Pat Kim) (PAT KIM)

In other computer languages (and in English), quotes usually come in pairs: one to
mark the beginning, and one to mark the end. In Lisp, a single quote is used to mark

^This list of symbols is not a legal Lisp assignment statement, but it is a Lisp data object.

/./ SYMBOLIC COMPUTATION

the beginning of an expression. Since we always know how long a single expression
is—either to the end of an atom or to the matching parenthesis of a list—we don't need
an explicit punctuation mark to tell us where the expression ends. Quotes can be
used on hsts, as in * (Pat Ki m), on symbols as in ' Robi n, and in fact on anything else.
Here are some examples:

> 'John =^ JOHN

> '(John Q Publ ic) =^ (JOHN Q PUBLIC)

> '2 2

> Ζ => Ζ

> ' (+ 2 2) =ί> (+ 2 2)

> (+ 2 2) =^ 4

> John ^ Error:]OHN is not a bound variable

> (John Q Publ ic) ^ Error: JOHN is not a function

Note that ' 2 evaluates to 2 because it is a quoted expression, and 2 evaluates to 2
because numbers evaluate to themselves. Same result, different reason. In contrast,
' John evaluates to John because it is a quoted expression, but evaluating John leads
to an error, because evaluating a symbol means getting the value of the symbol, and
no value has been assigned to John.

Symbolic computations can be nested and even mixed with numeric computa
tions. The following expression builds a list of names in a slightly different way than
we saw before, using the built-in function l i s t . We then see how to find the number
of elements in the list, using the built-in function 1 ength :

> (append ' (Pat Kim) (l i s t ' (John Q Publ ic) 'Sandy))
(PAT KIM (JOHN Q PUBLIC) SANDY)

> (length (append ' (Pat Kim) (l i s t ' (John Q Publ ic) 'Sandy)))
4

There are four important points to make about symbols:

• First, it is important to remember that Lisp does not attach any external signif
icance to the objects it manipulates. For example, we naturally think of (Robi η
Sandy) asalistof two first names, and (John Q Publ i c) as a list of one person's
first name, middle initial, and last name. Lisp has no such preconceptions. To
Lisp, both Robi η and xyzzy are perfectly good symbols.

• Second, to do the computations above, we had to know that append, 1 eng th ,
and + are defined functions in Common Lisp. Learning a language involves

8 INTRODUCTION TO LISP

remembering vocabulary items (or knowing where to look them up) as well
as learning the basic rules for forming expressions and determining what they
mean. Common Lisp provides over 700 built-in functions. At some point the
reader should flip through a reference text to see what's there, but most of the
important functions are presented in part I of this book.

• Third, note that symbols in Common Lisp are not case sensitive. By that I
mean that the inputs John, John, and jOhN all refer to the same symbol, which
is normally printed as JOHN.^

• Fourth, note that a wide variety of characters are allowed in symbols: numbers,
letters, and other punctuation marks like'+' or ' ! ' . The exact rules for what con
stitutes a symbol are a little complicated, but the normal convention is to use
symbols consisting mostly of letters, with words separated by a dash (-), and
perhaps with a number at the end. Some programmers are more liberal in nam
ing variables, and include characters like'? 1 $/<=>' . For example, a function to
convert dollars to yen might be named with the symbol $ - to -yen or $ ->yen in
Lisp, while one would use something like Dol 1 arsToYen, dol 1 ars_to_yen or
do! 2yen in Pascal or C. There are a few exceptions to these naming conventions,
which will be dealt with as they come up.

1.2 Variables
We have seen some of the basics of symbolic computation. Now we move on to
perhaps the most important characteristic of a programming language: the ability to
define new objects in terms of others, and to name these objects for future use. Here
symbols again play an important role—they are used to name variables. A variable
can take on a value, which can be any Lisp object. One way to give a value to a
variable is with se t f :

> (set f ρ '(John 0 Publ ic)) =^ (JOHN Q PUBLIC)

> ρ (JOHN Q PUBLIC)

> (set f X 10) 10

> (+ X x) 20

> (+ X (length p)) => 13

After assigning the value (John Q Rubi i c) to the variable named p, we can refer to
the value with the name p. Similarly, after assigning a value to the variable named x,
we can refer to both χ and p.

^The variable *pr i nt - case* controls how symbols will be printed. By default, the value of
this variable is -.upcase, but it can be changed to rdowncaseor : cap i ta l ize .

13 SPECIAL FORMS

Symbols are also used to name functions in Common Lisp. Every symbol can
be used as the name of a variable or a function, or both, although it is rare (and
potentially confusing) to have symbols name both. For example, append and 1 ength
are symbols that name functions but have no values as variables, and pi does not
name a function but is a variable whose value is 3.1415926535897936 (or thereabout).

1.3 Special Forms

The careful reader will note that s e t f violates the evaluation rule. We said earlier
that functions like +, - and append work by first evaluating all their arguments and
then applying the function to the result. But s e t f doesn't follow that rule, because
s e t f is not a function at all. Rather, it is part of the basic syntax of Lisp. Besides the
syntax of atoms and function calls. Lisp has a small number of syntactic expressions.
They are known as special forms. They serve the same purpose as statements in other
programming languages, and indeed have some of the same syntactic markers, such
as i f and 1 oop. There are two main differences between Lisp's syntax and other
languages. First, Lisp's syntactic forms are always lists in which the first element is
one of a small number of privileged symbols, s e t f is one of these symbols, so (s e t f
χ 10) is a special form. Second, special forms are expressions that return a value.
This is in contrast to statements in most languages, which have an effect but do not
return a value.

In evaluating an to expression like (s e t f χ (+ 1 2)) , we set the variable named
by the symbol χ to the value of (+ 1 2) , which is 3. If s e t f were a normal function,
we would evaluate both the symbol x and the expression (+ 1 2) and do something
with these two values, which is not what we want at all. s e t f is called a special form
because it does something special: if it did not exist, it would be impossible to write
a function that assigns a value to a variable. The philosophy of Lisp is to provide a
small number of special forms to do the things that could not otherwise be done, and
then to expect the user to write everthing else as functions.

The term special form is used confusingly to refer both to symbols like s e t f and
expressions that start with them, like (s e t f χ 3) . In the book Common LISPcraft
Wilensky resolves the ambiguity by calling s e t f a special function, and reserving the
term special form for (s e t f χ 3) . This terminology implies that s e t f is just another
function, but a special one in that its first argument is not evaluated. Such a view
made sense in the days when Lisp was primarily an interpreted language. The
modern view is that s e t f should not be considered some kind of abnormal function
but rather a marker of special syntax that will be handled specially by the compiler.
Thus, the special form (s e t f x (+ 2 1)) should be considered the equivalent of χ =
2 + 1 in C. When there is risk of confusion, we will call s e t f a special form operator
and (s e t f χ 3) a special form expression.

10 INTRODUCTION TO LISP

It turns out that the quote mark is just an abbreviation for another special form.
The expression 'x is equivalent to (quote ;c), a special form expression that evaluates
to X. The special form operators used in this chapter are:

defun define function
defparameter define special variable
s e t f set variable or field to new value
l e t bind local variable(s)
case choose one of several alternatives
i f do one thing or another, depending on a test
function (# ') refer to a function
quote (') introduce constant data

1.4 Lists
So far we have seen two functions that operate on hsts: append and 1 ength. Since
lists are important, let's look at some more list processing functions:

> ρ =^ (JOHN 0 PUBLIC)

> (f i r s t p) JOHN

> (rest p) (Q PUBLIC)

> (second p) ^ Q

> (th i rd p) =^ PUBLIC

> (fourth p) ^ NIL

> (length p) 3

The functions f i r s t , second, t h i r d , and four th are aptly named: f i r s t returns
the first element of a list, second gives you the second element, and so on. The
function res t is not as obvious; its name stands for "the rest of the list after the first
element." The symbol n i l and the form () are completely synonymous; they are
both representations of the empty list, ni 1 is also used to denote the "false" value in
Lisp. Thus, (four th ρ) is ni 1 because there is no fourth element of p. Note that Hsts
need not be composed only of atoms, but can contain sublists as elements:

> (set f χ ' ((1 s t element) 2 (element 3) ((4)) 5))
((1ST ELEMENT) 2 (ELEMENT 3) ((4)) 5)

> (length x)

> (f i r s t x) = (1ST ELEMENT)

1A LISTS V_

The function cons stands for "construct." It takes as arguments an element and
a list,^ and constructs a new list whose first is the element and whose rest is the
original list. 1 i s t takes any number of elements as arguments and returns a new
hst containing those elements in order. We've already seen append, which is similar
to 1 i s t ; it takes as arguments any number of lists and appends them all together,
forming one big list. Thus, the arguments to append must be lists, while the arguments
to 11 S t may be lists or atoms. It is important to note that these functions create new
lists; they don't modify old ones. When we say (append ρ q) , the effect is to create
a brand new list that starts with the same elements that were in p. ρ itself remains
unchanged.

Now let's move away from abstract functions on lists, and consider a simple
problem: given a person's name in the form of a list, how might we extract the family
name? For (JOHN Q PUBLIC) we could Justuse the function thi rd, but that wouldn't

^ Later we will see what happens when the second argument is not a list.

> (second x) => 2

> (th i rd X) => (ELEMENT 3)

> (fourth X) ((4))

> (f i r s t (fourth x)) ^ (4)

> (f i r s t (f i r s t (fourth x))) ^ 4

> (f i f th X) ^ 5

> (f i r s t X) (1ST ELEMENT)

> (second (f i r s t x)) => ELEMENT

So far we have seen how to access parts of lists. It is also possible to build up new
lists, as these examples show:

> ρ (JOHN Q PUBLIC)

> (cons 'Mr p) ^ (MR JOHN Q PUBLIC)

> (cons (f i r s t p) (rest p)) => (JOHN Q PUBLIC)

> (set f town (l i s t 'Anytown 'USA)) =^ (ANYTOWN USA)

> (l i s t ρ O f town 'may 'have 'already 'won!) ^
((JOHN Q PUBLIC) OF (ANYTOWN USA) MAY HAVE ALREADY WON!)

> (append ρ ' (o f) town '(may have already won!))
(JOHN Q PUBLIC OF ANYTOWN USA MAY HAVE ALREADY WON!)

> ρ (JOHN Q PUBLIC)

12 INTRODUCTION TO LISP

work for someone with no middle name. There is a function called 1 a s t in Common
Lisp; perhaps that would work. We can experiment:

> (last p) => (PUBLIC)

> (f i rs t (last p)) PUBLIC

It turns out that l a s t perversely returns a list of the last element, rather than the
last element itself.^ Thus we need to combine f i r s t and 1 a s t to pick out the actual
last element. We would like to be able to save the work we've done, and give it a
proper description, like 1 a s t - name. We could use s e t f to save the last name of p, but
that wouldn't help determine any other last name. Instead we want to define a new
function that computes the last name of any name that is represented as a list. The
next section does just that.

1.5 Defining New Functions

The special form defun stands for "define function." It is used here to define a new
function called 1 ast-name:

(defun last-name (name)
"Select the last name from a name represented as a l i s t . "
(f i rs t (last name)))

We give our new function the name 1 ast-name. It has a parameter list consisting of a
single parameter: (name). This means that the function takes one argument, which
we will refer to as name. It also has a documentation string that states what the function
does. This is not used in any computation, but documentation strings are crucial
tools for debugging and understanding large systems. The body of the definition is
(f 1 r s t (l a s t name)), which is what we used before to pick out the last name of p.
The difference is that here we want to pick out the last name of any name, not just of
the particular name p.

In general, a function definition takes the following form (where the documenta
tion string is optional, and all other parts are required):

^In ANSI Common Lisp, 1 ast is defined to return a list of the last η elements, where η
defaults to 1. Thus (last p) = (last ρ 1) = (PUBLIC), and (last ρ 2) = (Q PUBLIC). This
may make the definition of 1 ast seem less perverse.

1,5 DEFINING NEW FUNCTIONS 13

(defun function-name {parameter...)
''documentation string''
function-body...)

The function name must be a symbol, the parameters are usually symbols (with some
complications to be explained later), and the function body consists of one or more
expressions that are evaluated when the function is called. The last expression is
returned as the value of the function call.

Once we have defined 1 ast-name, we can use it just like any other Lisp function:

> (last-name p)=i> PUBLIC

> (last-name '(Rear Admiral Grace Murray H o p p e r)) ^ HOPPER

> (last-name '(Rex Morgan MD)) ^ MD

> (last-name ' (Spo t)) ^ SPOT

> (last-name ' (A r i s t o t l e)) ARISTOTLE

The last three examples point out an inherent limitation of the programming enter
prise. When we say (defun last-name.. .) we are not really defining what it means
for a person to have a last name; we are just defining an operation on a representation
of names in terms of lists. Our intuitions—that MD is a title. Spot is the first name
of a dog, and Aristotle lived before the concept of last name was invented—are not
represented in this operation. However, we could always change the definition of
1 ast-name to incorporate these problematic cases.

We can also define the function f i r s t -name . Even though the definition is trivial
(it is the same as the function f 1 rs t) , it is still good practice to define f 1 rst-name
explicitly. Then we can use the function f i r s t - name when we are dealing with names,
and f i r s t when we are dealing with arbitrary lists. The computer will perform the
same operation in each case, but we as programmers (and readers of programs) will
be less confused. Another advanatge of defining specific functions like f i rst-name
is that if we decide to change the representation of names we will only have to change
the definition of f i rst-name. This is a much easier task than hunting through a large
program and changing the uses of f 1 r s t that refer to names, while leaving other
uses alone.

(defun f irst-name (name)
"Select the f i r s t name from a name represented as a l i s t . "
(f i r s t name))

> ρ (JOHN Q PUBLIC)

> (f i rst-name p) JOHN

> (f i rst-name '(Wilma F l in ts tone)) WILMA

14 INTRODUCTION TO LISP

> (set f names ' ((John Q Publ ic) (Malcolm X)
(Admiral Grace Murray Hopper) (Spot)
(A r i s to t le) (A A Milne) (Z Ζ Top)
(S i r Larry O l i v i e r) (Miss Sca r le t))) =^

((JOHN Q PUBLIC) (MALCOLM X) (ADMIRAL GRACE MURRAY HOPPER)
(SPOT) (ARISTOTLE) (A A MILNE) (Z Ζ TOP) (S IR LARRY OLIVIER)
(MISS SCARLET))

> (f i rst-name (f i r s t names)) JOHN

In the last expression we used the function f i r s t to pick out the first element in
a list of names, and then the function f i r s t - n a m e to pick out the first name of
that element. We could also have said (f i r s t (f i r s t names)) or even (f i r s t
(f i r s t - n a m e names)) and still have gotten JOHN, but we would not be accurately
representing what is being considered a name and what is being considered a list
of names.

1.6 Using Functions
One good thing about defining a list of names, as we did above, is that it makes it
easier to test our functions. Consider the following expression, which can be used to
test the 1 ast-name function:

> (mapcar #' last-name names)
(PUBLIC X HOPPER SPOT ARISTOTLE MILNE TOP OLIVIER SCARLET)

The funny # ' notation maps from the name of a function to the function itself. This
is analogous to ' χ notation. The built-in function mapca r is passed two arguments, a
function and a list. It returns a list built by calling the function on every element of
the input list. In other words, the mapcar call above is equivalent to:

(l i s t (last-name (f i r s t names))
(last-name (second names))
(last-name (th i rd names))
. . .)

mapcar's name comes from the fact that it "maps" the function across each of the
arguments. The car part of the name refers to the Lisp function ca r , an old name for
f i rs t . cdr is the old name for rest . The names stand for "contents of the address
register" and "contents of the decrement register," the instructions that were used in
the first implementation of Lisp on the IBM 704. I'm sure you'll agree that f i r s t and

1.6 USING FUNCTIONS 15

res t are much better names, and they will be used instead of ca r and cdr whenever
we are talking about lists. However, we will continue to use car and cdr on occasion
when we are considering a pair of values that are not considered as a list. Beware
that some programmers still use ca r and cdr for Usts as well.

Here are some more examples of mapcar:

> (mapcar ' (1 2 3 4)) = > (- l -2 -3 -4)

> (mapcar # ' + ' (1 2 3 4) ' (10 20 30 40)) ̂ (1 1 22 33 44)

This last example shows that mapcar can be passed three arguments, in which case the
first argument should be a binary function, which will be applied to corresponding
elements of the other two Usts. In general, mapcar expects an n-ary function as its
first argument, followed by η lists. It first applies the function to the argument list
obtained by collecting the first element of each list. Then it applies the function to the
second element of each list, and so on, until one of the lists is exhausted. It returns a
list of all the function values it has computed.

Now that we understand mapcar, let's use it to test the f i rst-name function:

> (mapcar # ' f i rs t -name names)
(JOHN MALCOLM ADMIRAL SPOT ARISTOTLE A Ζ SIR MISS)

We might be disappointed with these results. Suppose we wanted a version of
f i rst-name which ignored titles like Admiral and Miss, and got to the "real" first
name. We could proceed as follows:

(defparameter n i t l e s *
'(Mr Mrs Miss Ms S i r Madam Dr Admiral Major General)
"A l i s t of t i t l e s that can appear at the s tar t of a name.")

We've introduced another new special form, defparameter, which defines a para
meter—a variable that does not change over the course of a computation, but that
might change when we think of new things to add (like the French Mme or the military
Lt.). The def parameter form both gives a value to the variable and makes it possible
to use the variable in subsequent function definitions. In this example we have
exercised the option of providing a documentation string that describes the variable.
It is a widely used convention among Lisp programmers to mark special variables by
spelling their names with asterisks on either end. This is just a convention; in Lisp,
the asterisk is just another character that has no particular meaning.

We next give a new definition for f i rst-name, which supersedes the previous
definition.^ This definition says that if the first word of the name is a member of the

^Just as we can change the value of a variable, we can also change the value of a function

16 INTRODUCTION TO LISP

list of titles, then we want to ignore that word and return the f i rst-name of the rest
of the words in the name. Otherwise, we use the first word, just as before. Another
built-in function, member, tests to see if its first argument is an element of the list
passed as the second argument.

The special form i f has the form (i f test then-part else-part). There are many
special forms for performing conditional tests in Lisp; i f is the most appropriate for
this example. An i f form is evaluated by first evaluating the test expression. If it is
true, the then-part is evaluated and returned as the value of the i f form; otherwise
the else-part is evaluated and returned. While some languages insist that the value of
a conditional test must be either t rue or f al se. Lisp is much more forgiving. The test
may legally evaluate to any value at all. Only the value n i l is considered false; all
other values are considered true. In the definition of f i r s t - name below, the function
member will return a non-nil (hence true) value if the first element of the name is in the
list of titles, and will return η i 1 (hence false) if it is not. Although all non-nil values
are considered true, by convention the constant t is usually used to represent truth.

(defun f irst-name (name)
"Select the f i r s t name from a name represented as a l i s t . "
(i f (member (f i r s t name) * t i t l e s *)

(f i rst-name (rest name))
(f i r s t name)))

When we map the new f i rst-name over the list of names, the results are more
encouraging. In addition, the function gets the "right" result for '(Madam Major
General Paul a Jones) by dropping off titles one at a time.

> (mapcar # ' f i rs t -name names)
(JOHN MALCOLM GRACE SPOT ARISTOTLE A Ζ LARRY SCARLET)

> (f i rst-name '(Madam Major General Paula Jones))

PAULA

We can see how this works by tracing the execution of f 1 rst-name, and seeing the
values passed to and returned from the function. The special forms t race and
untrace are used for this purpose.

> (trace f i rst-name)
(FIRST-NAME)

in Lisp. It is not necessary to recompile everything when a change is made, as it would be in
other languages.

1.6 USING FUNCTIONS 17

> (f irst-name '(John Q Publ ic))
(1 ENTER FIRST-NAME: (JOHN Q PUBLIC))
(1 EXIT FIRST-NAME: JOHN)
JOHN

When f i r s t - name is called, the definition is entered with the single argument, name,
taking on the value (JOHN Q PUBLIC). The value returned is JOHN. Trace prints two
lines indicating entry and exit from the function, and then Lisp, as usual, prints the
final result, JOHN.

The next example is more complicated. The function f i rst-name is used four
times. First, it is entered with name bound to (Madam Major General Paula Jones) .
The first element of this list is Madam, and since this is a member of the list of titles,
the result is computed by calling f i rst-name again on the rest of the name—(Major
General Paula Jones) . This process repeats two more times, and we finally enter
f i r s t - name with name bound to (Paul a Jones) . Since Pa ul a is not a title, it becomes
the result of this call to f i r s t - name, and thus the result of all four calls, as trace shows.
Once we are happy with the workings of f i r s t - name, the special form unt race turns
off tracing.

> (f i rst-name '(Madam Major General Paula Jones)) =^
(1 ENTER FIRST-NAME: (MADAM MAJOR GENERAL PAULA JONES))

(2 ENTER FIRST-NAME: (MAJOR GENERAL PAULA JONES))
(3 ENTER FIRST-NAME: (GENERAL PAULA JONES))

(4 ENTER FIRST-NAME: (PAULA JONES))
(4 EXIT FIRST-NAME: PAULA)

(3 EXIT FIRST-NAME: PAULA)
(2 EXIT FIRST-NAME: PAULA)

(1 EXIT FIRST-NAME: PAULA)
PAULA

> (untrace f i rst-name) (FIRST-NAME)

> (f i rst-name '(Mr Blue Jeans)) BLUE

The function f i rst-name is said to be recursive because its definition includes a call
to itself. Programmers who are new to the concept of recursion sometimes find it
mysterious. But recursive functions are really no different from nonrecursive ones.
Any function is required to return the correct value for the given input(s). Another
way to look at this requirement is to break it into two parts: a function must return
a value, and it must not return any incorrect values. This two-part requirement is
equivalent to the first one, but it makes it easier to think about and design function
definitions.

Next I show an abstract description of the f i rst-name problem, to emphasize
the design of the function and the fact that recursive solutions are not tied to Lisp in
anyway:

18 INTRODUCTION TO LISP

function first-name(name):
i f the first element of name is a title

then do something complicated to get the first-name
else return the first element of the name

This breaks up the problem into two cases. In the second case, we return an answer,
and it is in fact the correct answer. We have not yet specified what to do in the first
case. But we do know that it has something to do with the rest of the name after the
first element, and that what we want is to extract the first name out of those elements.
The leap of faith is to go ahead and use f 1 rst-name, even though it has not been fully
defined yet:

function first-name(name):
i f the first element of name is a title

then return the f i rst-name of the rest of the name
el se return the first element of the name

Now the first case in f i rst-name is recursive, and the second case remains un
changed. We already agreed that the second case returns the correct answer, and the
first case only returns what f i rst-name returns. So f 1 rst-name as a whole can only
return correct answers. Thus, we're halfway to showing that the function is correct;
the other half is to show that it eventually returns some answer. But every recursive
call chops off the first element and looks at the rest, so for an n-element list there
can be at most η recursive calls. This completes the demonstration that the function
is correct. Programmers who learn to think this way find recursion to be a valuable
tool rather than a confusing mystery.

1.7 Higher-Order Functions

Functions in Lisp can not only be "called," or applied to arguments, they can also be
manipulated just like any other kind of object. A function that takes another function
as an argument is called a higher-orderfunction, ma pea r is an example. To demonstrate
the higher-order-function style of programming, we will define a new function called
mappend. It takes two arguments, a function and a list, mappend maps the function
over each element of the list and appends together all the results. The first definition
follows immediately from the description and the fact that the function appl y can be
used to apply a function to a list of arguments.

17 HICHER-ORDER FUNCTIONS 19

(defun mappend (fn t h e - l i s t)
"Apply fn to each element of l i s t and append the r e s u l t s . "
(apply #'append (mapcar fn t h e - l i s t)))

Now we experiment a little to see how apply and mappend work. The first example
applies the addition function to a list of four numbers.

> (apply # ' + ' (1 2 3 4)) ^ 1 0

The next example applies append to a list of two arguments, where each argument is
a list. If the arguments were not lists, it would be an error.

> (apply #'append ' ((1 2 3) (a b c))) = ^ (l 2 3 A Β C)

Now we define a new function, sel f -and-doubl e, and apply it to a variety of argu
ments.

> (defun self-and-double (x) (l i s t χ (+ χ χ)))

> (sel f -and-double 3) {3 6)

> (apply # 'se l f -and-double ' (3)) = ^ (3 6)

If we had tried to apply sel f -and-doubl e to a list of more than one argument, or to a
list that did not contain a number, it would be an error, just as it would be an error to
evaluate (s e l f - a n d - d o u b l e 3 4) or (s e l f - a n d - d o u b l e 'Kim) . Now let's return to
the mapping functions:

> (mapcar # 'se l f -and-double ' (1 10 3 0 0)) = > ((1 2) (10 20) (300 600))

> (mappend # 'se l f -and-double ' (1 10 300))=Φ (1 2 10 20 300 600)

When mapcar is passed a function and a list of three arguments, it always returns a
list of three values. Each value is the result of calling the function on the respective
argument. In contrast, when mappend is called, it returns one big list, which is equal
to all the values that mapca r would generate appended together. It would be an error
to call mappend with a function that didn't return lists, because append expects to see
lists as its arguments.

Now consider the following problem: given a list of elements, return a list con
sisting of all the numbers in the original list and the negation of those numbers. For
example, given the list (t e s t i n g 1 2 3 t e s t) , return (1 - 1 2 - 2 3 - 3) . This
problem can be solved very easily using mappend as a component:

20 INTRODUCTION TO LISP

(defun numbers-and-negations (input)
"Given a l i s t , return only the numbers and their negat ions."
(mappend #'number-and-negation input))

(defun number-and-negation (x)
" I f χ i s a number, return a l i s t of χ and - x . "
(i f (numberp x)

(l i s t χ (- χ))
n i l))

> (numbers-and-negations ' (t es t i ng 1 2 3 t es t)) = ^ (1 - 1 2 - 2 3 -3)

The alternate definition of mappend shown in the following doesn't make use of
ma pea r; instead it builds up the list one element at a time:

(defun mappend (fn t h e - l i s t)
"Apply fn to each element of l i s t and append the r e s u l t s . "
(i f (null t h e - l i s t)

ni l
(append (funcal l fn (f i r s t t h e - l i s t))

(mappend fn (rest t h e - l i s t)))))

f unca η is similar to a ppl y; it too takes a function as its first argument and applies the
function to a list of arguments, but in the case of f uncal 1, the arguments are listed
separately:

> (funcall # '+ 2 3) =i> 5

> (apply # '+ ' (2 3)) 5

> (funcall # '+ ' (2 3))=> Error: (2 3) is not a number.

These are equivalent to (+ 2 3) , (+ 2 3) , a n d (+ ' (2 3)) , respectively.
So far, every function we have used has been either predefined in Common Lisp

or introduced with a defun, which pairs a function with a name. It is also possible to
introduce a function without giving it a name, using the special syntax 1 ambda.

The name lambda comes from the mathematician Alonzo Church's notation for
functions (Church 1941). Lisp usually prefers expressive names over terse Greek
letters, but lambda is an exception. A better name would be ma ke - f unct i on. Lambda
derives from the notation in Russell and Whitehead's Principia Mathematica, which
used a caret over bound variables: x{x -h x). Church wanted a one-dimensional
string, so he moved the caret in front: ^x{x-\-x). The caret looked funny with nothing
below it, so Church switched to the closest thing, an uppercase lambda, \x{x - f x) .
The Λ was easily confused with other symbols, so eventually the lowercase lambda
was substituted: \x{x -h x). John McCarthy was a student of Church's at Princeton,
so when McCarthy invented Lisp in 1958, he adopted the lambda notation. There

1.7 HIGHER-ORDER FUNCTIONS 21

were no Greek letters on the keypunches of that era, so McCarthy used (1 ambda (x)
(+ χ χ)) , and it has survived to this day. In general, the form of a lambda expression is

(lambda (parameters...) body...)

A lambda expression is just a nonatomic name for a function, just as append is an
atomic name for a built-in function. As such, it is appropriate for use in the first
position of a function call, but if we want to get at the actual function, rather than its
name, we still have to use the # ' notation. For example:

> ((lambda (x) (+ χ 2)) 4) =Í> 6

> (funcall #'(lambda (x) (+ χ 2)) 4) =^ 6

To understand the distinction we have to be clear on how expressions are evaluated
in Lisp. The normal rule for evaluation states that symbols are evaluated by looking
up the value of the variable that the symbol refers to. So the x in (+ χ 2) is evaluated
by looking up the value of the variable named x. A list is evaluated in one of two
ways. If the first element of the list is a special form operator, then the list is evaluated
according to the syntax rule for that special form. Otherwise, the Hst represents a
function call. The first element is evaluated in a unique way, as a function. This
means it can either be a symbol or a lambda expression. In either case, the function
named by the first element is applied to the values of the remaining elements in the
list. These values are determined by the normal evaluation rules. If we want to refer
to a function in a position other than the first element of a function call, we have
to use the # ' notation. Otherwise, the expressions will be evaluated by the normal
evaluation rule, and will not be treated as functions. For example:

> append ^ Error: APPEND is not a bound variable

> (lambda (x) i+ χ Z)) Error: LAMBDA is not a function

Here are some more examples of the correct use of functions:

> (mapcar #*(lambda (x) (+ χ χ))
' (1 2 3 4 5)) ^

(2 4 6 8 10)

> (mappend #'(lambda (1) (l i s t 1 (reverse 1)))
' ((1 2 3) (a b c))) =>

((1 2 3) (3 2 1) (A Β C) (C Β A))

Programmers who are used to other languages sometimes fail to see the point of
lambda expressions. There are two reasons why lambda expressions are very useful.

22 INTRODUCTION TO LISP

First, it can be messy to clutter up a program with superfluous names. Just as it
is clearer to write (a+b)*(c+cl) rather than to invent variable names like tempi and
temp2 to hold a+b and c+d, so it can be clearer to define a function as a lambda
expression rather than inventing a name for it.

Second, and more importantly, lambda expressions make it possible to create
new functions at run time. This is a powerful technique that is not possible in
most programming languages. These run-time functions, known as closures, will be
covered in section 3.16.

1.8 Other Data Types
So far we have seen just four kinds of Lisp objects: numbers, symbols, lists, and
functions. Lisp actually defines about 25 different types of objects: vectors, arrays,
structures, characters, streams, hash tables, and others. At this point we will intro
duce one more, the string. As you can see in the following, strings, like numbers,
evaluate to themselves. Strings are used mainly for printing out messages, while
symbols are used for their relationships to other objects, and to name variables. The
printed representation of a string has a double quote mark (") at each end.

> "a s t r i ng " =4> "a s t r i ng "

> (length "a s t r i n g ") =i>8

> (length " ") = ^ 0

1.9 Summary: The Lisp Evaluation Rule
We can now summarize the evaluation rule for Lisp.

• Every expression is either a list or an atom.

• Every list to be evaluated is either a special form expression or afunction applica tion.

• A specialform expression is defined to be a lis t whose first element is a special form
operator. The expression is evaluated according to the operator's idiosyncratic
evaluation rule. For example, the evaluation rule for s e t f is to evaluate the
second argument according to the normal evaluation rule, set the first argument
to that value, and return the value as the result. The rule for defun is to define
a new function, and return the name of the function. The rule for quote
is to return the first argument unevaluated. The notation 'x is actually an

1.9 SUMMARY: THE LISP EVALUATION RULE 23

abbreviation for the special form expression (quote x) . Similarly, the notation
' / i s an abbreviation for the special form expression (f uncti on f).

•John = (quote John) JOHN

(set f ρ 'John) => JOHN

(defun twice (x) (+ χ x)) => TWICE

(i f (= 2 3) (error) (+ 5 6)) =^ 11

A function application is evaluated by first evaluating the arguments (the rest of
the list) and then finding the function named by the first element of the list and
applying it to the list of evaluated arguments.

(+ 2 3) = ^ 5

(- (+ 90 9) (+ 50 5 (length ' (Pat Kim)))) =^ 42

Note that if ' (Pat Kim) did not have the quote, it would be treated as a function
application of the function pat to the value of the variable ki m.

Every atom is either a symbol or a nonsymbol

A symbol evaluates to the most recent value that has been assigned to the
variable named by that symbol. Symbols are composed of letters, and possibly
digits and, rarely, punctuation characters. To avoid confusion, we will use
symbols composed mostly of the letters a-z and the character, with a few
exceptions.^

names

Ρ

pr in t -pret ty

• A nonsymbol atom evaluates to itself. For now, numbers and strings are the
only such non-symbol atoms we know of. Numbers are composed of digits,
and possibly a decimal point and sign. There are also provisions for scientific
notation, rational and complex numbers, and numbers with different bases,
but we won't describe the details here. Strings are delimited by double quote
marks on both sides.

^For example, symbols that denote so-called special variables usually begin and end in
asterisks. Also, note that I did not hesitate to use the symbol won! on page 11.

24 INTRODUCTION TO LISP

There are some minor details of Common Lisp that complicate the evaluation
rules, but this definition will suffice for now.

One complication that causes confusion for beginning Lispers is the difference
between reading and evaluating an expression. Beginners often imagine that when
they type an expression, such as

> (+ (* 3 4) (* 5 6))

the Lisp system first reads the (+, then fetches the addition function, then reads (*
3 4) and computes 12, then reads (* 5 6) and computes 30, and finally computes
42. In fact, what actually happens is that the system first reads the entire expression,
the list (+ (* 3 4) (* 5 6)) . Only after it has been read does the system begin
to evaluate it. This evaluation can be done by an interpreter that looks at the list
directly, or it can be done by a compiler that translates the list into machine language
instructions and then executes those instructions.

We can see now that it was a little imprecise to say, "Numbers are composed
of digits, and possibly a decimal point and sign." It would be more precise to say
that the printed representation of a number, as expected by the function read and
as produced by the function p r i n t , is composed of digits, and possibly a decimal
point and sign. The internal representation of a number varies from one computer
to another, but you can be sure that it will be a bit pattern in a particular memory
location, and it will no longer contain the original characters used to represent the
number in decimal notation. Similarly, it is the printed representation of a string
that is surrounded by double quote marks; the internal representation is a memory
location marking the beginning of a vector of characters.

Beginners who fail to grasp the distinction between reading and evaluating may
have a good model of what expressions evaluate to, but they usually have a terrible
model of the efficiency of evaluating expressions. One student used only one-letter
variable names, because he felt that it would be faster for the computer to look up
a one-letter name than a multiletter name. While it may be true that shorter names
can save a microsecond at read time, this makes no difference at all at evaluation
time. Every variable, regardless of its name, is just a memory location, and the time
to access the location does not depend on the name of the variable.

42 42

-273.15 -273.15

"a s t r i ng " "a s t r i ng "

1.10 WHAT MAKES LISP DIFFERENT? 25

Automatic Storage Management. The Lisp programmer needn't keep track of
memory allocation; it is all done automatically. This frees the programmer of a
lot of effort, and makes it easy to use the functional style of programming. Other

1.10 What Makes Lisp Different?
What is it that sets Lisp apart from other languages? Why is it a good language for
AI applications? There are at least eight important factors:

• Built-in Support for Lists

• Automatic Storage Management

• Dynamic Typing

• First-Class Functions

• Uniform Syntax

• Interactive Environment

• Extensibility

• History

In sum, these factors allow a programmer to delay making decisions. In the example
dealing with names, we were able to use the built-in list functions to construct and
manipulate names without making a lot of explicit decisions about their represen
tation. If we decided to change the representation, it would be easy to go back and
alter parts of the program, leaving other parts unchanged.

This ability to delay decisions—or more accurately, to make temporary, nonbind-
ing decisions—is usually a good thing, because it means that irrelevant details can be
ignored. There are also some negative points of delaying decisions. First, the less we
tell the compiler, the greater the chance that it may have to produce inefficient code.
Second, the less we tell the compiler, the less chance it has of noticing inconsistencies
and warning us. Errors may not be detected until the program is run. Let's consider
each factor in more depth, weighing the advantages and disadvantages:

• Built-in Support for Lists. The list is a very versatile data structure, and while lists
can be implemented in any language. Lisp makes it easy to use them. Many
AI applications involve lists of constantly changing size, making fixed-length
data structures like vectors harder to use.

Early versions of Lisp used lists as their only aggregate data structure. Common
Lisp provides other types as well, because lists are not always the most efficient
choice.

26 INTRODUCTION TO LISP

languages present programmers with a choice. Variables can be allocated on
the stack, meaning that they are created when a procedure is entered, and
disappear when the procedure is done. This is an efficient use of storage, but
it rules out functions that return complex values. The other choice is for the
programmer to explicitly allocate and free storage. This makes the functional
style possible but can lead to errors.

For example, consider the trivial problem of computing the expression α χ (b +
c), where a, 6, and c are numbers. The code is trivial in any language; here it is
in Pascal and in Lisp:

/ * Pascal * / L isp

a * (b + c) (* a (+ b c))

The only difference is that Pascal uses infix notation and Lisp uses prefix. Now
consider computing α χ (b -f c) when a, 6, and c are matrices. Assume we have
procedures for matrix multiplication and addition. In Lisp the form is exactly
the same; only the names of the functions are changed. In Pascal we have the
choice of approaches mentioned before. We could declare temporary variables
to hold intermediate results on the stack, and replace the functional expression
with a series of procedure calls:

/ * Pascal * / ; ; ; L isp

var temp, resu l t : matrix;

add(b,c,temp); (mult a (add b c))

mult(a, temp,resul t) ;

re tu rn(resu l t) ;

The other choice is to write Pascal functions that allocate new matrices on the
heap. Then one can write nice functional expressions like mul t (a , add (b , c))
even in Pascal. However, in practice it rarely works this nicely, because of the
need to manage storage explicitly:

/ * Pascal * / ; ; ; L isp

var a , b , c , x , y : matrix;

hlO WHAT MAKES LISP DIFFERENT? 27

X := adcl (b ,c) ; (mult a (add b c))

y := mul t (a ,x) ;

f ree (x) ;

re turn(y) ;

In general, deciding which structures to free is a difficult task for the Pascal
programmer. If the programmer misses some, then the program may run out
of memory. Worse, if the programmer frees a structure that is still being used,
then strange errors can occur when that piece of memory is reallocated. Lisp
automatically allocates and frees structures, so these two types of errors can
never occur.

Dynamic Typing. Lisp programmers don't have to provide type declarations,
because the language keeps track of the type of each object at run time, rather
than figuring out all types at compile time. This makes Lisp programs shorter
and hence faster to develop, and it also means that functions can often be
extended to work for objects to which they were not originally intended to
apply. In Pascal, we can write a procedure to sort an array of 100 integers, but
we can't use that same procedure to sort 200 integers, or 100 strings. In Lisp,
one sort fits all.

One way to appreciate this kind of flexibility is to see how hard it is to achieve
in other languages. It is impossible in Pascal; in fact, the language Modula was
invented primarily to fix this problem in Pascal. The language Ada was de
signed to allow flexible generic functions, and a book by Musser and Stepanov
(1989) describes an Ada package that gives some of the functionality of Com
mon Lisp's sequence functions. But the Ada solution is less than ideal: it
takes a 264-page book to duplicate only part of the functionality of the 20-page
chapter 14 from Steele (1990), and Musser and Stepanov went through five Ada
compilers before they found one that would correctly compile their package.
Also, their package is considerably less powerful, since it does not handle vec
tors or optional keyword parameters. In Common Lisp, all this functionality
comes for free, and it is easy to add more.

On the other hand, dynamic typing means that some errors will go undetected
until run time. The great advantage of strongly typed languages is that they are
able to give error messages at compile time. The great frustration with strongly
typed languages is that they are only able to warn about a small class of errors.
They can tell you that you are mistakenly passing a string to a function that
expects an integer, but they can't tell you that you are passing an odd number
to a function that expects an even number.

First-Class Functions. A first-class object is one that can be used anywhere and
can be manipulated in the same ways as any other kind of object. In Pascal or C,

28 INTRODUCTION TO LISP

for example, functions can be passed as arguments to other functions, but they
are not first-class, because it is not possible to create new functions while the
program is running, nor is it possible to create an anonymous function without
giving it a name. In Lisp we can do both those things using 1 ambda. This is
explained in section 3.16, page 92.

• Uniform Syntax. The syntax of Lisp programs is simple. This makes the lan
guage easy to learn, and very little time is wasted correcting typos. In addition,
it is easy to write programs that manipulate other programs or define whole
new languages—a very powerful technique. The simple syntax also makes it
easy for text editing programs to parse Lisp. Your editor program should be
able to indent expressions automatically and to show matching parentheses.
This is harder to do for languages with complex syntax.

On the other hand, some people object to all the parentheses. There are two
answers to this objection. First, consider the alternative: in a language with
"conventional" syntax. Lisp's parentheses pairs would be replaced either by an
implicit operator precedence rule (in the case of arithmetic and logical expres
sions) or by a begin/end pair (in the case of control structures). But neither
of these is necessarily an advantage. Implicit precedence is notoriously error-
prone, and begin/end pairs clutter up the page without adding any content.
Many languages are moving away from begi n/end: C uses { and } , which are
equivalent to parentheses, and several modern functional languages (such as
Haskell) use horizontal blank space, with no explicit grouping at all.

Second, many Lisp programmers have considered the alternative. There have
been a number of preprocessors that translate from "conventional" syntax into
Lisp. None of these has caught on. It is not that Lisp programmers find it
tolerable to use all those parentheses, rather, they find it advantageous. With a
little experience, you may too.

It is also important that the syntax of Lisp data is the same as the syntax of
programs. Obviously, this makes it easy to convert data to program. Less
obvious is the time saved by having universal functions to handle input and
output. The Lisp functions read and pr i nt will automatically handle any list,
structure, string, or number. This makes it trivial to test individual functions
while developing your program. In a traditional language like C or Pascal, you
would have to write special-purpose functions to read and print each data type
you wanted to debug, as well as a special-purpose driver to call the routines.
Because this is time-consuming and error-prone, the temptation is to avoid
testing altogether. Thus, Lisp encourages better-tested programs, and makes
it easier to develop them faster.

• Interactive Environment. Traditionally, a programmer would write a complete
program, compile it, correct any errors detected by the compiler, and then

1.10 WHAT MAKES LISP DIFFERENT? 29

run and debug it. This is known as the batch mode of interaction. For long
programs, waiting for the compiler occupied a large portion of the debugging
time. In Lisp one normally writes a few small functions at a time, getting
feedback from the Lisp system after evaluating each one. This is knovm as
an interactive environment. When it comes time to make a change, only the
changed functions need to be recompiled, so the wait is much shorter. In
addition, the Lisp programmer can debug by typing in arbitrary expressions
at any time. This is a big improvement over editing the program to introduce
print statements and recompiling.

Notice that the distinction between interactive and a batch languages is separate
from the distinction between interpreted and compiled languages. It has often
been stated, incorrectly, that Lisp has an advantage by virtue of being an
interpreted language. Actually, experienced Common Lisp programmers tend
to use the compiler almost exclusively. The important point is interaction, not
interpretation.

The idea of an interactive environment is such a good one that even traditional
languages like C and Pascal are starting to offer interactive versions, so this is
not an exclusive advantage of Lisp. However, Lisp still provides much better
access to the interactive features. A C interpreter may allow the progranuner
to type in an expression and have it evaluated immediately, but it will not allow
the programmer to write a program that, say, goes through the symbol table
and finds all the user-defined functions and prints information on them. In
C-even interpreted C-the symbol table is just a Cheshire-cat-like invention
of the interpreter's imagination that disappears when the program is run. In
Lisp, the symbol table is a first-class object^ that can be accessed and modified
with functions like read, intern and do-symbols.

Common Lisp offers an unusually rich set of useful tools, including over 700
built-in functions (ANSI Conunon Lisp has over 900). Thus, writing a new
program involves more gathering of existing pieces of code and less writing of
new code from scratch. In addition to the standard functions. Common Lisp
implementations usually provide extensions for interacting with the editor,
debugger, and window system.

Extensibility. When Lisp was invented in 1958, nobody could have foreseen the
advances in programming theory and language design that have taken place in
the last thirty years. Other early languages have been discairded, replaced by
ones based on newer ideas. However, Lisp has been able to survive, because
it has been able to adapt. Because Lisp is extensible, it has been changed to
incorporate the newest features as they become popular.

^Actually, there can be several symbol tables. They are known as packages in Common
Lisp.

30 INTRODUCTION TO LISP

The easiest way to extend the language is with macros. When so-called struc
tured programming constructs such as case and if-then-else arose, they were
incorporated into Lisp as macros. But the flexibility of Lisp goes beyond
adding individual constructs. Brand new styles of programming can easily be
implemented. Many AI applications are based on the idea of rule-based pro
gramming. Another new style is object-oriented programming, which has been
incorporated with the Common Lisp Object System (CLOS),^ a set of macros,
functions, and data types that have been integrated into ANSI Common Lisp.

To show how far Lisp has come, here's the only sample program given in the
Lisp/MTS Programmer's Guide (Hafner and Wilcox 1974):

(PROG (LIST DEPTH TEMP RESTLIST)
(SETQ RESTLIST (LIST (CONS (READ) 0)))
A (COND
((NOT RESTLIST) (RETURN 'DONE))
(T (SETQ LIST (UNCONS (UNCONS RESTLIST

RESTLIST) DEPTH))
(COND ((ATOM LIST)
(MAPC 'PRINl (LIST '"ATOM:" LIST ' " . " 'DEPTH DEPTH))
(TERPRD)
(T (SETQ TEMP (UNCONS LIST L IST))
(COND (LIST
(SETQ RESTLIST (CONS(CONS LIST DEPTH) RESTLIST))))
(SETQ RESTLIST (CONS (CONS TEMP

(ADDl DEPTH)) RESTLIST))
))))
(GO A))

Note the use of the now-deprecated goto (GO) statement, and the lack of consistent
indentation conventions. The manual also gives a recursive version of the same
program:

(PROG NIL (
(LABEL ATOMPRINT (LAMBDA (RESTLIST)
(COND ((NOT RESTLIST) (RETURN 'DONE))
((ATOM (CAAR RESTLIST)) (MAPC 'PRINl

(LIST '"ATOM:" (CAAR RESTLIST)
' " , " 'DEPTH (CDAR RESTLIST)))

(TERPRD
(ATOMPRINT (CDR RESTLIST)))
(Τ (ATOMPRINT (GRAFT
(LIST (CONS (CAAAR RESTLIST) (ADDl (CDAR RESTLIST))))
(AND (CDAAR RESTLIST) (LIST (CONS (CDAAR RESTLIST)

^Pronounced "see-loss." An alternate pronunciation, "klaus," seems to be losing favor.

1.11 EXERCISES 31

(CDAR RESTLIST))))
(COR RESTLIST)))))))

(LIST (CONS (READ) 0))))

Both versions are very difficult to read. With our modern insight (and text editors
that automatically indent), a much simpler program is possible:

(defun atomprint (exp &optional (depth 0))
"Pr int each atom in exp. along with i t s depth of nes t ing . "
(i f (atom exp)

(format t ""SATOM: ~a, DEPTH " d " exp depth)
(do l i s t (element exp)

(atomprint element (+ depth 1)))))

1.11 Exercises

@ Exercise 1.1 [m] Define a version of 1 ast-name that handles "Rex Morgan MD,"
"Morton Downey, Jr.," and whatever other cases you can think of.

G] Exercise 1.2 [m] Write a function to exponentiate, or raise a number to an integer
power. For example: (power 3 2) = 3^ = 9.

Exercise 1.3 [m] Write a function that counts the number of atoms in an expression.
For example: (count-atoms ' (a (b) c)) = 3. Notice that there is something of an
ambiguity in this: should (a n i l c) count as three atoms, or as two, because it is
equivalent to (a () c)?

I¿] Exercise 1.4 [m] Write a function that counts the number of times an expression
occurs anywhere within another expression. Example: (count-anywhere 'a *(a
((a) b) a)) 3.

t¿J Exercise 1.5 [m] Write a function to compute the dot product of two sequences
of numbers, represented as lists. The dot product is computed by multiplying
corresponding elements and then adding up the resulting products. Example:

(dot-product ' (10 20) ' (3 4)) = 10 χ 3 + 20 χ 4 = 110

32 INTRODUCTION TO LISP

1.12 Answers

Answer 1.2

(defun power (x n)
"Power ra ises χ to the nth power. Ν must be an integer >= 0.
This executes in log η time, because of the check for even n.

(cond ((= η 0) 1)
((evenp n) (expt (power χ (/ η 2)) 2))
(t (* χ (power χ (- η 1))))))

Answer 1.3

(defun count-atoms (exp)
"Return the total number of non-ni l atoms in the express ion . "
(cond ((nul l exp) 0)

((atom exp) 1)
(t (+ (count-atoms (f i r s t exp))

(count-atoms (rest exp))))))

(defun count-al l-atoms (exp Äoptional (i f -nu l l 1))
"Return the total number of atoms in the express ion,
counting ni l as an atom only in non-tai l pos i t i on . "
(cond ((nul l exp) i f - n u l l)

((atom exp) 1)
(t (+ (count-al l-atoms (f i r s t exp) 1)

(count-al l-atoms (rest exp) 0)))))

Answer 1.4

(defun count-anywhere (item tree)
"Count the times item appears anywhere within t ree. "
(cond ((eql item tree) 1)

((atom tree) 0)
(t (+ (count-anywhere item (f i r s t t ree))

(count-anywhere item (rest t r ee))))))

1.12 ANSWERS 33

Answer 1.5 Here are three versions:

(defun dot-product (a b)
"Compute the mathematical dot product of two vec tors . "
(i f (or (null a) (null b))

0
(+ (* (f i r s t a) (f i r s t b))

(dot-product (rest a) (rest b)))))

(defun dot-product (a b)
"Compute the mathematical dot product of two vec tors . "
(let ((sum 0))

(dotimes (i (length a))
(incf sum (* (e l t a i) (e l t b i))))

sum))

(defun dot-product (a b)
"Compute the mathematical dot product of two vec to rs . "
(apply # ' + (mapcar # ' * a b)))

CHAPTER 2

A Simple Lisp Program

Cerium quod factum.
(One is certain of only what one builds.)

-Giovanni Battista Vico (1668-Ί 744)
Italian royal historiographer

γ ou will never become proficient in a foreign language by studying vocabulary lists.
Rather, you must hear and speak (or read and write) the language to gain proficiency.
The same is true for learning computer languages.

This chapter shows how to combine the basic functions and special forms of Lisp into a
complete program. If you can learn how to do that, then acquiring the remaining vocabulary of
Lisp (as outlined in chapter 3) will be easy.

2.1 A GRAMMAR FOR A SUBSET OF ENGLISH 35

2.1 A Grammar for a Subset of English
The program we will develop in this chapter generates random English sentences.
Here is a simple grammar for a tiny portion of English:

Sentence ̂ Noun-Phrase-^ Verb-Phrase
Noun-Phrase ^ Article + Noun
Verb-Phrase => Verb + Noun-Phrase
Article ^ the, a,...
Noun =^ man, ball, woman, table...
Verb hit, took, saw, liked...

To be technical, this description is called a context-free phrase-structure grammar, and
the underlying paradigm is called generative syntax. The idea is that anywhere we
want a sentence, we can generate a noun phrase followed by a verb phrase. Anywhere
a noun phrase has been specified, we generate instead an article followed by a noun.
Anywhere an article has been specified, we generate either "the," "a," or some other
article. The formalism is "context-free" because the rules apply anywhere regardless
of the surrounding words, and the approach is "generative" because the rules as a
whole define the complete set of sentences in a language (and by contrast the set of
nonsentences as well). In the following we show the derivation of a single sentence
using the rules:

To get a Sentence, append a Noun-Phrase and a Verb-Phrase
To get a Noun-Phrase, append an Article and a Noun

Choose "the" for the Article
Choose "man" for the Noun

The resulting Noun-Phrase is "the man"
To get a Verb-Phrase, append a Verb and a Noun-Phrase

Choose "hit" for the Verb
To get a Noun-Phrase, append an Article and a Noun

Choose "the" for the Article
Choose "ball" for the Noun

The resulting Noun-Phrase is "the bair
The resulting Verb-Phrase is "hit the ball"

The resulting Sentence is "The man hit the ball"

1.1 A Straightforward Solution
We will develop a program that generates random sentences from a phrase-structure
grammar. The most straightforward approach is to represent each grammar rule by
a separate Lisp function:

36 A SIMPLE LISP PROGRAM

(defun sentence () (append (noun-phrase) (verb-phrase)))
(defun noun-phrase () (append (Ar t i c le) (Noun)))
(defun verb-phrase () (append (Verb) (noun-phrase)))
(defun Ar t i c le () (one-of ' (the a)))
(defun Noun () (one-of '(man ball woman tab le)))
(defun Verb () (one-of ' (h i t took saw l i ked)))

Each of these function definitions has an empty parameter list, () . That means the
functions take no arguments. This is unusual because, strictly speaking, a function
with no arguments would always return the same thing, so we would use a constant
instead. However, these functions make use of the random function (as we will see
shortly), and thus can return different results even with no arguments. Thus, they
are not functions in the mathematical sense, but they are still called functions in Lisp,
because they return a value.

All that remains now is to define the function one-of . It takes a list of possible
choices as an argument, chooses one of these at random, and returns a one-element
list of the element chosen. This last part is so that all functions in the grammar will
return a list of words. That way, we can freely apply append to any category.

(defun one-of (set)
"Pick one element of se t , and make a l i s t of i t . "
(l i s t (random-elt se t)))

(defun random-elt (choices)
"Choose an element from a l i s t at random."
(e l t choices (random (length cho ices))))

There are two new functions here, el t and random, el t picks an element out of a list.
The first argument is the list, and the second is the position in the list. The confusing
part is that the positions start at 0, so (el t choi ces 0) is the first element of the list,
and (el t choi ces 1) is the second. Think of the position numbers as telling you
how far away you are from the front. The expression (random η) returns an integer
from 0 to n-1, so that (random 4) would return either 0,1,2, or 3.

Now we can test the program by generating a few random sentences, along with
a noun phrase and a verb phrase:

> (sentence) (THE WOMAN HIT THE BALL)

> (sentence) =4> (THE WOMAN HIT THE MAN)

> (sentence) (THE BALL SAW THE WOMAN)

> (sentence) =Ϊ> (THE BALL SAW THE TABLE)

> (noun-phrase) (THE MAN)

> (verb-phrase) ^ (LIKED THE WOMAN)

2.2 A STRAIGHTFORWARD SOLUTION 37

> (trace sentence noun-phrase verb-phrase a r t i c le noun verb) ^
(SENTENCE NOUN-PHRASE VERB-PHRASE ARTICLE NOUN VERB)

> (sentence) =>
(1 ENTER SENTENCE)

(1 ENTER NOUN-PHRASE)
(1 ENTER ARTICLE)
(1 EXIT ARTICLE: (THE))
(1 ENTER NOUN)
(1 EXIT NOUN: (MAN))

(1 EXIT NOUN-PHRASE: (THE MAN))
(1 ENTER VERB-PHRASE)

(1 ENTER VERB)
(1 EXIT VERB: (HIT))
(1 ENTER NOUN-PHRASE)

(1 ENTER ARTICLE)
(1 EXIT ARTICLE: (THE))
(1 ENTER NOUN)
(1 EXIT NOUN: (BALD)

(1 EXIT NOUN-PHRASE: (THE BALD)
(1 EXIT VERB-PHRASE: (HIT THE BALD)

(1 EXIT SENTENCE: (THE MAN HIT THE BALD)
(THE MAN HIT THE BALL)

The program works fine, and the trace looks just like the sample derivation above,
but the Lisp definitions are a bit harder to read than the original grammar rules.
This problem will be compounded as we consider more complex rules. Suppose we
wanted to allow noun phrases to be modified by an indefinite number of adjectives
and an indefinite number of prepositional phrases. In grammatical notation, we
might have the following rules:

Noun-Phrase => ArHcle + Adj* + Noun + PP*

ΡΡ*=>ϋ,ΡΡ + ΡΡ*
PP =^ Prep + Noun-Phrase
Ad] ^ big, little, blue, green,...
Prep ̂ to, in, by, with,...

In this notation, 0 indicates a choice of nothing at all, a comma indicates a choice of
several alternatives, and the asterisk is nothing special—as in Lisp, it's just part of the
name of a symbol. However, the convention used here is that names ending in an
asterisk denote zero or more repetitions of the underlying name. That is, PP * denotes
zero or more repetitions of PP. This is known as "Kleene star" notation (pronounced

38 Λ SIMPLE LISP PROGRAM

"clean-E") after the mathematician Stephen Cole Kleene.^
The problem is that the rules for Adj * and PP * contain choices that we would have

to represent as some kind of conditional in Lisp. For example:

(defun Adj* ()
(i f (= (random 2) 0)

ni l
(append (Adj) (Ad j *))))

(defun PP* ()
(i f (random-elt ' (t n i l))

(append (PP) (PP*))
n i l))

(defun noun-phrase () (append (Ar t i c le) (Adj*) (Noun) (PP*)))
(defun PP () (append (Prep) (noun-phrase)))
(defun Adj () (one-of ' (b i g l i t t l e blue green ad iabat ic)))
(defun Prep () (one-of ' (to in by with on)))

I've chosen two different implementations for A d j * and PR*; either approach would
work in either function. We have to be careful, though; here are two approaches that
would not work:

(defun Adj* ()
"Warning - incorrect de f in i t ion of Ad jec t ives . "
(one-of ' (n i l (append (Adj) (Ad j *)))))

(defun Adj* ()
"Warning - incorrect de f in i t ion of Ad jec t ives. "
(one-of (l i s t ni l (append (Adj) (Ad j *)))))

The first definition is wrong because it could return the literal expression ((append
(Adj) (Adj *))) rather than a list of words as expected. The second definition would
cause infinite recursion, because computing the value of (Ad j *) always involves a
recursive call to (A d j *) . The point is that what started out as simple functions are
now becoming quite complex. To understand them, we need to know many Lisp
conventions—defun, () , case, 1 f , quote, and the rules for order of evaluation—when
ideally the implementation of a grammar rule should use only linguistic conventions.
If we wanted to develop a larger grammar, the problem could get worse, because the
rule-writer might have to depend more and more on Lisp.

^We will soon see ''Kleene plus" notation, wherein PP+ denotes one or more repetition
of PP.

2.3 A RULE-BASED SOLUTION 39

2.3 A Rule-Based Solution
An alternative implementation of this program v^ould concentrate on making it easy
to write grammar rules and would worry later about how they will be processed.
Let's look again at the original grammar rules:

Sentence =^ Noun-Phrase + Verb-Phrase
Noun-Phrase ^ Article + Noun
Verb-Phrase Verb + Noun-Phrase
Article the, a,...
Noun man, ball, woman, table ...
Verb hit, took, saw, liked...

Each rule consists of an arrow with a symbol on the left-hand side and something on
the right-hand side. The complication is that there can be two kinds of right-hand
sides: a concatenated list of symbols, as in "Noun-Phrase Article+Noun," or a list of
alternate words, as in "Noun =^ man, hall,..." We can account for these possibilities
by deciding that every rule will have a list of possibilities on the right-hand side, and
that a concatenated list, for example "Article+Noun," will be represented as a Lisp list,
for example " (A r t i cl e Noun)". The list of rules can then be represented as follows:

(defparameter *simple-grammar*
' ((sentence - > (noun-phrase verb-phrase))

(noun-phrase - > (Ar t ic le Noun))
(verb-phrase - > (Verb noun-phrase))
(Ar t ic le - > the a)
(Noun - > man ball woman table)
(Verb - > h i t took saw l i ked))

"A grammar for a t r i v i a l subset of E n g l i s h . ")

(defvar *grammar* *simple-grammar*
"The grammar used by generate. I n i t i a l l y , t h i s i s
simple-grammar, but we can switch to other grammars.")

Note that the Lisp version of the rules closely mimics the original version. In par
ticular, I include the symbol" ->", even though it serves no real purpose; it is purely
decorative.

The special forms defvar and defparameter both introduce special variables
and assign a value to them; the difference is that a variable, like *grammar*, is
routinely changed during the course of running the program. A parameter, like
s imple-grammar, on the other hand, will normally stay constant. A change to a
parameter is considered a change to the program, not a change by the program.

Once the list of rules has been defined, it can be used to find the possible rewrites
of a given category symbol. The function assoc is designed for just this sort of task.

40 A SIMPLE LISP PROGRAM

It takes two arguments, a "key" and a list of lists, and returns the first element of the
list of lists that starts with the key. If there is none, it returns n i l . Here is an example:

> (assoc 'noun ^grammar*) (NOUN - > MAN BALL WOMAN TABLE)

Although rules are quite simply implemented as lists, it is a good idea to impose a
layer of abstraction by defining functions to operate on the rules. We will need three
functions: one to get the right-hand side of a rule, one for the left-hand side, and one
to look up all the possible rewrites (right-hand sides) for a category.

(defun ru le - lhs (ru le)
"The left-hand s ide of a ru le . "
(f i r s t ru le))

(defun ru le- rhs (ru le)
"The r ight-hand s ide of a ru le . "
(rest (rest ru le)))

(defun rewrites (category)
"Return a l i s t of the poss ib le rewrites for th i s category."
(ru le - rhs (assoc category *graminar*)))

Defining these functions will make it easier to read the programs that use them,
and it also makes changing the representation of rules easier, should we ever decide
to do so.

We are now ready to address the main problem: defining a function that will
generate sentences (or noun phrases, or any other category). We will call this function
generate. It will have to contend with three cases: (1) In the simplest case, generate
is passed a symbol that has a set of rewrite rules associated with it. We choose one of
those at random, and then generate from that. (2) If the symbol has no possible rewrite
rules, it must be a terminal symbol—a word, rather than a grammatical category—and
we want to leave it alone. Actually, we return the list of the input word, because, as
in the previous program, we want all results to be lists of words. (3) In some cases,
when the symbol has rewrites, we will pick one that is a list of symbols, and try to
generate from that. Thus, generate must also accept a list as input, in which case
it should generate each element of the list, and then append them all together. In
the following, the first clause in generate handles this case, while the second clause
handles (1) and the third handles (2). Note that we used the mappend function from
section 1.7 (page 18).

(defun generate (phrase)
"Generate a random sentence or phrase"
(cond (d i s t p phrase)

(mappend #'generate phrase))

2.3 A RULESASED SOLUTION 41

((rewri tes phrase)
(generate (random-elt (rewrites phrase))))

(t (l i s t phrase))))

Like many of the programs in this book, this function is short, but dense with
information: the craft of programming includes knowing what not to write, as well
as what to write.

This style of programming is called data-driven programming, because the data
(the list of rewrites associated with a category) drives what the program does next. It
is a natural and easy-to-use style in Lisp, leading to concise and extensible programs,
because it is always possible to add a new piece of data with a new association without
having to modify the original program.

Here are some examples of generate in use:

> (generate 'sentence) (THE TABLE SAW THE BALL)

> (generate 'sentence) => (THE WOMAN HIT A TABLE)

> (generate 'noun-phrase) => (THE MAN)

> (generate 'verb-phrase) (TOOK A TABLE)

There are many possible ways to write generate. The following version uses i f
instead of cond:

(defun generate (phrase)
"Generate a random sentence or phrase"
(i f (l i s t p phrase)

(mappend #'generate phrase)
(let ((choices (rewrites phrase)))

(i f (nul l choices)
(l i s t phrase)
(generate (random-elt cho ices))))))

This version uses the special form 1 et , which introduces a new variable (in this case,
choi ces) and also binds the variable to a value. In this case, introducing the variable
saves us from calling the function rewrites twice, as was done in the cond version
of generate. The general form of a 1 e t form is:

(le t (ivarvalue).,.)
hody-containing-vars)

1 et is the most common way of introducing variables that are not parameters of
functions. One must resist the temptation to use a variable without introducing it:

42 A SIMPLE LISP PROGRAM

(defun generate (phrase)

(set f choices . . .) ; ; wrong!

. . . choices . . .)

This is wrong because the symbol choi ces now refers to a special or global variable,
one that may be shared or changed by other functions. Thus, the function generate
is not reliable, because there is no guarantee that choi ces will retain the same value
from the time it is set to the time it is referenced again. With 1 et we introduce a brand
new variable that nobody else can access; therefore it is guaranteed to maintain the
proper value.

@ Exercise 2.1 [m] Write a version of generate that uses cond but avoids calling
rewri tes twice.

@ Exercise 2.2 [m] Write a version of generate that explicitly differentiates between
terminal symbols (those with no rewrite rules) and nonterminal symbols.

2.4 Two Paths to Follow

The two versions of the preceding program represent two alternate approaches that
come up time and time again in developing programs: (1) Use the most straightfor
ward mapping of the problem description directly into Lisp code. (2) Use the most
natural notation available to solve the problem, and then worry about writing an
interpreter for that notation.

Approach (2) involves an extra step, and thus is more work for small problems.
However, programs that use this approach are often easier to modify and expand.
This is especially true in a domain where there is a lot of data to account for. The
grammar of natural language is one such domain—in fact, most AI problems fit this
description. The idea behind approach (2) is to work with the problem as much as
possible in its own terms, and to minimize the part of the solution that is written
directly in Lisp.

Fortunately, it is very easy in Lisp to design new notations—in effect, new program
ming languages. Thus, Lisp encourages the construction of more robust programs.
Throughout this book, we will be aware of the two approaches. The reader may
notice that in most cases, we choose the second.

2.5 CHANGING THE GRAMMAR WITHOUT CHANCING THE PROGRAM 43

2.6 Using the Same Data for Several Programs
Another advantage of representing information in a declarative form-as rules or
facts rather than as Lisp functions-is that it can be easier to use the information for
multiple purposes. Suppose we wanted a function that would generate not just the

2.5 Changing the Grammar without Changing
the Program

We show the utility of approach (2) by defining a new grammar that includes adjec
tives, prepositional phrases, proper names, and pronouns. We can then apply the
generate function without modification to this new grammar.

(defparameter *bigger-grammar*
' ((sentence - > (noun-phrase verb-phrase))

(noun-phrase - > (Ar t ic le Adj* Noun PP*) (Name) (Pronoun))
(verb-phrase - > (Verb noun-phrase PP*))
(PP* - > () (PP PP*))
(Adj* - > () (Adj Adj*))
(PP - > (Prep noun-phrase))
(Prep - > to in by with on)
(Adj - > big l i t t l e blue green adiabat ic)
(Ar t ic le - > the a)
(Name - > Pat Kim Lee Terry Robin)
(Noun - > man ball woman table)
(Verb - > h i t took saw l iked)
(Pronoun - > he she i t these those that)))

(set f *grammar* *bigger-grammar*)

> (generate 'sentence)
(A TABLE ON A TABLE IN THE BLUE ADIABATIC MAN SAW ROBIN
WITH A LITTLE WOMAN)

> (generate 'sentence)
(TERRY SAW A ADIABATIC TABLE ON THE GREEN BALL BY THAT WITH KIM

IN THESE BY A GREEN WOMAN BY A LITTLE ADIABATIC TABLE IN ROBIN
ON LEE)

> (generate 'sentence)
(THE GREEN TABLE HIT IT WITH HE)

Notice the problem with case agreement for pronouns: the program generated "with
he," although "with him" is the proper grammatical form. Also, it is clear that the
program does not distinguish sensible from silly output.

44 A SIMPLE LISP PROGRAM

list of words in a sentence but a representation of the complete syntax of a sentence.
For example, instead of the list (a woman took a b a l l) , we want to get the nested list:

(SENTENCE (NOUN-PHRASE (ARTICLE A) (NOUN WOMAN))
(VERB-PHRASE (VERB TOOK)

(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))

This corresponds to the tree that linguists draw as in figure 2.1.

sentence

art noun verb art noun

I I I I I
a woman took a ball

Figure 2.1: Sentence Parse Tree

Using the "straightforward functions" approach we would be stuck; we'd have to
rewrite every function to generate the additional structure. With the "new notation"
approach we could keep the grammar as it is and just write one new function: a
version of generate that produces nested lists. The two changes are to cons the
category onto the front of each rewrite, and then not to append together the results
but rather just list them with mapca r:

(defun generate-tree (phrase)
"Generate a random sentence or phrase,
with a complete parse t ree. "
(cond ((l i s t p phrase)

(mapcar #'generate-tree phrase))
((rewri tes phrase)

(cons phrase
(generate-tree (random-elt (rewrites phrase)))))

(t (l i s t phrase))))

Here are some examples:

2.6 USING THE SAME DATA FOR SEVERAL PROGRAMS 45

> (generate-tree 'Sentence)
(SENTENCE (NOUN-PHRASE (ARTICLE A)

(ADJ*)
(NOUN WOMAN)
(PP*))

(VERB-PHRASE (VERB HIT)
(NOUN-PHRASE (PRONOUN HE))
(PP*)))

> (generate-tree 'Sentence)
(SENTENCE (NOUN-PHRASE (ARTICLE A)

(NOUN WOMAN))
(VERB-PHRASE (VERB TOOK)

(NOUN-PHRASE (ARTICLE A) (NOUN BALL))))

A s another example of the one-data/multiple-program approach, we can develop a
function to generate all possible rewrites of a phrase. The function generate-a l 1
returns a list of phrases rather than just one, and we define an auxiliary function,
combi ne-al 1 , to manage the combination of results. Also, there are four cases instead
of three, because we have to check for nil explicitly. Still, the complete program is
quite simple:

(defun generate-al l (phrase)
"Generate a l i s t of al l poss ib le expansions of th i s phrase."
(cond ((nul l phrase) (l i s t n i l))

(d i s t p phrase)
(combine-all (generate-al l (f i r s t phrase))

(generate-al l (rest phrase))))
((rewri tes phrase)

(mappend #*generate-al l (rewrites phrase)))
(t (l i s t (l i s t phrase)))))

(defun combine-all (x l i s t y l i s t)
"Return a l i s t of l i s t s formed by appending a y to an χ .
E . g . , (combine-all ' ((a) (b)) ' ((1) (2)))
- > ((A 1) (B 1) (A 2) (B 2)) . "
(mappend #*(lambda (y)

(mapcar #'(lambda (x) (append χ y)) x l i s t))
y l i s t))

We can now use generate - a 11 to test our original little grammar. Note that a serious
drawback of generate-a 11 is that it can't deal with recursive grammar rules like
'Adj* Adj + Adj*' that appear in *b1 gger-grammar*, since these lead to an infinite
number of outputs. But it works fine for finite languages, like the language generated
by*simple-grammar*:

46 Λ SIMPLE LISP PROGRAM

> (generate-al l 'A r t i c l e)
((THE) (A))

> (generate-al l 'Noun)
((MAN) (BALL) (WOMAN) (TABLE))

> (generate-al l 'noun-phrase)
((A MAN) (A BALL) (A WOMAN) (A TABLE)

(THE MAN) (THE BALL) (THE WOMAN) (THE TABLE))

> (length (generate-al l 'sentence))
256

There are 256 sentences because every sentence in this language has the form Article-
Noun-Verb-Article-Noun, and there are two articles, four nouns and four verbs
(2 x 4 x 4 x 2 x 4 = 256).

2.7 Exercises

Ξ Exercise 2.3 [h] Write a trivial grammar for some other language. This can be a
natural language other than English, or perhaps a subset of a computer language.

@ Exercise 2.4 [m] One way of describing combi ne - a 11 is that it calculates the cross-
product of the function a ppend on the argument lists. Write the higher-order function
cross -product , and define combi ne - a l l in terms of it.
The moral is to make your code as general as possible, because you never know what
you may want to do with it next.

2.8 Answers

Answer 2.1

(defun generate (phrase)
"Generate a random sentence or phrase"
(let ((choices n i l))

(cond ((l i s t p phrase)
(mappend #'generate phrase))

((se t f choices (rewrites phrase))
(generate (random-elt cho ices)))

(t (l i s t phrase)))))

2.8 ANSWERS 47

Answer 2.2

(defun generate (phrase)
"Generate a random sentence or phrase"
(cond ((l i s t p phrase)

(mappend #'generate phrase))
((non-terminal-p phrase)

(generate (random-elt (rewrites phrase))))
(t (l i s t phrase))))

(defun non-terminal-p (category)
"True i f t h i s i s a category in the grammar."
(not (null (rewrites category))))

Answer 2.4

(defun cross-product (fn x l i s t y l i s t)
"Return a l i s t of al l (fn χ y) va lues . "
(mappend #*(lambda (y)

(mapcar #*(lambda (x) (funcal l fn χ y))
x l i s t))

y l i s t))

(defun combine-all (x l i s t y l i s t)
"Return a l i s t of l i s t s formed by appending a y to an x"
(cross-product #*append x l i s t y l i s t))

Now we can use the cross-product in other ways as well:

> (cross-product #*+ ' (1 2 3) ' (10 20 30))
(11 12 13
21 22 23
31 32 33)

> (cross-product # ' l i s t ' (a b c d e f g h)
' (1 2 3 4 5 6 7 8))

((A 1) (B 1) (C 1) (D 1) (E 1) (F 1) (G 1) (H 1)
(A 2) (B 2) (C 2) (D 2) (E 2) (F 2) (G 2) (H 2)
(A 3) (B 3) (C 3) (D 3) (E 3) (F 3) (G 3) (H 3)
(A 4) (B 4) (C 4) (D 4) (E 4) (F 4) (G 4) (H 4)
(A 5) (B 5) (C 5) (D 5) (E 5) (F 5) (G 5) (H 5)
(A 6) (B 6) (C 6) (D 6) (E 6) (F 6) (G 6) (H 6)
(A 7) (B 7) (C 7) (D 7) (E 7) (F 7) (G 7) (H 7)
(A 8) (B 8) (C 8) (D 8) (E 8) (F 8) (G 8) (H 8))

CHAPTER 3

Overview of Lisp

No doubt about it. Common Lisp is a big language.
—Guy L. Steele, Jr.

Foreword to Koschman 1990

τ r I 1 his chapter briefly covers the most important special forms and functions in Lisp. It
can be safely skipped or skimmed by the experienced Common Lisp programmer
but is required reading for the novice Lisp progranuner, or one who is new to the

Common Lisp dialect.

This chapter can be used as a reference source, but the definitive reference is Steele's Common
Lisp the Language, 2d edition, which should be consulted whenever there is any confusion. Since
that book is 25 times longer than this chapter, it is clear that we can only touch on the important
highlights here. More detailed coverage is given later in this book as each feature is used in a
real program.

3.1 A GUIDE TO LISP SπLE 49

3.1 A Guide to Lisp Style

The beginning Common Lisp programmer is often overwhelmed by the number of
options that the language provides. In this chapter we show fourteen different ways
to find the length of a list. How is the programmer to choose between them? One
answer is by reading examples of good programs—as illustrated in this book—and
copying that style. In general, there are six maxims that every programmer should
follow:

• Be specific.

• Use abstractions.

• Be concise.

• Use the provided tools.

• Don't be obscure.

• Be consistent.

These require some explanation.
Using the most specific form possible makes it easier for your reader to understand

your intent. For example, the conditional special form when is more specific than i f.
The reader who sees a when knows to look for only one thing: the clause to consider
when the test is true. The reader who sees an i f can rightfully expect two clauses:
one for when the test is true, and one for when it is false. Even though it is possible
to use i f when there is only one clause, it is preferable to use when, because when is
more specific.

One important way of being specific is using abstractions. Lisp provides very
general data structures, such as lists and arrays. These can be used to implement
specific data structures that your program will use, but you should not make the
mistake of invoking primitive functions directly. If you define a list of names:

(defvar *names* ' ((Robert E. Lee) . . .))

then you should also define functions to get at the components of each name. To get
at Lee,use (las t -name (f i r s t *names*)) ,not (caddar *names*) .

Often the maxims are in concord. For example, if your code is trying to find an
element in a list, you should use f 1 nd (or maybe f 1 nd-1 f) , not 1 oop or do. f i nd is
more specific than the general constructs 1 oop or do, it is an abstraction, it is more
concise, it is a built-in tool, and it is simple to understand.

50 OVERVIEW OF LISP

Sometimes, however, the maxims are in confUct, and experience will tell you
which one to prefer. Consider the following two ways of placing a new key/value
pair on an association list:^

(push (cons key val) a - l i s t)
(set f a - l i s t (aeons key val a - l i s t))

The first is more concise. But the second is more specific, as it uses the aeons
function, which is designed specifically for association lists. The decision between
them probably hinges on obscurity: those who find aeons to be a familiar function
would prefer the second, and those who find it obscure would prefer the first.

A similar choice arises in the question of setting a variable to a value. Some prefer
(setq X val) because it is most specific; others use (s e t f χ va l) , feeling that it is
more consistent to use a single form, se t f , for all updating. Whichever choice you
make on such issues, remember the sixth maxim: be consistent.

3.2 Special Forms

As noted in chapter 1, "special form" is the term used to refer both to Common Lisp's
syntactic constructs and the reserved words that mark these constructs. The most
commonly used special forms are:

definitions conditional variables iteration other
defun and l e t do dec lare
d e f s t r u c t case l e t * d o * func t ion
defvar cond pop d o l i s t progn
defparameter i f push dotimes quote
defconstant or s e t f loop return
defmacro un less i n c f t race
l a b e l s when decf untrace

To be precise, only declare, function. I f , l abe ls , l e t , le t* , progn and quote
are true special forms. The others are actually defined as macros that expand into
calls to more primitive special forms and functions. There is no real difference to the
programmer, and Common Lisp implementations are free to implement macros as
special forms and vice versa, so for simplicity we will continue to use "special form"
as a blanket term for both true special forms and built-in macros.

^Association lists are covered in section 3.6.

3.2 SPECIAL FORMS 51

Special Forms for Definitions

In this section we survey the special forms that can be used to introduce new global
functions, macros, variables, and structures. We have already seen the defun form
for defining functions; the def macro form is similar and is covered on page 66.

(defun function-name (parameter...) " optional documentation" body...)
iúefmdiCro macro-name (parameter...) "optional documentation" body...)

There are three forms for introducing special variables, defvar defines a special
variable and can optionally be used to supply an initial value and a documentation
string. The initial value is evaluated and assigned only if the variable does not yet
have any value, def pa rameter is similar, except that the value is required, and it will
be used to change any existing value, def constant is used to declare that a symbol
will always stand for a particular value.

(defvar vanable-name initial-value "optional documentation")
(defparameter vanable-name value "optional documentation")
(def constant variable-name value "optional documentation")

All the def - forms define global objects. It is also possible to define local variables
with 1 et, and to define local functions with 1 abel s, as we shall see.

Most programming languages provide a way to group related data together into
a structure. Common Lisp is no exception. The def s t r u c t special form defines a
structure type (known as a record type in Pascal) and automatically defines functions
to get at components of the structure. The general syntax is:

(def s t ruct structure-name "optional documentation" slot...)

As an example, we could define a structure for names:

(defstruct name
f i r s t
(middle n i l)
l as t)

This automatically defines the constructor function make-name, the recognizer pred
icate name-p, and the accessor functions n a m e - f i r s t , name-middle and name- last .
The (middle n i l) means that each new name built by make-name will have a middle
name of ni 1 by default. Here we create, access, and modify a structure:

52 OVERVIEW OF LISP

> (set f b (make-name : f i r s t 'Barney : l as t 'Rubble)) =>
#S(NAME :FIRST BARNEY :LAST RUBBLE)

> (name-f irst b) ^ BARNEY

> (name-middle b) NIL

> (name-last b) ^ RUBBLE

> (name-p b) =Φ Τ

> (name-p 'Barney) =Φ NIL ; only the results of make-name are names

> (set f (name-middle b) 'Q) =^ Q

> b #S(NAME :FIRST BARNEY .-MIDDLE Q :LAST RUBBLE)

The printed representation of a structure starts with a #S and is followed by a list
consisting of the type of the structure and alternating pairs of slot names and values.
Do not let this representation fool you: it is a convenient way of printing the structure,
but it is not an accurate picture of the way structures are represented internally.
Structures are actually implemented much like vectors. For the name structure, the
type would be in the zero element of the vector, the first name in the first element,
middle in the second, and last in the third. This means structures are more efficient
than lists: they take up less space, and any element can be accessed in a single step.
In a list, it takes η steps to access the nth element.

There are options that give more control over the structure itself and the individual
slots. They will be covered later as they come up.

Special Forms for Conditionals

We have seen the special form i f , which has the form (i f test then-part else-part),
where either the then-part or the else-part is the value, depending on the success of the
test. Remember that only η i 1 counts as false; all other values are considered true for
the purpose of conditionals. However, the constant t is the conventional value used
to denote truth (unless there is a good reason for using some other value).

There are actually quite a few special forms for doing conditional evaluation.
Technically, i f is defined as a special form, while the other conditionals are macros,
so in some sense 1 f is supposed to be the most basic. Some programmers prefer to
use i f for most of their conditionals; others prefer cond because it has been around
the longest and is versatile (if not particularly pretty). Finally, some programmers opt
for a style more like English prose, and freely use when, unl ess, 1 f , and all the others.

The following table shows how each conditional can be expressed in terms of
1 f and cond. Actually, these translations are not quite right, because or, case, and
cond take care not to evaluate any expression more than once, while the translations
with i f can lead to multiple evaluation of some expressions. The table also has

3.2 SPECIAL FORMS 53

translations to cond. The syntax of cond is a series of cond-clauses, each consisting of
a test expression followed by any number of result expressions:

(cond {testresult...)
{test result...)
...)

cond goes through the cond-clauses one at a time, evaluating each test expression.
As soon as a test expression evaluates non-nil, the result expressions for that clause
are each evaluated, and the last expression in the clause is the value of the whole
cond. In particular, if a cond-clause consists of just a test and no result expressions,
then the value of the cond is the test expression itself, if it is non-nil. If all of the test
expressions evaluate to nil, then nil is returned as the value of the cond. A common
idiom is to make the last cond-clause be (t result...).

The forms when and unl ess operate like a single cond clause. Both forms consist
of a test followed by any number of consequents, which are evaluated if the test is
satisfied-that is, if the test is true for when or false for unl ess.

The and form tests whether every one of a list of conditions is true, and or tests
whether any one is true. Both evaluate the arguments left to right, and stop as soon
as the final result can be determined. Here is a table of equivalences:

conditional i f form cond form
(when test ah c)
(unless testxy)
(and abc)
(or ahc)
(case a {b c) (t x))

(i f test (progn a be))
(i f {nottest) (progn xy))
(i f a (i f b c))
(i f a a (i f b b c))
(i f (eql a 'b) c x)

(cond {testaba))
(cond {{not test) xy))
(cond(fl (cond {be))))
(cond (a) {b) (c))
(cond ((eql a 'b)c) {tx))

It is considered poor style to use and and or for anything other than testing a
logical condition, when, unl ess, and 1 f can all be used for taking conditional action.
For example:

(and (> η 100)
(princ "N i s l a r g e . ")) ; Bad s t y l e !

(or (<= η 100)
(princ "N i s l a r g e . ")) ; Even worse s t y l e !

(cond ((> η 100) ; OK. but not MY preference
(pr inc "N i s l a r g e . "))

(when (> η 100)
(princ "N i s l a r g e . ")) ; Good s t y l e .

When the main purpose is to return a value rather than take action, cond and i f
(with explicit η i 1 in theelsecase)are preferred overwhenandunl ess, which implicitly

54 OVERVIEW OF LISP

return nil in the else case, when and unl ess are preferred when there is only one
possibility, i f (or, for some people, cond) when there are two, and cond when there
are more than two:

(defun tax-bracket (income)
"Determine what percent tax should be paid for this income."
(cond ((< income 10000.00) 0.00)

((< income 30000.00) 0.20)
(« income 50000.00) 0.25)
((< income 70000.00) 0.30)
(t 0.35)))

If there are several tests comparing an expression to constants, then case is appro
priate. A case form looks like:

(case expression
(matchresult..)...)

The expression is evaluated and compared to each successive match. As soon as one
is eql, the result expressions are evaluated and the last one is returned. Note that the
match expressions are not evaluated. If a match expression is a list, then case tests if
the expression is eql to any member of the list. If a match expression is the symbol
otherwi se (or the symbol t) , then it matches anything. (It only makes sense for this
otherwl se clause to be the last one.)

There is also another special form, typecase, which compares the type of an
expression against several possibilities and, like case, chooses the first clause that
matches. In addition, the special forms ecase and etypecase are just like case and
typecase except that they signal an error if there is no match. You can think of the e
as standing for either "exhaustive" or "error." The forms cease and etypecase also
signal errors, but they can be continuable errors (as opposed to fatal errors): the user
is offered the chance to change the expression to something that satisfies one of the
matches. Here are some examples of case forms and their cond equivalents:

(case χ (cond
(1 10) ((eql χ 1) 10)
(2 20)) ((eql χ 2) 20))

(typecase χ (cond
(number (abs x)) ((typep χ 'number) (abs x))
(l i s t (length x))) ((typep χ ' l i s t) (length x)))

(ecase χ (cond
(1 10) ((eql χ 1) 10)
(2 20)) ((eql χ 2) 20)

(t (error "no valid case")))

3.2 SPECIAL FORMS 55

(etypecase χ
(number (abs χ))
(l i s t (length x)))

(cond
((typep χ 'number) (abs x))
((typep χ ' l i s t) (length x))

(t (error "no va l id typecase")))

Special Forms for Dealing with Variables and Places

The special form s e t f is used to assign a new value to a variable or place, much as an
assignment statement with = or : = is used in other languages. A place, or generalized
variable is a name for a location that can have a value stored in it. Here is a table of
corresponding assignment forms in Lisp and Pascal:

Lisp

(set f χ 0)

(set f (aref A i j) 0)

(set f (rest l i s t) n i l)

(set f (name-middle b) 'Q)

/ * Pascal * /

χ := 0;

A [i , j] := 0;

l i s t \ r e s t := n i l ;

b \m idd le := "Q";

s e t f can be used to set a component of a structure as well as to set a variable. In
languages like Pascal, the expressions that can appear on the left-hand side of an
assignment statement are limited by the syntax of the language. In Lisp, the user can
extend the expressions that are allowed in a s et f form using the special forms def s e t f
or def i ne-setf-method. These are introduced on pages 514 and 884 respectively.

There are also some built-in functions that modify places. For example, (rpl a cd
l i s t n i l) has the same effect as (s e t f (r e s t l i s t) n i l) , except that it returns
l i s t instead of ni 1. Most Common Lisp programmers prefer to use the s e t f forms
rather than the specialized functions.

If you only want to set a variable, the special form setq can be used instead. In
this book I choose to use s e t f throughout, opting for consistency over specificity.

The discussion in this section makes it seem that variables (and slots of struc
tures) are assigned new values all the time. Actually, many Lisp programs do no
assignments whatsoever. It is very common to use Lisp in a functional style where
new variables may be introduced, but once a new variable is established, it never
changes. One way to introduce a new variable is as a parameter of a function. It
is also possible to introduce local variables using the special form 1 et . Following
are the general 1 et form, along with an example. Each variable is bound to the
corresponding value, and then the body is evaluated:

56 OVERVIEW OF LISP

(let((variablevalue)..,) (le t ((x 40)
body...) (y (+ 1 1)))

(+ X y)) 42

Defining a local variable with a 1 et form is really no different from defining param
eters to an anonymous function. The former is equivalent to:

((lambdei(variable..,) ((lambda (x y)
body...) (+ X y))

value..,) 40
(+ 1 D)

First, all the values are evaluated. Then they are bound to the variables (the pa
rameters of the lambda expression), and finally the body is evaluated, using those
bindings.

The special form 1 e t * is appropriate when you want to use one of the newly
introduced variables in a subsequent value computation. For example:

(let* ((x 6)
(y (* χ χ)))

(+ χ y)) 42

We could not have used 1 et here, because then the variable χ would be unbound
during the computation of y's value.

@ Exercise 3.1 [m] Show a 1 ambda expression that is equivalent to the above 1 e t *
expression. You may need more than one 1 ambda.

Because lists are so important to Lisp, there are special forms for adding and
deleting elements from the front of a list—in other words, for treating a list as a stack.
If 1 i s t is the name of a location that holds a list, then (push A: 1 i s t) will change 1 i s t
to have χ as its first element, and (pop 1 i s t) will return the first element and, as
a side-effect, change 1 i s t to no longer contain the first element, push and pop are
equivalent to the following expressions:

(push χ l i s t) = (setf l i s t (cons χ l i s t))
(pop l i s t) = (le t ((result (f i rs t l i s t)))

(setf l i s t (rest l i s t))
result)

Just as a Hst can be used to accumulate elements, a running sum can be used to
accumulate numbers. Lisp provides two more special forms, 1 ncf and decf, that can
be used to increment or decrement a sum. For both forms the first argument must

3.2 SPECIAL FORMS 57

be a location (a variable or other setf-able form) and the second argument, which
is optional, is the number to increment or decrement by. For those who know C,
(i n c f x) is equivalent to -H-X , and (i n c f χ 2) is equivalent to x+=2. In Lisp the
equivalence is:

(incf x) = (incf χ 1) = (set f χ (+ χ D)
(decf x) = (decf χ 1) = (set f χ (- χ D)

When the location is a complex form rather than a variable. Lisp is careful to expand
into code that does not evaluate any subform more than once. This holds for push,
pop, 1 ncf, and decf. In the following example, we have a list of players and want
to decide which player has the highest score, and thus has won the game. The
structure pi ayer has slots for the player's score and number of wins, and the function
determi ne -wi nner increments the winning player's w1 ns field. The expansion of the
i ncf form binds a temporary variable so that the sort is not done twice.

(defstruct player (score 0) (wins 0))

(defun determine-winner (p layers)
"Increment the WINS for the player with highest sco re . "
(incf (player-wins (f i r s t (sor t players #*>

:key # ' p l aye r - sco re)))))

(defun determine-winner (p layers)
"Increment the WINS for the player with highest sco re . "
(le t ((temp (f i r s t (sor t players # ' > :key # 'p laye r -sco re))))

(set f (player-wins temp) (+ (player-wins temp) 1))))

Functions and Special Forms for Repetition

Many languages have a small number of reserved words for fornüng iterative loops.
For example, Pascal has whi 1 e, repeat, and f o r statements. In contrast, Conunon
Lisp has an almost bewildering range of possibilities, as summarized below:

d o l i s t
dot1mes
do, do*
loop
mapc. mapcar
some, every
f i n d , reduce, efc.
recursion

loop over elements of a list
loop over successive integers
general loop, sparse syntax
general loop, verbose syntax
loop over elements of lists(s)
loop over list until condition
more specific looping functions
general repetition

58 OVERVIEW OF LISP

To explain each possibiUty, we will present versions of the function 1 ength, which
returns the number of elements in a list. First, the special form dol i s t can be used
to iterate over the elements of a list. The syntax is:

(dol i s t (variable list optional-result) body...)

This means that the body is executed once for each element of the list, with vari
able bound to the first element, then the second element, and so on. At the end,
dol i s t evaluates and returns the optional-result expression, or nil if there is no result
expression.

Below is a version of 1 ength usingdol i s t . The 1 e t form introduces anew variable,
1 en, which is initially bound to zero. The dol i s t form then executes the body once
for each element of the list, with the body incrementing 1 en by one each time. This
use is unusual in that the loop iteration variable, el ement, is not used in the body.

(defun lengthl (l i s t)
(le t (d e n 0))

(do l i s t (element l i s t)
(incf len))

len))

s tar t with LEN=0
and on each i terat ion

increment LEN by 1
and return LEN

It is also possible to use the optional result of dol i s t , as shown below. While many
programmers use this style, I find that it is too easy to lose track of the result, and so
I prefer to place the result last explictly.

(defun leng th l .1 (l i s t) ; alternate ve rs ion :
(let (d e n 0)) ; (not my preference)

(do l i s t (element l i s t len) ; uses len as resu l t here
(incf l en))))

The function mapc performs much the same operation as the special form dol i s t . In
the simplest case, mapc takes two arguments, the first a function, the second a list. It
applies the function to each element of the list. Here is 1 ength using mapc:

(defun lengthZ (l i s t)
(le t (d e n 0)) ; s ta r t with LEN=0

(mapc #'dambda (element) ; and on each i tera t ion
(incf len)) ; increment LEN by 1

l i s t)
len)) ; and return LEN

There are seven different mapping functions, of which the most useful are mapc and
mapca r. mapca r executes the same function calls as mapc, but then returns the results

3.2 SPECIAL FORMS 59

in a list.

There is also a dot i mes form, which has the syntax:

(dot i mes (variable number optional-result) body,..)

and executes the body with variable bound first to zero, then one, all the way up to
number-1 (for a total of number times). Of course, dot i mes is not appropriate for
implementing 1 ength, since we don't know the number of iterations ahead of time.

There are two very general looping forms, do and 1 oop. The syntax of do is as
follows:

(do ((variable initial next)...)
(exit-test result)

body...)

Each variable is initially bound to the initial value. If exit-test is true, then result is re
turned. Otherwise, the body is executed and each variable is set to the corresponding
next value and exit-test is tried again. The loop repeats until exit-test is true. If a next
value is omitted, then the corresponding variable is not updated each time through
the loop. Rather, it is treated as if it had been bound with a 1 e t form.

Here is 1 ength implemented withdo,usingtwo variables, 1 en to count the number
of elements, and 1 to go down the list. This is often referred to as cdr-ing down a list,
because on each operation we apply the function cdr to the list. (Actually, here we
have used the more mnemonic name res t instead of cdr.) Note that the do loop has
no body! All the computation is done in the variable initialization and stepping, and
in the end test.

(defun lengths (l i s t)
(do (d e n 0 (+ len D) ; s tar t with LEN=0. increment

(1 l i s t (rest 1))) ; . . . on each i terat ion
((nul l 1) len))) ; (unt i l the end of the l i s t)

I find the do form a little confusing, because it does not clearly say that we are looping
through a list. To see that it is indeed iterating over the list requires looking at both
the variable 1 and the end test. Worse, there is no variable that stands for the current
element of the Ust; we would need to say (f i r s t 1) to get at it. Both dol i s t and
mapc take care of stepping, end testing, and variable naming automatically. They are
examples of the "be specific" principle. Because it is so unspecific, do will not be
used much in this book. However, many good programmers use it, so it is important
to know how to read do loops, even if you decide never to write one.

The syntax of 1 oop is an entire language by itself, and a decidedly non-Lisp-like
language it is. Rather than list all the possibilities for 1 oop, we will just give examples

60 OVERVIEW OF LISP

here, and refer the reader to Common Lisp the Language, 2d edition, or chapter 24.5 for
more details. Here are three versions of 1 ength using 1 oop:

(defun length4 (l i s t)
(loop for element in l i s t ; go through each element

count t)) ; counting each one

(defun lengths (11st)
(loop for element in l i s t ; go through each element

summing 1)) ; adding 1 each time

(defun lengthe (l i s t)
(loop with len = 0 ; s ta r t with LEN=0

unti l (null l i s t) ; and (unt i l end of l i s t)
for element = (pop l i s t) ; on each i tera t ion
do (incf len) ; increment LEN by 1
f i na l l y (return len))) ; and return LEN

Every programmer learns that there are certain kinds of loops that are used again
and again. These are often called programming idioms or cliches. An example is going
through the elements of a list or array and doing some operation to each element.
In most languages, these idioms do not have an explicit syntactic marker. Instead,
they are implemented with a general loop construct, and it is up to the reader of the
program to recognize what the programmer is doing.

Lisp is unusual in that it provides ways to explicitly encapsulate such idioms, and
refer to them with explicit syntactic and functional forms, dol 1 s t and dotimes are
two examples of this-they both follow the "be specific" principle. Most programmers
prefer to use a dol i s t rather than an equivalent do, because it cries out "this loop
iterates over the elements of a list." Of course, the corresponding do form also says
the same thing—but it takes more work for the reader to discover this.

In addition to special forms like dol 1 s t and dotimes, there are quite a few func
tions that are designed to handle common idioms. Two examples are c o u n t - I f ,
which counts the number of elements of a sequence that satisfy a predicate, and
p o s i t i o n - I f , which returns the index of an element satisfying a predicate. Both
can be used to implement 1 ength. In 1 ength7 below, count -1 f gives the number of
elements in 11 s t that satisfy the predicate t rue. Since t rue is defined to be always
true, this gives the length of the list.

(defun length? (l i s t)
(count- i f #*true l i s t))

(defun true (x) t)

In 1 engthS, the function pos i t1 on -1 f finds the position of an element that satisfies
the predicate t rue, starting from the end of the list. This will be the very last element

3.2 SPECIAL FORMS 61

of the list, and since indexing is zero-based, we add one to get the length. Admittedly,
this is not the most straightforward implementation of 1 ength.

(defun lengths (l i s t)
(i f (null l i s t)

0
(+ 1 (position-if #*true l i s t :from-end t))))

A partial table of functions that implement looping idioms is given below. These
functions are designed to be flexible enough to handle almost all operations on
sequences. The flexibility comes in three forms. First, functions like mapcar can
apply to an arbitrary number of lists, not just one:

> (mapcar '(1 2 3)) => (-1 -2 -3)
> (mapcar #'+ '(1 2) '(10 20)) (11 22)
> (mapcar #'+ '(1 2) '(10 20) '(100 200)) =^ (111 222)

Second, many of the functions accept keywords that allow the user to vary the test
for comparing elements, or to only consider part of the sequence.

> (remove 1 '(1 2 3 2 1 0 -1)) =4^ (2 3 2 0 -1)

> (remove 1 '(1 2 3 2 1 0 -1) :key #'abs) ^ (2 3 2 0)

> (remove 1 '(1 2 3 2 1 0 -1) :test #'<) = » (1 1 0 -1)

> (remove 1 '(1 2 3 2 1 0 -1) rstart 4) (1 2 3 2 0 -1)

Third, some have corresponding functions ending in - i f or - if-not that take a
predicate rather than an element to match against:

> (remove-if #Oddp '(1 2 3 2 1 0 -1)) = ^ (2 2 0)

> (remove-if-not #'oddp ' (1 2 3 2 1 0 -1)) = ^ (1 3 1 -1)

> (find-if #'evenp ' (1 2 3 2 1 0 -1)) 2

The following two tables assume these two values:

(setf χ '(a b c))
(setf y '(1 2 3))

The first table lists functions that work on any number of lists but do not accept
keywords:

62 OVERVIEW OF LISP

(every # O d d p y)
(some # O d d p y)
(mapcar y)
(mapc # ' p r i n t y)

=Φ η i 1 test if every element satisfies a predicate
=> t test if some element satisfies predicate
=^(-1 -2 -3) apply function to each element and return result
prints 1 2 3 perform operation on each element

The second table lists functions that have - i f and - i f - n o t versions and also
accept keyword arguments:

(member 2 y) = ^ (2 3) see if element is in list
(count 'b x) =>1 count the number of matching elements
(delete 1 y) = > (2 3) omit matching elements
(find 2 y) ^ 2 find first element that matches
(position 'a x) =^0 find index of element in sequence
(reduce # ' + y) apply function to succesive elements
(remove 2 y) = > (1 3) like del ete, but makes a new copy
(subst i tu te 4 2 y) = ^ (1 4 3) replace elements with new ones

Repetition through Recursion

Lisp has gained a reputation as a "recursive" language, meaning that Lisp encourages
programmers to write functions that call themselves. As we have seen above, there is
a dizzying number of functions and special forms for writing loops in Common Lisp,
but it is also true that many programs handle repetition through recursion rather
than with a syntactic loop.

One simple definition of 1 ength is "the empty list has length 0, and any other list
has a length which is one more than the length of the rest of the list (after the first
element)." This translates directly into a recursive function:

(defun length9 (l i s t)
(i f (null l i s t)

0
(+ 1 (length9 (rest l i s t)))))

This version of 1 ength arises naturally from the recursive definition of a list: "a list
is either the empty list or an element consed onto another list." In general, most
recursive functions derive from the recursive nature of the data they are operating
on. Some kinds of data, like binary trees, are hard to deal with in anything but a
recursive fashion. Others, like Hsts and integers, can be defined either recursively
(leading to recursive functions) or as a sequence (leading to iterative functions). In
this book, I tend to use the "list-as-sequence" view rather than the "list-as-first-and-
rest" view. The reason is that defining a hst as a first and a rest is an arbitrary and
artificial distinction that is based on the implementation of lists that Lisp happens to
use. But there are many other ways to decompose a list. We could break it into the last

3.2 SPECIAL FORMS 63

element and all-but-the-last elements, for example, or the first half and the second
half. The "list-as-sequence" view makes no such artificial distinction. It treats all
elements identically.

One objection to the use of recursive functions is that they are inefficient, because
the compiler has to allocate memory for each recursive call. This may be true for the
function 1 ength9, but it is not necessarily true for all recursive calls. Consider the
following definition:

(defun lengthlO (l i s t)
(lengthlO-aux l i s t 0))

(defun lengthlO-aux (sub l i s t l en -so - fa r)
(i f (null sub l i s t)

len-so- fa r
(lengthlO-aux (rest sub l i s t) (+ 1 l en - so - f a r))))

1 engthlO uses 1 engthlO - aux as an auxiliary function, passing it 0 as the length of the
list so far. 1 engt hlO - a ux then goes down the list to the end, adding 1 for each element.
The invariant relation is that the length of the sublist plus 1 en - so - fa r always equals
the length of the original list. Thus, when the sublist is nil, then 1 en - so - f ar is the
length of the original list. Variables like 1 en - so - fa r that keep track of partial results
are called accumulators. Other examples of functions that use accumulators include
f 1 a t ten - a 11 on page 329; one - un known on page 237; the Prolog predicates discussed
on page 686; and anonymous-var iab les - in on pages 400 and 433, which uses two
accumulators.

The important difference between length9 and l ength lO is when the addition
is done. In length9, the function calls itself, then returns, and then adds 1. In
length lO-aux, the function adds 1 , then calls itself, then returns. There are no
pending operations to do after the recursive call returns, so the compiler is free to
release any memory allocated for the original call before making the recursive call.
1 engthlO-aux is called a tail-recursive function, because the recursive call appears as
the last thing the function does (the tail). Many compilers will optimize tail-recursive
calls, although not all do. (Chapter 22 treats tail-recursion in more detail, and points
out that Scheme compilers guarantee that tail-recursive calls will be optimized.)

Some find it ugly to introduce 1 ength 10 - a ux. For them, there are two alternatives.
First, we could combine 1 engthlO and 1 engthlO-aux into a single function with an
optional parameter:

(defun length l l (l i s t &optional (len -so- fa r 0))
(i f (null l i s t)

len-so- fa r
(length l l (rest l i s t) (+ 1 l en - so - f a r))))

64 OVERVIEW OF LISP

Second, we could introduce a local function inside the definition of the main function.
This is done with the special form 1 abel s:

(defun lengthl2 (t he - l i s t)
(labels

((length l3 (l i s t l en -so - fa r)
(i f (nul l l i s t)

len-so- fa r
(length lS (rest l i s t) (+ 1 l e n - s o - f a r)))))

(lengthlS t h e - l i s t 0)))

In general, a 1 abel s form (or the similar f 1 et form) can be used to introduce one or
more local functions. It has the following syntax:

(labels
((function-name {parameter...)function-body)...)
body-of-labels)

Other Special Forms

A few more special forms do not fit neatly into any category. We have already seen
the two special forms for creating constants and functions, quote and func t ion .
These are so common that they have abbreviations: ' x for (quote x) and # ' f for
(func t ion f) .

The special form progn can be used to evaluate a sequence of forms and return
the value of the last one:

(progn (set f χ 0) (set f χ (+ χ D) χ) 1

progn is the equivalent of a b e g i n . . .end block in other languages, but it is used
very infrequently in Lisp. There are two reasons for this. First, programs written
in a functional style never need a sequence of actions, because they don't have side
effects. Second, even when side effects are used, many special forms allow for a
body which is a sequence—an implicit progn. I can only think of three places where
a progn is justified. First, to implement side effects in a branch of a two-branched
conditional, one could use either an i f with a progn, or a cond:

(i f (> X 100) (cond ((> χ 100)
(progn (pr int "too b ig ") (pr int "too b ig ")

(se t f X 100)) (se t f χ 100))
X) (t X))

3.2 SPECIAL FORMS 65

If the conditional had only one branch, then when or unl ess should be used, since
they allow an implicit progn. If there are more than two branches, then cond should
be used.

Second, progn is sometimes needed in macros that expand into more than one
top-level form, as in the defun* macro on page 326, section 10.3. Third, a progn is
sometimes needed in an unwi nd - protect , an advanced macro. An example of this is
the wi t h - resource macro on page 338, section 10.4.

The forms t race and untrace are used to control debugging information about
entry and exit to a function:

> (trace length9) (LENGTH9)

> (length9 ' (a b c))
(1 ENTER LENGTH9: (A B O)

(2 ENTER LENGTH9: (B O)
(3 ENTER LENGTH9: (O)

(4 ENTER LENGTH9: NIL)
(4 EXIT LENGTH9: 0)

(3 EXIT LENGTH9: 1)
(2 EXIT LENGTH9: 2)

(1 EXIT LENGTH9: 3)
3

> (untrace length9) =» (LENGTH9)

> (length9 ' (a b c)) =^ 3

Finally, the special form return can be used to break out of a block of code. Blocks are
set up by the special form bl ock, or by the looping forms (do, do* , dol i s t , dot i mes, or
loop). For example, the following function computes the product of a list of numbers,
but if any number is zero, then the whole product must be zero, so we immediately
return zero from the dol i s t loop. Note that this returns from the dol i s t only, not
from the function itself (although in this case, the value returned by dol i s t becomes
the value returned by the function, because it is the last expression in the function). I
have used uppercase letters in RETURN to emphasize the fact that it is an unusual step
to exit from a loop.

(defun product (numbers)
"Mult ip ly al l the numbers together to compute thei r product."
(let ((prod D)

(do l i s t (n numbers prod)
(i f (= η 0)

(RETURN 0)
(set f prod (* η p rod))))))

66 OVERVIEW OF LISP

Macros

The preceding discussion has been somewhat cavalier with the term "special form."
Actually, some of these special forms are really macros, forms that the compiler
expands into some other code. Common Lisp provides a number of built-in macros
and allows the user to extend the language by defining new macros. (There is no way
for the user to define new special forms, however.)

Macros are defined with the special form def ma c ro. Suppose we wanted to define
a macro, whi 1 e, that would act like the whi 1 e loop statement of Pascal. Writing a
macro is a four-step process:

• Decide if the macro is really necessary.

• Write down the syntax of the macro.

• Figure out what the macro should expand into.

• Use def macro to implement the syntax/expansion correspondence.

The first step in writing a macro is to recognize that every time you write one,
you are defining a new language that is just like Lisp except for your new macro.
The programmer who thinks that way will rightfully be extremely frugal in defining
macros. (Besides, when someone asks, "What did you get done today?" it sounds
more impressive to say "I defined a new language and wrote a compiler for it" than
to say "I just hacked up a couple of macros.") Introducing a macro puts much more
memory strain on the reader of your program than does introducing a function,
variable or data type, so it should not be taken lightly. Introduce macros only when
there is a clear need, and when the macro fits in well with your existing system. As
C.A.R. Hoare put it, "One thing the language designer should not do is to include
untried ideas of his own."

The next step is to decide what code the macro should expand into. It is a good
idea to follow established Lisp conventions for macro syntax whenever possible.
Look at the looping macros (d o l i s t , dot i mes, do-symbols) , the defiíüng macros
(defun, defvar , defparameter, de fs t ruc t) , or the the I/O macros (w i t h - o p e n - f i l e ,
with-open-stream, w i t h - i n p u t - f r o m - s t r i n g) , for example. If you follow the nam
ing and syntax conventions for one of these instead of inventing your own conven
tions, you'll be doing the reader of your program a favor. For whi 1 e, a good syntax is:

(while test body...)

The third step is to write the code that you want a macro call to expand into:

3.2 SPECIAL FORMS 67

(loop
(unless test (return n i l))
body)

The final step is to write the definition of the macro, using defmacro. A defmacro
form is similar to a defun in that it has a parameter list, optional documentation
string, and body. There are a few differences in what is allowed in the parameter list,
which will be covered later. Here is a definition of the macro whi 1 e, which takes a
test and a body, and builds up the 1 oop code shown previously:

(defmacro while (test &rest body)
"Repeat body while test i s t rue. "
(l i s t * Ί ο ο ρ

(l i s t 'un less test ' (re turn n i l))
body))

(The function 1 i s t* is like 11 s t , except that the last argument is appended onto the
end of the list of the other arguments.) We can see what this macro expands into by
using macroexpand, and see how it runs by typing in an example:

> (macroexpand-1 ' (whi le (< i 10)
(pr int (* i i))
(set f i (+ i 1)))) ^

(LOOP (UNLESS « I 10) (RETURN NIL))
(PRINT (* I I))
(SETF I (+ I 1)))

> (set f i 7) =^ 7

> (while (< i 10)
(pr int (* i i))
(set f i (+ i 1))) =>

49
64
81
NIL

Section 24.6 (page 853) describes a more complicated macro and some details on the
pitfalls of writing complicated macros (page 855).

Backquote Notation

The hardest part about defining whi 1 e is building the code that is the expansion of
the macro. It would be nice if there was a more immediate way of building code.
The following version of whi le following attempts to do just that. It defines the local

68 OVERVIEW OF LISP

variable code to be a template for the code we want, and then substitutes the real
values of the variables t e s t and body for the placeholders in the code. This is done
with the function subst; (subst new old tree) substitutes new for each occurrence of
old anywhere within tree.

(defmacro while (test &rest body)

"Repeat body while test i s t rue. "

(let ((code ' (loop (unless test (return n i l)) . body)))

(subst test ' tes t (subst body 'body code))))

The need to build up code (and noncode data) from components is so frequent that
there is a special notation for it, the backquote notation. The backquote character
" ' " is similar to the quote character " . A backquote indicates that what follows is
mostly a literal expression but may contain some components that are to be evaluated.
Anything marked by a leading comma"," is evaluated and inserted into the structure,
and anything marked with a leading " ,@" must evaluate to a Hst that is spliced into
the structure: each element of the list is inserted, without the top-level parentheses.
The notation is covered in more detail in section 23.5. Here we use the combination
of backquote and comma to rewrite whi 1 e:

(defmacro while (test &rest body)

"Repeat body while test i s t rue. "

' (loop (unless . test (return n i l))

.©body))

Here are some more examples of backquote. Note that at the end of a list,", @" has the
same effect as " ." followed by " ," . In the middle of a list, only ", @" is a possibility.

> (set f tes t l ' (a tes t)) => (A TEST)

> ' (t h i s i s . t es t l) => (THIS I S (A TEST))

> ' (t h i s i s .©test l) =i> (THIS I S A TEST)

> ' (t h i s i s . . t es t l) (THIS I S A TEST)

> ' (t h i s i s .©testl - - th i s i s only .©test l)
(THIS I S A TEST THIS I S ONLY A TEST)

This completes the section on special forms and macros. The remaining sections of
this chapter give an overview of the important built-in functions in Common Lisp.

3.3 FUNCTIONS ON LISTS 69

3·3 Functions on Lists
For the sake of example, assume we have the following assignments:

(set f χ ' (a b c))
(set f y ' (1 2 3))

The most important functions on lists are summarized here. The more complicated
ones are explained more thoroughly when they are used.

(f i r s t x) a first element of a list
(second x) =>b second element of a list
(th i rd x) third element of a list
(nth 0 x) => a nth element of a list, 0-based
(rest x) => (b c) all but the first element
(car x) => a another name for the first element of a list
(cdr x) =>(b c) another name for all but the first element
(las t x) =i>(c) last cons cell in a list
(length x) =^3 number of elements in a list
(reverse x) =>(c b a) puts list in reverse order
(cons 0 y) =»(0 1 2 3) add to front of list
(append χ y) =i>(a b c 1 2 3) append together elements
(l i s t χ y) =>i{d b c) (1 2 3)) make a new list
(l i s t * 1 2 χ) = » (1 2 a b c) append last argument to others
(null n i l) =>J predicate is true of the empty list
(null x) =»n i l . . . and false for everything else
d i s t p x) =>T predicate is true of any list, including η i 1
d i s t p 3) =» ni l . . . and is false for nonlists
(consp x) =>t predicate is true of non-nil lists
(consp n i l) =»n i l . . . and false for atoms, including η i 1
(equal χ χ) =^t true for lists that look the same
(equal χ y) ni l . . . and false for lists that look different
(sor t y # '>) =^(3 2 1) sort a list according to a comparison function
(subseq χ 1 2) =» (B) subsequence with given start and end points

We said that (cons a b) builds a longer list by adding element a to the front of list
b, but what if b is not a list? This is not an error; the result is an object χ such that
(f i r s t j c) =^a, (res t jc) b, and where ;c prints as ia . b). This is known as doíf^í/
pair notation. If i? is a list, then the usual list notation is used for output rather than
the dotted pair notation. But either notation can be used for input.

So far we have been thinking of lists as sequences, using phrases like "a list of
three elements." The list is a convenient abstraction, but the actual implementation
of lists relies on lower-level building blocks called cons cells. A cons cell is a data
structure with two fields: a first and a rest. What we have been calling "a list of
three elements" can also be seen as a single cons cell, whose first field points to

70 OVERVIEW OF LISP

the first element and whose rest field points to another cons cell that is a cons cell
representing a Ust of two elements. This second cons cell has a rest field that is a
third cons cell, one whose rest field is nil. All proper lists have a last cons cell whose
rest field is nil. Figure 3.1 shows the cons cell notation for the three-element list (one
two three) , as well as for the result of (cons One 'two).

(ONE TWO T H R E E) (ONE . TWO)

ONE TWO T H R E E ONE TWO

Figure 3.1: Cons Cell Diagrams

S Exercise 3.2 [s] The function cons can be seen as a special case of one of the other
functions listed previously. Which one?

S Exercise 3.3 [m] Write a function that will print an expression in dotted pair nota
tion. Use the built-in function pri nc to print each component of the expression.

S Exercise 3.4 [m] Write a function that, like the regular print function, will print an
expression in dotted pair notation when necessary but will use normal list notation
when possible.

3.4 Equality and Internal Representation

In Lisp there are five major equality predicates, because not all objects are created
equally equal. The numeric equality predicate, =, tests if two numbers are the same.
It is an error to apply = to non-numbers. The other equality predicates operate
on any kind of object, but to understand the difference between them, we need to
understand some of the internals of Lisp.

When Lisp reads a symbol in two different places, the result is guaranteed to be
the exact same symbol. The Lisp system maintains a symbol table that the function
read uses to map between characters and symbols. But when a list is read (or built)

3.4 EQUALITY AND INTERNAL REPRESENTATION 71

in two different places, the results are not identically the same, even though the
corresponding elements may be. This is because read calls cons to build up the list,
and each call to cons returns a new cons cell. Figure 3.2 shows two lists, x and y,
which are both equal to (one two), but which are composed of different cons cells,
and hence are not identical. Figure 3.3 shows that the expression (r e s t x) does not
generate new cons cells, but rather shares structure with x, and that the expression
(cons ' zero x) generates exactly one new cons cell, whose rest is x.

(setf X '(one two))

ONE TWO

(setf y '(one two))

Figure 3.2: Equal But Nonidentical Lists

(cons 'zero x) χ

1

1
ZERO ONE

(restx)

TWO

Figure 3.3: Parts of Lists

72 OVERVIEW OF LISP

When two mathematically equal numbers are read (or computed) in two places,
they may or may not be the same, depending on what the designers of your implemen
tation felt was more efficient. In most systems, two equal fixnums will be identical,
but equal numbers of other types will not (except possibly short floats). Common
Lisp provides four equality predicates of increasing generality. All four begin with
the letters eq, with more letters meaning the predicate considers more objects to be
equal. The simplest predicate is eq, which tests for the exact same object. Next,
eql tests for objects that are either eq or are equivalent numbers, equal tests for
objects that are either eql or are lists or strings with eql elements. Finally, equal ρ
is like equal except it also matches upper- and lowercase characters and numbers
of different types. The following table summarizes the results of applying each of
the four predicates to various values of χ and y. The ? value means that the result
depends on your implementation: two integers that are eql may or may not be eq.

X y eq eql equal equal ρ
'x ' X Τ Τ Τ Τ
Ό Ό ? Τ Τ Τ
' (χ) • (χ) n i l n i l Τ Τ
' "xy" •"xy" n i l n i l τ τ
"•Xy" '"χΥ" n i l n i l n i l τ
•0 Ό.Ο n i l n i l n i l τ
Ό Ί n i l n i l n i l n i l

In addition, there are specialized equaUty predicates such as =, t r e e -equa l ,
char -equal , and s t r i n g - e q u a l , which compare numbers, trees, characters, and
strings, respectively.

3.5 Functions on Sequences
Common Lisp is in a transitional position halfway between the Lisps of the past
and the Lisps of the future. Nowhere is that more apparent than in the sequence
functions. The earliest Lisps dealt only with symbols, numbers, and lists, and
provided Hst functions like append and 1 ength. More modern Lisps added support
for vectors, strings, and other data types, and introduced the term sequence to refer
to both vectors and lists. (A vector is a one-dimensional array. It can be represented
more compactly than a list, because there is no need to store the res t pointers. It
is also more efficient to get at the nth element of a vector, because there is no need
to follow a chain of pointers.) Modern Lisps also support strings that are vectors of
characters, and hence also a subtype of sequence.

With the new data types came the problem of naming functions that operated
on them. In some cases. Common Lisp chose to extend an old function: 1 ength can

3.6 FUNCTIONS FOR MAINTAINING TABLES 73

apply to vectors as well as lists. In other cases, the old names were reserved for the
list functions, and new names were invented for generic sequence functions. For
example, append and mapcar only work on lists, but concatenate and map work on
any kind of sequence. In still other cases, new functions were invented for specific
data types. For example, there are seven functions to pick the nth element out of a
sequence. The most general is e 11, which works on any kind of sequence, but there are
specific functions for lists, arrays, strings, bit vectors, simple bit vectors, and simple
vectors. Confusingly, nth is the only one that takes the index as the first argument:

(nth η list)
ieM sequence n)
{aref array n)
{char string n)
(b i t bit vector n)
(s b i t simple-hit vector η)
(s V ref simple-vector η)

The most important sequence functions are listed elsewhere in this chapter, depend
ing on their particular purpose.

3.6 Functions for Maintaining Tables
Lisp lists can be used to represent a one-dimensional sequence of objects. Because
they are so versatile, they have been put to other purposes, such as representing
tables of information. The association list is a type of list used to implement tables.
An association list is a list of dotted pairs, where each pair consists of a key and a value.
Together, the list of pairs form a table: given a key, we can retrieve the corresponding
value from the table, or verify that there is no such key stored in the table. Here's
an example for looking up the names of states by their two-letter abbreviation. The
function a s s oc is used. It returns the key/value pair (if there is one). To get the value,
we just take the cdr of the result returned by assoc.

(set f state- table
' ((AL . Alabama) (AK . Alaska) (AZ . Arizona) (AR . Arkansas)))

> (assoc Ά Κ state- tab le) ^ (AK . ALASKA)

> (cdr (assoc *AK s ta te- tab le)) ^ ALASKA

> (assoc 'TX state- table) => NIL

If we want to search the table by value rather than by key, we can use rassoc:

> (rassoc 'Arizona table) (AZ . ARIZONA)

74 OVERVIEW OF LISP

> (car (rassoc 'Arizona table)) => AZ

Managing a table with assoc is simple, but there is one drawback: we have to search
through the whole list one element at a time. If the list is very long, this may take
a while.

Another way to manage tables is with hash tables. These are designed to han
dle large amounts of data efficiently but have a degree of overhead that can make
them inappropriate for small tables. The function gethash works much like get—it
takes two arguments, a key and a table. The table itself is initialized with a call to
make-hash-tab! e and modified with a s e t f of gethash:

(set f table (make-hash-table))

(set f (gethash 'AL table) 'Alabama)
(set f (gethash Ά Κ table) 'A laska)
(set f (gethash Ά Ζ table) 'Ar izona)
(set f (gethash 'AR table) 'Arkansas)

Here we retrieve values from the table:

> (gethash Ά Κ table) ^ ALASKA
> (gethash 'TX table) => NIL

The function remhash removes a key/value pair from a hash table, cl rhash removes
all pairs, and maphash can be used to map over the key/value pairs. The keys to hash
tables are not restricted; they can be any Lisp object. There are many more details
on the implementation of hash tables in Common Lisp, and an extensive Uterature
on their theory.

A third way to represent table is with property lists. A property list is a Hst of
alternating key/value pairs. Property lists (sometimes called p-lists or plists) and
association lists (sometimes called a-lists or alists) are similar:

a - l i s t ; iikeyi . vah) {keyi . vali) ... {keyn . vain))
p - l i s t : {key I val\ key 2 vah ... key η vain)

Given this representation, there is little to choose between a-Hsts and p-lists. They
are slightly different permutations of the same information. The difference is in how
they are normally used. Every symbol has a property list associated with it. That
means we can associate a property/value pair directly with a symbol. Most programs
use only a few different properties but have many instances of property/value pairs
for each property. Thus, each symbol's p-list wiH likely be short. In our example,
we are only interested in one property: the state associated with each abbreviation.

3.6 FUNCTIONS FOR MAINTAINING TABLES 75

That means that the property lists will be very short indeed: one property for each
abbreviation, instead of a list of 50 pairs in the association list implementation.

Property values are retrieved with the function get , which takes two arguments:
the first is a symbol for which we are seeking information, and the second is the
property of that symbol that we are interested in. get returns the value of that
property, if one has been stored. Property/value pairs can be stored under a symbol
with a s e t f form. A table would be built as follows:

(set f (get 'AL 's ta te) 'Alabama)
(set f (get Ά Κ 's ta te) 'A laska)
(set f (get Ά Ζ 's ta te) 'Ar izona)
(set f (get 'AR 's ta te) 'Arkansas)

Now we can retrieve values with get:

> (get Ά Κ 's ta te) =^ ALASKA
> (get 'TX ' s ta te) => NIL

This will be faster because we can go immediately from a symbol to its lone property
value, regardless of the number of symbols that have properties. However, if a given
symbol has more than one property, then we still have to search linearly through the
property list. As Abraham Lincoln might have said, you can make some of the table
lookups faster some of the time, but you can't make all the table lookups faster all
of the time. Notice that there is no equivalent of rassoc using property lists; if you
want to get from a state to its abbreviation, you could store the abbreviation under a
property of the state, but that would be a separate s e t f form, as in:

(set f (get 'Ar izona 'abbrev) *AZ)

In fact, when source, property, and value are all symbols, there are quite a few
possibilities for how to use properties. We could have mimicked the a-list approach,
and Usted all the properties under a single symbol, using s e t f on the function
symbol - pi i s t (which gives a symbol's complete property list):

(set f (symbol-p i is t ' s ta te- tab le)

' (AL Alabama AK Alaska AZ Arizona AR Arkansas))

> (get 's ta te- tab le ' A D =^ ALASKA

> (get 's ta te- tab le 'A laska) NIL

Property lists have a long history in Lisp, but they are falling out of favor as new
alternatives such as hash tables are introduced. There are two main reasons why
property lists are avoided. First, because symbols and their property lists are global.

76 OVERVIEW OF LISP

it is easy to get conflicts when trying to put together two programs that use property
lists. If two programs use the same property for different purposes, they cannot be
used together. Even if two programs use different properties on the same symbols,
they will slow each other down. Second, property lists are messy. There is no way to
remove quickly every element of a table implemented with property Hsts. In contrast,
this can be done trivially with cl rhash on hash tables, or by setting an association
Hst to nil.

3.7 Functions on Trees
Many Common Lisp functions treat the expression ((a b) ((c)) (d e)) a s a
sequence of three elements, but there are a few functions that treat it as a tree with
five non-null leaves. The function copy - t ree creates a copy of a tree, and t ree - equa 1
tests if two trees are equal by traversing cons cells, but not other complex data like
vectors or strings. In that respect, tree-equal is similar to equal, but tree-equal is
more powerful because it allows a : t e s t keyword:

> (set f tree ' ((a b) ((c)) (d e)))

> (tree-equal tree (copy-tree t ree)) Τ

(defun same-shape-tree (a b)
"Are two trees the same except for the leaves?"
(tree-equal a b : test #*true))

(defun true (&rest ignore) t)

> (same-shape-tree tree ' ((1 2) ((3)) (4 5))) ^ Τ

> (same-shape-tree tree ' ((1 2) (3) (4 5))) => NIL

Figure3.4shows thetree ((a b) ((c)) (d e)) as a cons ceU diagram.
There are also two functions for substituting a new expression for an old one

anywhere within a tree, subst substitutes a single value for another, while sub! i s
takes a list of substitutions in the form of an association Hst of (old . new) pairs.
Note that the order of old and new in the a-Hst for subl i s is reversed from the order
of arguments to subst. The name subl i s is uncharacteristically short and confusing;
a better name would be subst -1 i S t .

> (subst 'new 'o ld ' (o ld ((very o ld))) ^ (NEW ((VERY NEW)))

> (sub l i s ' ((o l d . new)) ' (o ld ((very o l d)))) = ^ (NEW ((VERY NEW)))

> (subst 'new 'o ld O l d) => 'NEW

3.7 FUNCTIONS ON TREES 77

(defun engl ish->french (words)
(sub l i s ' ((a re . va) (book . l i b re) (f r iend . ami)

(hel lo . bonjour) (how . comment) (my . mon)
(red . rouge) (you . tu))

words))

> (engl ish->french ' (he l l o my fr iend - how are you today?))
(BONJOUR MON AMI - COMMENT VA TU TODAY?)

((ab) ((c)) (de))

Figure 3.4: Cons Cell Diagram of a Tree

78 OVERVIEW OF LISP

3.8 Functions on Numbers
The most commonly used functions on numbers are listed here. There are quite a
few other numeric functions that have been omitted.

(+ 4 2) =>6 add
(- 4 2) =^Z subtract
(* 4 2) ^ 8 multiply
(/ 4 2) =>2 divide
(> 100 99) greater than (also >=, greater than or equal to)
(= 100 100) equal (also / = , not equal)
(< 99 100) less than (also <=, less than or equal to)
(random 100) =^42 random integer from 0 to 99
(expt 4 2) =i>16 exponentiation (also exp, and 1 eg)
(s i n p i) ^ 0 . 0 sine function (also cos , tan , etc.)
(a s i n 0) =>0 .0 arcsine or sin~^ function (also acos, atan, etc.)
(min 2 3 4) =>2 minimum (also max)
(abs -3) =>3 absolute value
(s q r t 4) square root
(round 4 .1) round off (also t runcate , f 1 cor , cei 1 i ng)
(rem 11 5) remainder (also mod)

3.9 Functions on Sets
One of the important uses of lists is to represent sets. Common Lisp provides
functions that treat lists in just that way. For example, to see what elements the sets
r = { a , 6, c, d} and s = {c , d, e} have in common, we could use:

> (set f Γ ' (a b c d))
> (set f s ' (c d e)) =Φ
> (in tersect ion r s) =

(A Β C D)
(C D E)

> (C D)

This implementation returned (C D) as the answer, but another might return (DC) .
They are equivalent sets, so either is valid, and your program should not depend on
the order of elements in the result. Here are the main functions on sets:

(intersection r s) =^ (c d) find common elements of two sets
(union r s) (a b c d e) find all elements in either of two sets
(set-dif ference r s) =>(a b) find elements in one but not other set
(member *d r) ^ (d) check if an element is a member of a set
(subsetp s r) =>n i l see if all elements of one set are in another
(adjoin 'b s) =^(b c d e) add an element to a set
(adjoin 'c s) =>{c Ú e) . . . but don't add duplicates

3.10 DESTRUCTIVE FUNCTIONS 79

It is also possible to represent a set with a sequence of bits, given a particular
universe of discourse. For example, if every set we are interested in must be a subset
of(a b c d e) , then we can use the bit sequence 111 10 to represent (a b cd) , 00000
to represent the empty set, and 11001 to represent (a b e) . The bit sequence can be
represented in Common Lisp as a bit vector, or as an integer in binary notation. For
example, (a b e) would be the bit vector #* 11001 or the integer 25, which can also
be written as #bllOOL

The advantage of using bit sequences is that it takes less space to encode a set,
assuming a small universe. Computation will be faster, because the computer's
underlying instruction set will typically process 32 elements at a time.

Common Lisp provides a full complement of functions on both bit vectors and
integers. The following table lists some, their correspondence to the list functions.

lists integers bit vectors
i n t e r s e c t i o n logand b i t - a n d
union l o g i o r b i t - i o r
s e t - d i f f e r e n c e logandc2 b i t -andc2
member l o g b i t p b i t
length logcount

For example,

(in tersect ion ' (a b e d) ' (a b e)) (A B)
(bi t-and #*11110 #*11001) #*11000
(logand #b l l l lO #bl l001) 24 = #bl l000

3.10 Destructive Functions
In mathematics, a function is something that computes an output value given some
input arguments. Functions do not "do" anything, they just compute results. For
example, if I tell you that χ = 4 and y = 5 and ask you to apply the function "plus" to
X and y, I expect you to tell me 9. If I then ask, "Now what is the value of x?" it would
be surprising if χ had changed. In mathematics, applying an operator to χ can have
no effect on the value of x .

In Lisp, some functions are able to take effect beyond just computing the result.
These "functions" are not functions in the mathematical sense,^ and in other lan
guages they are known as "procedures." Of course, most of the Lisp functions are true
mathematical functions, but the few that are not can cause great problems. They can

În mathematics, a function must associate a unique output value with each input value.

80 OVERVIEW OF LISP

also be quite useful in certain situations. For both reasons, they are worth knowing
about.

Consider the following:

> (setf X '(a b c)) (A Β C)
> (setf y ' (1 2 3)) => (1 2 3)
> (append χ y) =^ (A Β C 1 2 3)

append is a pure function, so after evaluating the call to append, we can rightfully
expect that χ and y retain their values. Now consider this:

> (nconc X y) (A Β C 1 2 3)
> χ =^ (A Β C 1 2 3)
> y (1 2 3)

The function nconc computes the same result as append, but it has the side effect
of altering its first argument. It is called a destructive function, because it destroys
existing structures, replacing them with new ones. This means that there is quite
a conceptual load on the programmer who dares to use nconc. He or she must be
aware that the first argument may be altered, and plan accordingly. This is far more
complicated than the case with nondestructive functions, where the programmer
need worry only about the results of a function call.

The advantage of nconc is that it doesn't use any storage. While append must
make a complete copy of x and then have that copy end with y , nconc does not need
to copy anything. Instead, it just changes the res t field of the last element of x to
point to y. So use destructive functions when you need to conserve storage, but be
aware of the consequences.

Besides nconc, many of the destructive functions have names that start with
n, including nreverse, nintersect ion, nunion, nset-difference, and nsubst. An
important exception is del ete, which is the name used for the destructive version of
remove. Of course, the s e t f special form can also be used to alter structures, but it
is the destructive functions that are most dangerous, because it is easier to overlook
their effects.

@ Exercise 3.5 [h] (Exercise in altering structure.) Write a program that will play the
role of the guesser in the game Twenty Questions. The user of the program will have
in mind any type of thing. The program will ask questions of the user, which must
be answered yes or no, or "it" when the program has guessed it. If the program runs
out of guesses, it gives up and asks the user what "it" was. At first the program will
not play well, but each time it plays, it will remember the user's replies and use them
for subsequent guesses.

3.11 OVERVIEW OF DATATYPES 81

3.11 Overview of Data Types
This chapter has been organized around functions, with similar functions grouped
together. But there is another way of organizing the Common Lisp world: by con
sidering the different data types. This is useful for two reasons. First, it gives an
alternative way of seeing the variety of available functionality. Second, the data types
themselves are objects in the Common Lisp language, and as we shall see, there are
functions that manipulate data types. These are useful mainly for testing objects (as
with the typecase macro) and for making declarations.

Here is a table of the most commonly used data types:

Type Example Explanation
character #\c A single letter, number, or punctuation mark.
number 42 The most common numbers are floats and integers.
float 3.14159 A number with a decimal point.
integer 42 A whole number, of either fixed or indefinite size:
fixnum 123 An integer that fits in a single word of storage.
bignum 123456789 An integer of unbounded size.
function #'sin A function can be applied to an argument list.
symbol sin Symbols can name fns and vars, and are themselves objects.
null nil The object ni 1 is the only object of type null.
keyword :key Keywords are a subtype of symbol.
sequence (a b c) Sequences include lists and vectors.
l i s t (a b c) A list is either a cons or nul 1.
vector #(a b c) A vector is a subtype of sequence.
cons (a b c) A cons is a non-nil list.
atom t An atom is anything that is not a cons.
string "abc" A string is a type of vector of characters.
array #lA(a b c) Arrays include vectors and higher-dimensional arrays.
structure #S(type . . .) Structures are defined by defstruct.
hash-table Hash tables are created by make-hash-tabl e.

Almost every data type has a recognizer predicate—a function that returns true
for only elements of that type. In general, a predicate is a function that always
returns one of two values: true or false. In Lisp, the false value is ni 1 , and every
other value is considered true, although the most common true value is t . In most
cases, the recognizer predicate's name is composed of the type name followed by
p: characterp recognizes characters, numberp recognizes numbers, and so on. For
example, (numberp 3) returns t because 3 is a number, but (numberp "x") returns
η i 1 because "χ" is a string, not a number.

Unfortunately, Common Lisp is not completely regular. There are no recognizers
for fixnums, bignums, sequences, and structures. Two recognizers, nul 1 and atom,
do not end in p. Also note that there is a hyphen before the ρ in hash-table-p,
because the type has a hyphen in it. In addition, all the recognizers generated by
defstruct have a hyphen before the p.

82 OVERVIEW OF LISP

The function type - of returns the type of its argument, and typep tests if an object
is of a specified type. The function subtypep tests if one type can be determined to
be a subtype of another. For example:

> (type-of 123) ^ FIXNUM

> (typep 123 'fixnum) Τ

> (typep 123 'number) Τ

> (typep 123 ' in teger) => Τ

> (typep 123.0 ' in teger) ^ NIL

> (subtypep 'fixnum 'number) => Τ

The hierarchy of types is rather complicated in Common Lisp. As the prior example
shows, there are many different numeric types, and a number like 123 is considered
to be of type fixnum, in teger , and number. We will see later that it is also of type
ra t iona l andt .

The type hierarchy forms a graph, not just a tree. For example, a vector is both
a sequence and an array, although neither array nor sequence are subtypes of each
other. Similarly, nul 1 is a subtype of both symbol and 1 i s t .

The following table shows a number of more specialized data types that are not
used as often:

Type Example Explanation
t 42 Every object is of type t.
ni l No object is of type n i l .
complex #C(0 1) Imaginary numbers.
bi t 0 Zero or one.
rational 2/3 Rationals include integers and ratios.
rat io 2/3 Exact fractional numbers.
simple-array #lA(x y) An array that is not displaced or adjustable.
readtable A mapping from characters to their meanings to read.
package A collection of symbols that form a module.
pathname #P '7us r /spoo l /ma i l " A file or directory name.
stream A pointer to an open file; used for reading or printing.
random-state A state used as a seed by random.

In addition, there are even more specialized types, such as s ho r t - f 1 oa t, comp i 1 ed -
f uncti on, and bi t -vector . It is also possible to construct more exact types, such as
(vector (integer 0 3) 100), which represents a vector of 100 elements, each of
which is an integer from 0 to 3, inclusive. Section 10.1 gives more information on
types and their use.

While almost every type has a predicate, it is also true that there are predicates
that are not type recognizers but rather recognize some more general condition. For

3.12 INPUT/OUTPUT 83

example, oddp is true only of odd integers, and s t r i ng-greaterp is true if one string
is alphabetically greater than another.

3.12 Input/Output

Input in Lisp is incredibly easy because a complete lexical and syntactic parser is
available to the user. The parser is called read. It is used to read and return a single
Lisp expression. If you can design your application so that it reads Lisp expressions,
then your input worries are over. Note that the expression parsed by read need not
be a legal evaluable Lisp expression. That is, you can read ("hel lo" cons zzz) just
as well as (+ 2 2) . In cases where Lisp expressions are not adequate, the function
read-char reads a single character, and read-1 i ne reads everything up to the next
newline and returns it as a string.

To read from the terminal, the functions read, read-char, or read-l ine (with
no arguments) return an expression, a character, and a string up to the end of line,
respectively. It is also possible to read from a file. The function open or the macro
with-open-stream can be used to open a file and associate it with a stream, Lisp's
name for a descriptor of an input/output source. All three read functions take three
optional arguments. The first is the stream to read from. The second, if true, causes
an error to be signaled at end of file. If the second argument is nil, then the third
argument indicates the value to return at end of file.

Output in Lisp is similar to output in other languages, such as C. There are a
few low-level functions to do specific kinds of output, and there is a very general
function to do formatted output. The function print prints any object on a new line,
with a space following it. pr i nl will print any object without the new line and space.
For both functions, the object is printed in a form that could be processed by read.
Forexample, the string "hello there" would print as "hello there". Thefunction
ρ r i η c is used to print in a human-readable format. The string in question would print
as hel 1 o there with pri nc—the quote marks are not printed. This means that read
cannot recover the original form; read would interpret it as two symbols, not one
string. The function wri te accepts eleven different keyword arguments that control
whether it acts like pri nl or pri ηc, among other things.

The output functions also take a stream as an optional argument. In the following,
we create the file " t e s t . t e x t " and print two expressions to it. Then we open the
file for reading, and try to read back the first expression, a single character, and then
two more expressions. Note that the read-char returns the character #\G, so the
following read reads the characters OODBYE and turns them into a symbol. The final
read hits the end of file, and so returns the specified value, eof.

84 OVERVIEW OF LISP

> (with-open-f i le (stream " test . text " id i rect lon :output)
(pr int ' (he l l o there) stream)
(pr inc 'goodbye stream))

GOODBYE ; and creates the file test.text

> (wi th-open-f i le (stream " test . text " id i rect ion .-input)
(l i s t (read stream) (read-char stream) (read stream)

(read stream ni l ' eo f))) ^
((HELLO THERE) #\G OODBYE EOF)

The function terpri stands for "terminate print line," and it skips to the next line.
The function fresh -1 i ne also skips to the next line, unless it can be determined that
the output is already at the start of a line.

Common Lisp also provides a very general function for doing formatted output,
called format. The first argument to format is always the stream to print to; use
t to print to the terminal. The second argument is the format string. It is printed
out verbatim, except for format directives, which begin with the character " ~". These
directives tell how to print out the remaining arguments. Users of C's pri n t f func
tion or FORTRAN'S format statement should be familiar with this idea. Here's
an example:

> (format t "he l lo , world")
he l lo , world
NIL

Things get interesting when we put in additional arguments and include format
directives:

> (format t "~ra plus -^s i s ~f" "two" "two" 4)
two plus "two" i s 4.0
NIL

Thedirective "~&" moves to a fresh line, "~a" printsthenextargumentas pri no would,
" ~ s" prints the next argument as ρ r i η 1 would, and " ~ f" prints a number in floating
point format. If the argument is not a number, then princ is used, format always
returns nil. There are 26 different format directives. Here's a more complex example:

> (le t ((numbers ' (1 2 3 4 5)))
(format t "~&~{~r~" plus " } i s ~@r"

numbers (apply # ' + numbers)))
one plus two plus three plus four plus f i ve i s XV
NIL

The directive "~r" prints the next argument, which should be a number, in English,

3.13 DEBUGGING TOOLS 85

and " ~ ® Γ " prints a number as a roman numeral. The compound directive " ~ { . . . " } "
takes the next argument, which must be a list, and formats each element of the list
according to the format string inside the braces. Finally, the directive exits
from the enclosing " ' ' i . . . " } " loop if there are no more arguments. You can see that
format, like 1 oop, comprises almost an entire programming language, which, also
like 1 oop, is not a very Lisplike language.

3.13 Debugging Tools
In many languages, there are two strategies for debugging: (1) edit the program to
insert print statements, recompile, and try again, or (2) use a debugging program to
investigate (and perhaps alter) the internal state of the running program.

Common Lisp admits both these strategies, but it also offers a third: (3) add
annotations that are not part of the program but have the effect of automatically
altering the running program. The advantage of the third strategy is that once
you are done you don't have to go back and undo the changes you would have
introduced in the first strategy. In addition, Common Lisp provides functions that
display information about the program. You need not rely solely on looking at the
source code.

We have already seen how t race and untrace can be used to provide debugging
information (page 65). Another useful tool is s t e p, which can be used to halt execution
before each subform is evaluated. The form (step expression) will evaluate and return
expression, but pauses at certain points to allow the user to inspect the computation,
and possibly change things before proceeding to the next step. The commands
available to the user are implementation-dependent, but typing a ? should give you
a list of commands. As an example, here we step through an expression twice, the
first time giving commands to stop at each subevaluation, and the second time giving
commands to skip to the next function call. In this implementation, the commands
are control characters, so they do not show up in the output. All output, including
the symbols <= and => are printed by the stepper itself; I have added no annotation.

> (step (+ 3 4 (* 5 6 (/ 7 8))))
<i= (+ 3 4 (* 5 6 (/ 7 8)))

<i= 4 =i> 4
<^ (* 5 6 (/ 7 8))

<^ 5 ^ 5

<^ (/ 7 8)
7 7
8 =^ 8

^ (/ 7 8) 7/8

86 OVERVIEW OF LISP

^ (* 5 6 (/ 7 8)) 105/4
<^ (+ 3 4 (* 5 6 (/ 7 8))) ^ 133/4
133/4

> (step (+ 3 4 (* 5 6 (/ 7 8))))
^ (+ 3 4 (* 5 6 (/ 7 8)))

/ : 7 8 =^ 7/8
* : 5 6 7/8 105/4
+ : 3 4 105/4 133/4

(+ 3 4 (* 5 6 (/ 7 8))) =^ 133/4
133/4

The functions d e s c r i be, i nspec t , documentat i on, and apropos provide information
about the state of the current program, apropos prints information about all symbols
w h o s e name matches the argument:

> (apropos ' s t r i n g)
MAKE-STRING function (LENGTH &KEY INITIAL-ELEMENT)
PRINl-TO-STRING function (OBJECT)
PRINC-TO-STRING function (OBJECT)
STRING function (X)

Once you know what obj ect you are interested in, des c r i be can give more information
on it:

> (describe 'make-str ing)
Symbol MAKE-STRING i s in LISP package.
The function def in i t ion i s #<FUNCTION MAKE-STRING -42524322>:

NAME: MAKE-STRING
ARGLIST: (LENGTH &KEY INITIAL-ELEMENT)
DOCUMENTATION: "Creates and returns a s t r ing of LENGTH elements,

al l set to INITIAL-ELEMENT."
DEFINITION: (LAMBDA (LENGTH &KEY INITIAL-ELEMENT)

(MAKE-ARRAY LENGTH :ELEMENT-TYPE 'CHARACTER
:INITIAL-ELEMENT (OR INITIAL-ELEMENT

#\SPACE)))
MAKE-STRING has property INLINE: INLINE
MAKE-STRING has property :SOURCE-FILE: #P"SYS:KERNEL; STRINGS"

> (describe 1234.56)
1234.56 i s a s ing le -p rec is ion f loat ing-po in t number.

Sign 0, exponent #o211. 23-bi t f ract ion #06450754

If all you want is a symbol's documentation string, the function documentat i on will
do the trick:

3,14 ANTIBUGGING TOOLS 87

> (documentation ' f i r s t ' funct ion) =^ "Return the f i r s t element of L I S T . '
> (documentation 'p i ' var iab le) =^ "p i "

If you want to look at and possibly alter components of a complex structure,
then i nspect is the tool. In some implementations it invokes a fancy, window-based
browser.

Common Lisp also provides a debugger that is entered automatically when an
error is signalled, either by an inadvertant error or by deliberate action on the part
of the program. The details of the debugger vary between implementations, but
there are standard ways of entering it. The function break enters the debugger
after printing an optional message. It is intended as the primary method for setting
debugging break points, break is intended only for debugging purposes; when a
program is deemed to be working, all calls to break should be removed. However,
it is still a good idea to check for unusual conditions with er ror , cerror , asser t , or
check - type, which will be described in the following section.

3.14 Antibugging Tools

It is a good idea to include antibugging checks in your code, in addition to doing normal
debugging. Antibugging code checks for errors and possibly takes corrective action.

The functions e r ror and cerror are used to signal an error condition. These are
intended to remain in the program even after it has been debugged. The function
error takes a format string and optional arguments. It signals a fatal error; that is, it
stops the program and does not offer the user any way of restarting it. For example:

(defun average (numbers)
(i f (null numbers)

(error "Average of the empty l i s t i s undefined.")
(/ (reduce # ' + numbers)

(length numbers))))

In many cases, a fatal error is a little drastic. The function cerror stands for con-
tinuable error, cerror takes two format strings; the first prints a message indicating
what happens if we continue, and the second prints the error message itself, cerror
does not actually take any action to repair the error, it just allows the user to signal
that continuing is alright. In the following implementation, the user continues by
typing : cont i nue. In ANSI Common Lisp, there are additional ways of specifying
options for continuing.

88 OVERVIEW OF LISP

(defun average (numbers)
(i f (null numbers)

(progn
(cerror "Use 0 as the average."

"Average of the empty l i s t i s undefined.")
0)

(/ (reduce # ' + numbers)
(length numbers))))

> (average ' ())
Error : Average of the empty l i s t i s undefined.
Error s ignaled by function AVERAGE.
I f continued: Use 0 as the average.
» :continue
0

In this example, adding error checking nearly doubled the length of the code. This
is not unusual; there is a big difference between code that works on the expected
input and code that covers all possible errors. Common Lisp tries to make it easier
to do error checking by providing a few special forms. The form ecase stands for
"exhaustive case" or "error case." It is like a normal case form, except that if none
of the cases are satisfied, an error message is generated. The form cease stands for
"continuable case." It is like ecase, except that the error is continuable. The system
will ask for a new value for the test object until the user supplies one that matches
one of the programmed cases.

To make it easier to include error checks without inflating the length of the code
too much. Common Lisp provides the special forms check-type and asser t . As
the name implies, check-type is used to check the type of an argument. It signals a
continuable error if the argument has the wrong type. For example:

(defun sqr (x)
"Mult ip ly χ by i t s e l f . "
(check-type χ number)
(* X X))

If s q r is called with a non-number argument, an appropriate error message is printed:

> (sqr "he l lo")
Er ror : the argument X was "he l l o " , which i s not a NUMBER.
I f continued: replace X with new value
» :continue 4
16

asser t is more general than check-type. In the simplest form, asser t tests an

3.14 ANTIBUCCING TOOLS 89

expression and signals an error if it is false. For example:

(defun sqr (x)

"Mult ip ly X by i t s e l f . "

(asser t (numberp x))

(* X X))

There is no possibility of continuing from this kind of assertion. It is also possible to
give asser t a list of places that can be modified in an attempt to make the assertion
true. In this example, the variable χ is the only thing that can be changed:

(defun sqr (x)

"Mult ip ly X by i t s e l f . "

(asser t (numberp x) (x))

(* X X))

If the assertion is violated, an error message will be printed and the user will be given
the option of continuing by altering x. If χ is given a value that satisfies the assertion,
then the program continues, asser t always returns nil.

Finally, the user who wants more control over the error message can provide
a format control string and optional arguments. So the most complex syntax for
asser t is:

(asser t test-form (place...) format-ctl-string format-arg...)

Here is another example. The assertion tests that the temperature of the bear's
porridge is neither too hot nor too cold.

(defun eat-porr idge (bear)

(assert (< too-cold (temperature (bear-porr idge bear)) too-hot)

(bear (bear-porridge bear))

" ~ a ' s porridge i s not just r igh t : ~a"

bear (hotness (bear-porridge bear)))

(eat (bear-porridge bear)))

In the interaction below, the assertion failed, and the programmer's error message
was printed, along with two possibilities for continuing. The user selected one, typed
in a call to ma ke - por r i dge for the new value, and the function succesfully continued.

90 OVERVIEW OF LISP

> (eat-porr idge momma-bear)
Error : #<MOMMA BEAR>*s porridge i s not just r i gh t : 39
Restart act ions (select using :cont inue):

0: Supply a new value for BEAR
1 : Supply a new value for (BEAR-PORRIDGE BEAR)

» :continue 1
Form to evaluate and use to replace (BEAR-PORRIDGE BEAR):
(make-porridge :temperature j us t - r i gh t)
ni l

It may seem like wasted effort to spend time writing assertions that (if all goes well)
will never be used. However, for all but the perfect programmer, bugs do occur, and
the time spent antibugging will more than pay for itself in saving debugging time.

Whenever you develop a complex data structure, such as some kind of data base,
it is a good idea to develop a corresponding consistency checker. A consistency
checker is a function that will look over a data structure and test for all possible
errors. When a new error is discovered, a check for it should be incorporated into
the consistency checker. Calling the consistency checker is the fastest way to help
isolate bugs in the data structiu-e.

In addition, it is a good idea to keep a list of difficult test cases on hand. That
way, when the program is changed, it will be easy to see if the change reintroduces
a bug that had been previously removed. This is called regression testing, and Waters
(1991) presents an interesting tool for maintaining a suite of regression tests. But it
is simple enough to maintain an informal test suite with a function that calls asser t
on a series of examples:

(defun test-ex ()
"Test the program EX on a ser ies of examples."
(i n i t -ex) ; I n i t i a l i z e the EX program f i r s t ,
(asser t (equal (ex 3 4) 5))
(asser t (equal (ex 5 0) 0))
(asser t (equal (ex *x 0) 0)))

Timing Tools

A program is not complete just because it gives the right output. It must also deliver
the output in a timely fashion. The form (t i me expression) can be used to see how
long it takes to execute expression. Some implementations also print statistics on the
amount of storage required. For example:

> (defun f (n) (dotimes (i n) n i l)) =^ F

3.15 EVALUATION 91

> (time (f 10000)) => NIL
Evaluation of (F 10000) took 4.347272 Seconds of elapsed time,
including 0.0 seconds of paging time for 0 f au l t s , Consed 27 words.

> (compile ' f) => F

> (time (f 10000)) NIL
Evaluation of (F 10000) took 0.011518 Seconds of elapsed time,
including 0.0 seconds of paging time for 0 f a u l t s , Consed 0 words.

This shows that the compiled version is over 300 times faster and uses less storage
to boot. Most serious Common Lisp programmers work exclusively with compiled
functions. However, it is usually a bad idea to worry too much about efficiency details
while starting to develop a program. It is better to design a flexible program, get it to
work, and then modify the most frequently used parts to be more efficient. In other
words, separate the development stage from the fine-tuning stage. Chapters 9 and
10 give more details on efficiency consideration, and chapter 25 gives more advice
on debugging and antibugging techniques.

3.15 Evaluation

There are three functions for doing evaluation in Lisp: f uncal 1, apply, and eva l .
funcal 1 is used to apply a function to individual arguments, while apply is used
to apply a function to a list of arguments. Actually, apply can be given one or
more individual arguments before the final argument, which is always a Ust. eval
is passed a single argument, which should be an entire form-a function or special
form followed by its arguments, or perhaps an atom. The following five forms are
equivalent:

> (+ 1 2 3 4) 10
> (funcall # ' + 1 2 3 4) ^ 10
> (apply # ' + ' (1 2 3 4)) = ^ 10
> (apply #·+ 1 2 ' (3 4)) =^ 10
> (eval ' (+ 1 2 3 4)) =^ 10

In the past, eval was seen as the key to Lisp's flexibility. In modern Lisps with lexical
scoping, such as Common Lisp, eval is used less often (in fact, in Scheme there is
no eval at all). Instead, programmers are expected to use 1 ambda to create a new
function, and then apply or f uncal 1 the function. In general, if you find yourself
using eval, you are probably doing the wrong thing.

92 OVERVIEW OF LISP

3.16 Closures

What does it mean to create a new function? Certainly every time a f uncti on (or # ')
special form is evaluated, a function is returned. But in the examples we have seen
and in the following one, it is always the same function that is returned.

> (mapcar #'(1ambda (x) (+ χ χ)) ' (1 3 10)) =4>(2 6 20)

Every time we evaluate the # * (1 ambda . . .) form, it returns the function that doubles
its argument. However, in the general case, a function consists of the body of the
function coupled with any free lexical vanables that the function references. Such a
pairing is called a lexical closure, or just a closure, because the lexical variables are
enclosed within the function. Consider this example:

(defun adder (c)
"Return a function that adds c to i t s argument."
#'(lambda (x) (+ χ c)))

> (mapcar (adder 3) ' (1 3 10)) = ^ (4 6 13)

> (mapcar (adder 10) ' (1 3 10)) ^ (11 13 20)

Each time we call adder with a different value for c, it creates a different function,
the function that adds c to its argument. Since each call to adder creates a new local
variable named c, each function returned by adder is a unique function.

Here is another example. The function bank-account returns a closure that can
be used as a representation of a bank account. The closure captures the local variable
balance. The body of the closure provides code to access and modify the local
variable.

(defun bank-account (balance)
"Open a bank account s tar t ing with the given balance."
#'(lambda (action amount)

(case action
(deposit (set f balance (-»• balance amount)))
(withdraw (set f balance (- balance amount))))))

In the following, two calls to bank-account create two different closures, each with
a separate value for the lexical variable bal a nee. The subsequent calls to the two
closures change their respective balances, but there is no confusion between the two
accounts.

> (set f my-account (bank-account 500.00)) =^ #<CLOSURE 52330407>

3.17 SPECIAL VARIABLES 93

3.17 Special Variables

Common Lisp provides for two kinds of variables: lexical and special variables. For
the beginner, it is tempting to equate the special variables in Common Lisp with
global variables in other languages. Unfortunately, this is not quite correct and can
lead to problems. It is best to understand Common Lisp variables on their own terms.

By default. Common Lisp variables are lexical variables. Lexical variables are
introduced by some syntactic construct like 1 et or defun and get their name from the
fact that they may only be referred to by code that appears lexically within the body
of the syntactic construct. The body is called the scope of the variable.

So far, there is no difference between Common Lisp and other languages. The
interesting part is when we consider the extent, or lifetime, of a variable. In other
languages, the extent is the same as the scope: a new local variable is created when a
block is entered, and the variable goes away when the block is exited. But because it
is possible to create new functions—closures—in Lisp, it is therefore possible for code
that references a variable to live on after the scope of the variable has been exited.
Consider again the bank-account function, which creates a closure representing a
bank account:

(defun bank-account (balance)
"Open a bank account s ta r t ing with the given balance."
#'(lambda (action amount)

(case action
(deposit (set f balance (+ balance amount)))
(withdraw (set f balance (- balance amount))))))

The function introduces the lexical variable bal anee. The scope of bal anee is the
body of the function, and therefore references to bal anee can occur only within this
scope. What happens when ba η k - a ccount is called and exited? Once the body of the
function has been left, no other code can refer to that instance of bal anee. The scope
has been exited, but the extent of bal anee lives on. We can call the closure, and it

> (set f your-account (bank-account 250.00)) ^ #<CLOSURE 52331203>

> (funcall my-account 'withdraw 75.00) 425.0

> (funcall your-account 'deposi t 250.00) ^ 500.0

> (funcall your-account 'withdraw 100.00) 400.0

> (funcall my-account 'withdraw 25.00) => 400.0

This style of programming will be considered in more detail in chapter 13.

94 OVERVIEW OF LISP

can reference bal anee, because the code that created the closure appeared lexically
within the scope of bal anee.

In summary. Common Lisp lexical variables are different because they can be
captured inside closures and referred to even after the flow of control has left their
scope.

Now we will consider special variables. A variable is made special by a def va r or
defparameter form. For example, if we say

(defvar *counter* 0)

then we can refer to the special variable ^counter* anywhere in our program. This
is just like a familiar global variable. The tricky part is that the global binding of
counter can be shadowed by a local binding for that variable. In most languages,
the local binding would introduce a local lexical variable, but in Common Lisp, special
variables can be bound both locally and globally. Here is an example:

(defun report ()
(format t "Counter = '̂ d " *counter*))

> (report)
Counter = 0
NIL

> (le t ((*counter* 100))
(report))

Counter = 100
NIL

> (report)
Counter = 0
NIL

There are three calls to report here. In the first and third, report prints the global
value of the special variable ^counter*. In the second call, the 1 e t form introduces
a new binding for the special variable ^counter*, which is again printed by report.
Once the scope of the 1 e t is exited, the new binding is disestablished, so the final
call to report uses the global value again.

In summary. Common Lisp special variables are different because they have
global scope but admit the possibility of local (dynamic) shadowing. Remember:
A lexical variable has lexical scope and indefinite extent. A special variable has
indefinite scope and dynamic extent.

The function call (symbol - value var), where var evaluates to a symbol, can be
used to get at the current value of a special variable. To set a special variable, the
following two forms are completely equivalent:

3.18 MULTIPLE VALUES 95

(set f (symbol-valuePflr) t7fl/Me)

(set var value)

where both var and value are evaluated. There are no corresponding forms for
accessing and setting lexical variables. Special variables set up a mapping between
symbols and values that is accessible to the running program. This is unlike lexical
variables (and all variables in traditional languages) where symbols (identifiers)
have significance only while the program is being compiled. Once the program is
running, the identifiers have been compiled away and cannot be used to access the
variables; only code that appears within the scope of a lexical variable can reference
that variable.

@ Exercise 3.6 [s] Given the following initialization for the lexical variable a and the
special variable *b*, what will be the value of the 1 e t form?

(set f a ' g loba l -a)
(defvar * b * 'g loba l -b)

(defun fn () *b*)

(let ((a ' l o ca l - a)
(*b* ' l o ca l - b))

(l i s t a * b * (fn) (symbol-value 'a) (symbo l -va lue ' *b*)))

3.18 Multiple Values
Throughout this book we have spoken of "the value returned by a function." Histor
ically, Lisp was designed so that every function returns a value, even those functions
that are more like procedures than like functions. But sometimes we want a single
function to return more than one piece of information. Of course, we can do that by
making up a list or structure to hold the information, but then we have to go to the
trouble of defining the structure, building an instance each time, and then taking that
instance apart to look at the pieces. Consider the function round. One way it can be
used is to round off a floating-point number to the nearest integer. So (round 5 .1) is
5. Sometimes, though not always, the programmer is also interested in the fractional
part. The function round serves both interested and disinterested programmers by
returning two values: the rounded integer and the remaining fraction:

> (round 5.1) 5 . 1

There are two values after the =^ because round returns two values. Most of the time.

96 OVERVIEW OF LISP

multiple values are ignored, and only the first value is used. So (* 2 (round 5 . 1))
is 10, just as if round had only returned a single value. If you want to get at multiple
values, you have to use a special form, such as mul t i pi e-val ue-bi nd:

(defun show-both (x)

(mult ip le-value-bind (in t rem)

(round x)

(format t "~f = ~d + ~f" χ int rem)))

> (show-both 5.1)

5 .1 = 5 + 0 .1

You can write functions of your own that return multiple values using the function
val ues, which returns its arguments as multiple values:

> (values 1 2 3) =i> 1 2 3

Multiple values are a good solution because they are unobtrusive until they are
needed. Most of the time when we are using round, we are only interested in the
integer value. If round did not use multiple values, if it packaged the two values up
into a list or structure, then it would be harder to use in the normal cases.

It is also possible to return no values from a function with (values) . This is
sometimes used by procedures that are called for effect, such as printing. For
example, descri be is defined to print information and then return no values:

> (describe 'χ)

Symbol X i s in the USER package.

I t has no value, de f in i t ion or proper t ies.

However, when (val ues) or any other expression returning no values is nested in
a context where a value is expected, it still obeys the Lisp rule of one-value-per-
expression and returns n i l . In the following example, descri be returns no values,
but then 1 i s t in effect asks for the first value and gets n i l .

> (l i s t (describe ' x))

Symbol X i s in A I LP package.

I t has no value, de f in i t ion or proper t ies.

(NIL)

3.19 MORE ABOUT PARAMETERS 97

3.19 More about Parameters

Common Lisp provides the user with a lot of flexibility in specifying the parameters
to a function, and hence the arguments that the function accepts. Following is a
program that gives practice in arithmetic. It asks the user a series of η problems,
where each problem tests the arithmetic operator op (which can be +, -, *, or / , or
perhaps another binary operator). The arguments to the operator will be random
integers from 0 to range. Here is the program:

(defun math-quiz (op range n)

"Ask the user a ser ies of math problems."

(dotimes (i η)

(problem (random range) op (random range))))

(defun problem (x op y)

"Ask a math problem, read a reply, and say i f i t i s correct . "

(format t "~&How much i s ~d ~a ~d? " χ op y)

(i f (eql (read) (funcal l op χ y))

(pr inc "Correct ! ")

(princ "Sor ry , t ha t ' s not r i g h t . ")))

and here is an example of its use:

> (math-quiz ' + 100 2)

How much i s 32 + 60? 92

Correct!

How much i s 91 + 19? 100

Sor ry , t ha t ' s not r igh t .

One problem with the function math-qui ζ is that it requires the user to type three
arguments: the operator, a range, and the number of iterations. The user must
remember the order of the arguments, and remember to quote the operator. This is
quite a lot to expect from a user who presumably is just learning to add!

Common Lisp provides two ways of dealing with this problem. First, a program
mer can specify that certain arguments are optional, and provide default values for
those arguments. For example, in math - qui ζ we can arrange to make be the default
operator, 100 be the default number range, and 10 be the default number of examples
with the following definition:

98 OVERVIEW OF LISP

(defun math-quiz (&optional (op '•·-) (range 100) (n 10))
"Ask the user a ser ies of math problems."
(dotimes (i n)

(problem (random range) op (random range))))

Now (math-quiz) means the same as (math-quiz ' + 100 10). If an optional
parameter appears alone without a default value, then the default is ni 1. Optional
parameters are handy; however, what if the user is happy with the operator and
range but wants to change the number of iterations? Optional parameters are still
position-dependent, so the only solution is to type in all three arguments: (ma th - qui ζ

100 5) .
Common Lisp also allows for parameters that are position-independent. These

keyword parameters are explicitly named in the function call. They are useful when
there are a number of parameters that normally take default values but occasionally
need specific values. For example, we could have defined math - qui ζ as:

(defun math-quiz (&key (op ' +) (range 100) (n 10))
"Ask the user a ser ies of math problems."
(dotimes (i n)

(problem (random range) op (random range))))

Now (math-quiz :n 5) and (math-quiz :op ' + :n 5 -.range 100) mean the same.
Keyword arguments are specified by the parameter name preceded by a colon, and
followed by the value. The keyword/value pairs can come in any order.

A symbol starting with a colon is called a keyword, and can be used anywhere,
not just in argument lists. The term keyword is used differently in Lisp than in many
other languages. For example, in Pascal, keywords (or reserved words) are syntactic
symbols, like i f , el se, begin , and end. In Lisp we call such symbols special form
operators or just special forms. Lisp keywords are symbols that happen to reside in
the keyword package."^ They have no special syntactic meaning, although they do
have the unusual property of being self-evaluating: they are constants that evaluate
to themselves, unlike other symbols, which evaluate to whatever value was stored in
the variable named by the symbol. Keywords also happen to be used in specifying
&key argument lists, but that is by virtue of their value, not by virtue of some syntax
rule. It is important to remember that keywords are used in the function call, but
normal nonkeyword symbols are used as parameters in the function definition.

Just to make things a little more confusing, the symbols &opti ona l , &rest, and
&key are called lambda-list keywords, for historical reasons. Unlike the colon in real
keywords, the & in lambda-list keywords has no special significance. Consider these
annotated examples:

A package is a symbol table: a mapping between strings and the symbols they name.

3.19 MORE ABOUT PARAMETERS 99

> :xyz =^ :XYZ ; keywords are self-evaluating

> Äoptional =^ ; lambda-list keywords are normal symbols
Error: the symbol &optional has no value

> '&optional &OPTIONAL

> (defun f (&xyz) (+ &xyz &xyz)) F ;& has no significance

> (f 3) =Φ 6

> (defun f (:xyz) (+ :xyz :xyz)) ^
Error: the keyword :xyz appears in a variable list.
Keywords are constants, and so cannot be used as names of variables.

> (defun g (&key χ y) (l i s t χ y)) G

> (let ((keys * (:x :y : z))) ; keyword args can be computed
ig (second keys) 1 (f i r s t keys) 2)) =^ (2 1)

Many of the functions presented in this chapter take keyword arguments that make
them more versatile. For example, remember the function f i nd, which can be used
to look for a particular element in a sequence:

> (f ind 3 *(1 2 3 4 -5 6 .0)) =^ 3

It turns out that f i n d takes several optional keyword arguments. For example,
suppose we tried to find 6 in this sequence:

> (f ind 6 ' (1 2 3 4 -5 6 .0)) ni l

This fails because f i nd tests for equality with eql, and 6 is not eql to 6 . 0 . However,
6 is equal ρ to 6 . 0 , so we could use the : t e s t keyword:

> (f ind 6 ' (1 2 3 4 -5 6.0) : test # 'equalp) ^ 6.0

In fact, we can specify any binary predicate for the : t e s t keyword; it doesn't have to
be an equality predicate. For example, we could find the first number that 4 is less
than:

> (f ind 4 ' (1 2 3 4 -5 6.0) : test #*<) 6.0

Now suppose we don't care about the sign of the numbers; if we look for 5, we want
to find the - 5. We can handle this with the key keyword to take the absolute value of
each element of the list with the abs function:

100 OVERVIEW OF LISP

> (f ind 5 ' (1 2 3 4 -5 6.0) ikey # 'abs) -5

Keyword parameters significantly extend the usefulness of built-in functions, and
they can do the same for functions you define. Among the built-in functions, the most
common keywords fall into two main groups: : t e s t , : t e s t - not and : key, which are
used for matching functions, and : s t a r t , :end, and : from-end, which are used on
sequence functions. Some functions accept both sets of keywords. {Common Lisp the
Language, 2d edition, discourages the use of : t e s t - n o t ke3words, although they are
still a part of the language.)

The matching functions include sub! i s, posi t i on, s u b s t , uni on, i n t e r s e c t i on,
s e t -d i f f e rence , remove, remove-i f , subsetp, a s s o c , f i n d , and member. By default,
each tests if some item is eql to one or more of a series of other objects. This test can
be changed by supplying some other predicate as the argument to : t e s t , or it can be
reversed by specifying : t e s t - not. In addition, the comparison can be made against
some part of the object rather than the whole object by specifying a selector function
as the : key argument.

The sequence functions include remove, remove-i f , p o s i t i o n , and f i n d . The
most common type of sequence is the list, but strings and vectors can also be used as
sequences. A sequence function performs some action repeatedly for some elements
of a sequence. The default is to go through the sequence from beginning to end, but
the reverse order can be specified with : from-end t, and a subsequence can be
specifed by supplying a number for the : s ta r t or : end keyword. The first element
of a sequence is numbered 0, not 1, so be careful.

As an example of keyword parameters, suppose we wanted to write sequence
functions that are similar to f i n d and f i n d - i f , except that they return a list of all
matching elements rather than just the first matching element. We will call the
new functions f i nd - a 11 and f i nd - a Π - i f . Another way to look at these functions
is as variations of remove. Instead of removing items that match, they keep all the
items that match, and remove the ones that don't. Viewed this way, we can see
that the function f i nd - a 11 - i f is actually the same function as remove - i f - not . It is
sometimes useful to have two names for the same function viewed in different ways
(like not and nul 1). The new name could be defined with a defun, but it is easier to
just copy over the definition:

(set f (symbol-function ' f i n d - a l l - i f) # ' remove- i f -not)

Unfortunately, there is no built-in function that corresponds exactly to f i nd - a 11, so
we will have to define it. Fortunately, remove can do most of the work. All we have
to do is arrange to pass remove the complement of the : t e s t predicate. For example,
finding all elements that are equal to 1 in a list is equivalent to removing elements
that are not equal to 1:

3.19 MORE ABOUT PARAMETERS 101^

> (set f nums ' (1 2 3 2 D) (1 2 3 2 1)

> (f ind-a l l 1 nums : test # ' =) = (remove 1 nums rtest # V =) (1 1)

Now what we need is a higher-order function that returns the complement of a
function. In other words, given =, we want to return / = . This function is called
compl ement in ANSI Common Lisp, but it was not defined in earlier versions, so it is
given here:

(defun complement (fn)
" I f FN returns y , then (complement FN) returns (not y) . "

This function i s bu i l t - i n in ANSI Common L i s p ,
but i s defined here for those with non-ANSI compilers.

#*(lambda (&rest args) (not (apply fn a r g s))))

When f ind-al l is called with a given : t e s t predicate, all we have to do is call
remove with the complement as the : t e s t predicate. This is true even when the
: t e s t function is not specified, and therefore defaults to eql. We should also test
for when the user specifies the : t e s t -no t predicate, which is used to specify that
the match succeeds when the predicate is false. It is an error to specify both a : t e s t
and : t es t -not argument to the same call, so we need not test for that case. The
definition is:

(defun f ind-a l l (item sequence &rest keyword-args
&key (test #*eql) test-not &aHow-other-keys)

"Find al l those elements of sequence that match item,
according to the keywords. Doesn' t a l ter sequence."
(i f test-not

(apply #*remove item sequence
: test-not (complement test -not) keyword-args)

(apply #·remove item sequence
: test (complement tes t) keyword-args)))

The only hard part about this definition is understanding the parameter list. The
&rest accumulates all the keyword/value pairs in the variable keyword-args. In
addition to the &rest parameter, two specific keyword parameters, r t es t and
: tes t -not , are specified. Any time you put a &key in a parameter Ust, you need
an &al 1 ow-other- keys if, in fact, other keywords are allowed. In this case we want
to accept keywords like : s ta r t and : key and pass them on to remove.

All the keyword/value pairs will be accumulated in the Ust keyword - a rgs, includ
ing the r tes t or r tes t -not values. SowewiUhave:

102 OVERVIEW OF LISP

(f ind-a l l 1 nums ; test # ' = :key #*abs)
= (remove 1 nums : test (complement #*=) : test # ' = :key #*abs)
^ (1 1)

Note that the call to remove will contain two : t e s t keywords. This is not an error;
Common Lisp declares that the leftmost value is the one that counts.

@ Exercise 3.7 [s] Why do you think the leftmost of two keys is the one that counts,
rather than the rightmost?

Ξ Exercise 3.8 [m] Some versions of Kyoto Common Lisp (KCL) have a bug wherein
they use the rightmost value when more than one keyword/value pair is specified
for the same keyword. Change the definition of f i nd - a 11 so that it works in KCL.

There are two more lambda-list keywords that are sometimes used by advanced
programmers. First, within a macro definition (but not a function definition), the
symbol &body can be used as a synonym for &rest. The difference is that &body
instructs certain formatting programs to indent the rest as a body. Thus, if we
defined the macro:

(defmacro while2 (test &body body)
"Repeat body while test i s t rue. "
' (loop (i f (not . tes t) (return n i l))

. .body))

Then the automatic indentation of wh 11 e2 (on certain systems) is prettier than wh 11 e:

(while (< i 10) (while2 (< i 10)
(pr int (* i D) (pr int (* i i))
(set f i (+ i 1))) (set f i (+ i 1)))

Finally, an &aux can be used to bind a new local variable or variables, as if bound
with 1 et*. Personally, I consider this an abomination, because &aux variables are
not parameters at all and thus have no place in a parameter list. I think they should
be clearly distinguished as local variables with a 1 et . But some good programmers
do use &aux, presumably to save space on the page or screen. Against my better
judgement, I show an example:

(defun lengthl4 (l i s t &aux (len 0))
(do l i s t (element l i s t len)

(incf len)))

3.20 THE REST OF LISP 103

3.20 The Rest of Lisp

There is a lot more to Common Lisp than what we have seen here, but this overview
should be enough for the reader to comprehend the programs in the chapters to
come. The serious Lisp programmer will further his or her education by continuing
to consult reference books and online documentation. You may also find part V
of this book to be helpful, particularly chapter 24, which covers advanced features
of Common Lisp (such as packages and error handling) and chapter 25, which is a
collection of troubleshooting hints for the perplexed Lisper.

While it may be distracting for the beginner to be continually looking at some
reference source, the alternative—to explain every new function in complete detail as
it is introduced—would be even more distracting. It would interrupt the description
of the AI programs, which is what this book is all about.

3.21 Exercises

@ Exercise 3.9 [m] Write a version of 1 ength using the function reduce.

@ Exercise 3.10 [m] Use a reference manual or d e s c r i be to figure out what the func
tions 1 cm and η reconc do.

[¿1 Exercise 3.11 [m] There is a built-in Common Lisp function that, given a key, a
value, and an association Hst, returns a new association list that is extended to
include the key/value pair. What is the name of this function?

Exercise 3.12 [m] Write a single expression using format that will take a list of
words and print them as a sentence, with the first word capitalized and a period after
the last word. You will have to consult a reference to learn new format directives.

3.22 Answers

Answer 3.2 (c o n s a b) = (Mst*ab)

104 OVERVIEW OF LISP

Answer 3.3

(defun dprint (x)
"Pr int an expression in dotted pair notat ion. '
(cond ((atom x) (pr inc x))

(t (pr inc " (")

(dprint (f i r s t x))
(pr - res t (rest x))
(pr inc ") ")

X)))

(defun pr - res t (x)
(pr inc " . ")
(dprint x))

Answer 3.4 Use the same dpri nt function defined in the last exercise, but change
pr-rest .

(defun pr - res t (x)
(cond ((nul l x))

((atom x) (pr inc " . ") (pr inc x))
(t (pr inc " ") (dprint (f i r s t x)) (p r - res t (rest x)))))

Answer 3.5 We will keep a data base called *db*. The data base is organized into
a tree structure of nodes. Each node has three fields: the name of the object it
represents, a node to go to if the answer is yes, and a node for when the answer is no.
We traverse the nodes until we either get an "it" reply or have to give up. In the latter
case, we destructively modify the data base to contain the new information.

(defstruct node
name
(yes n i l)
(no n i l))

(defvar *db*
(make-node :name 'animal

:yes (make-node :name 'mammal)
:no (make-node

:name 'vegetable
:no (make-node :name 'minera l))))

3.22 ANSWERS 105

(defun questions (&optional (node *db*))
(format t "~&Is i t a ~a? " (node-name node))
(case (read)

((y yes) (i f (not (null (node-yes node)))
(questions (node-yes node))
(set f (node-yes node) (g ive-up))))

((n no) (i f (not (null (node-no node)))
(questions (node-no node))
(set f (node-no node) (g ive-up))))

(i t ' aha !)
(t (format t "Reply with YES, NO, or IT i f I have guessed i t . ")

(questions node))))

(defun give-up ()
(format t "~&I give up - what i s i t ? ")
(make-node :name (read)))

Here it is used:

> (quest ions)
I s i t a ANIMAL? yes
I s i t a MAMMAL? yes
I give up - what i s i t ? bear
#S(NODE :NAME BEAR)

> (quest ions)
I s i t a ANIMAL? yes
I s i t a MAMMAL? no
I give up - what i s i t ? penguin
#S(NODE :NAME PENGUIN)

> (quest ions)
I s i t a ANIMAL? yes
I s i t a MAMMAL? yes
I s i t a BEAR? i t
AHA!

Answer 3.6 The value is (LOCAL-A LOCAL-B LOCAL-B GLOBAL-A LOCAL-B).
The 1 et form binds a lexically and *b* dynamically, so the references to a and

b (including the reference to *b* within f n) all get the local values. The function
symbol - va lue always treats its argument as a special variable, so it ignores the lexical
binding for a and returns the global binding instead. However, the symbol - va 1 ue of
b is the local dynamic value.

106 OVERVIEW OF LISP

Answer 3.7 There are two good reasons: First, it makes it faster to search through
the argument list: just search until you find the key, not all the way to the end.
Second, in the case where you want to override an existing keyword and pass the
argument list on to another function, it is cheaper to cons the new keyword/value
pair on the front of a list than to append it to the end of a list.

Answer 3.9

(defun length-r (l i s t)
(reduce #*+ (mapcar #*(lambda (x) 1) l i s t)))

or more efficiently:

(defun length-r (l i s t)
(reduce #'(lambda (x y) (+ χ D) l i s t

rinitial-value 0))

or, with an ANSI-compliant Common Lisp, you can specify a : key

(defun length-r (list)
(reduce #'+ list :key #'(lambda (x) 1)))

Answer 3.12 (format t '^@r{'^a'^^ ' (t h i s i s a t e s t))

CHAPTER 4
GPS: The Genera
Problem Solver

There are now in the world machines that think.
—Herbert Simon

Nobel Prize-winning Al researcher

I I 1 he General Problem Solver, developed in 1957 by Alan Newell and Herbert Simon, em-
I bodied a grandiose vision: a single computer program that could solve any problem,

JL given a suitable description of the problem. GPS caused quite a stir when it was intro
duced, and some people in AI felt it would sweep in a grand new era of intelligent machines.
Simon went so far as to make this statement about his creation:

It is not my aim to surprise or shock you. ... But the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and create. Moreover, their
ability to do these things is going to increase rapidly until-in a visible future-the range of
problems they can handle will be coextensive with the range to which the human mind has
been applied.

110 CPS: THE GENERAL PROBLEM SOLVER

Although GPS never lived up to these exaggerated claims, it was still an important
program for historical reasons. It was the first program to separate its problem-
solving strategy from its knowledge of particular problems, and it spurred much
further research in problem solving. For all these reasons, it is a fitting object
of study.

The original GPS program had a number of minor features that made it quite
complex. In addition, it was written in an obsolete low-level language, IPL, that added
gratuitous complexity. In fact, the confusing nature of IPL was probably an important
reason for the grand claims about GPS. If the program was that complicated, it must
do something important. We will be ignoring some of the subtleties of the original
program, and we will use Common Lisp, a much more perspicuous language than
IPL. The result will be a version of GPS that is quite simple, yet illustrates some
important points about AI.

On one level, this chapter is about GPS. But on another level, it is about the process
of developing an AI computer program. We distinguish five stages in the develop
ment of a program. First is the problem description, which is a rough idea—usually
written in English prose~of what we want to do. Second is the program specification,
where we redescribe the problem in terms that are closer to a computable procedure.
The third stage is the implementation of the program in a programming language
such as Common Lisp, the fourth is testing, and the fifth is debugging and analysis.
The boundaries between these stages are fluid, and the stages need not be completed
in the order stated. Problems at any stage can lead to a change in the previous stage,
or even to complete redesign or abandonment of the project. A programmer may
prefer to complete only a partial description or specification, proceed directly to
implementation and testing, and then return to complete the specification based on
a better understanding.

We follow all five stages in the development of our versions of GPS, with the hope
that the reader will understand GPS better and will also come to understand better
how to write a program of his or her own. To summarize, the five stages of an AI
programming project are:

1. Describe the problem in vague terms

2. Specify the problem in algorithmic terms

3. Implement the problem in a programming language

4. Test the program on representative examples

5. Debug and analyze the resulting program, and repeat the process

4.1 STAGE 1: DESCRIPTION 111

4.1 Stage 1: Description
As our problem description, we will start with a quote from Newell and Simon's 1972
book. Human Problem Solving:

The main methods of GPS jointly embody the heunstic ofmeans-ends analy
sis. Means-ends analysis is typified by the following kind of common-sense
argument:

I want to take my son to nursery school. What's the difference
between what I have and what I want? One of distance. What
changes distance? My automobile. My automobile won't work.
What is needed to make it work? A new battery. What has new
battenes? An auto repair shop. I want the repair shop to put in a
new battery; but the shop doesn't know I need one. What is the
difficulty? One of communication. What allows communication?
A telephone... and so on.

The kind of analysis-classifying things in terms of the functions they serve and
oscillating among ends, functions required, andmeans thatperform them-forms
the basic system of heuristic of GPS.

Of course, this kind of analysis is not exactly new. The theory of means-ends
analysis was laid down quite elegantly by Aristotle 2300 years earlier in the chapter
entitled "The nature of deliberation and its objects" of the Nicomachean Ethics (Book
III. 3,1112b):

We deliberate not about ends, but about means. For a doctor does not deliberate
whether he shall heal, nor an orator whether he shall persuade, nor a statesman
whether he shall produce law and order, nor does any one else deliberate about
his end. They assume the end and consider how and by what means it is attained;
and if it seems to be produced by several means they consider by which it is
most easily and best produced, while if it is achieved by one only they consider
how it will be achieved by this and by what means this will be achieved, till
they come to the first cause, which in the order of discovery is last... and what
is last in the order of analysis seems to be first in the order of becoming. And if
we come on an impossibility, we give up the search, e.g., if we need money and
this cannot be got; but if a thing appears possible we try to do it.

Given this description of a theory of problem solving, how should we go about
writing a program? First, we try to understand more fully the procedure outlined in
the quotes. The main idea is to solve a problem using a process called means-ends
analysis, where the problem is stated in terms of what we want to happen. In Newell
and Simon's example, the problem is to get the kid to school, but in general we would

112 CPS; THE GENERAL PROBLEM SOLVER

like the program to be able to solve a broad class of problems. We can solve a problem
if we can find some way to eliminate "the difference between what I have and what
I want." For example, if what I have is a child at home, and what I want is a child
at school, then driving may be a solution, because we know that driving leads to a
change in location. We should be aware that using means-ends analysis is a choice:
it is also possible to start from the current situation and search forward to the goal,
or to employ a mixture of different search strategies.

Some actions require the solving of preconditions as subproblems. Before we can
drive the car, we need to solve the subproblem of getting the car in working condition.
It may be that the car is already working, in which case we need do nothing to solve
the subproblem. So a problem is solved either by taking appropriate action directly,
or by first solving for the preconditions of an appropriate action and then taking
the action. It is clear we will need some description of allowable actions, along
with their preconditions and effects. We will also need to develop a definition of
appropriateness. However, if we can define these notions better, it seems we won't
need any new notions. Thus, we will arbitrarily decide that the problem description
is complete, and move on to the problem specification.

4.2 Stage 2: Specification
At this point we have an idea—admittedly vague—of what it means to solve a problem
in GPS. We can refine these notions into representations that are closer to Lisp as
follows:

• We can represent the current state of the world—"what I have"—or the goal
state—"what I want"—as sets of conditions. Common Lisp doesn't have a data
type for sets, but it does have Usts, which can be used to implement sets. Each
condition can be represented by a symbol. Thus, a typical goal might be the list
of two conditions (r ich famous), and a typical current state might be (unknown
poor).

• We need a list of allowable operators. This list will be constant over the course
of a problem, or even a series of problems, but we want to be able to change it
and tackle a new problem domain.

• An operator can be represented as a structure composed of an action, a list
of preconditions, and a list of effects. We can place limits on the kinds of
possible effects by saying that an effect either adds or deletes a condition from
the current state. Thus, the list of effects can be split into an add-list and
a delete-list. This was the approach taken by the S T R I P S ^ implementation of

^STRIPS is the Stanford Research Institute Problem Solver, designed by Richard Pikes and
NilsNilsson (1971).

4.3 STAGE 3: IMPLEMENTATION 113

G P S , which we will be in effect reconstructing in this chapter. The original G P S
allowed more flexibility in the specification of effects, but flexibility leads to
inefficiency.

• A complete problem is described to G P S in terms of a starting state, a goal state,
and a set of known operators. Thus, G P S will be a function of three arguments.
For example, a sample call might be:

(GPS '(unknown poor) ' (r i c h famous) l i s t - o f - o p s)

In other words, starting from the state of being poor and unknown, achieve the
state of being rich and famous, using any combination of the known operators.
G P S should return a true value only if it solves the problem, and it should print
a record of the actions taken. The simplest approach is to go through the
conditions in the goal state one at a time and try to achieve each one. If they
can all be achieved, then the problem is solved.

• A single goal condition can be achieved in two ways. If it is already in the
current state, the goal is trivially achieved with no effort. Otherwise, we have
to find some appropriate operator and try to apply it.

• An operator is appropriate if one of the effects of the operator is to add the goal
in question to the current state; in other words, if the goal is in the operator's
add-list.

• We can apply an operator if we can achieve all the preconditions. But this is
easy, because we just defined the notion of achieving a goal in the previous
paragraph. Once the preconditions have been achieved, applying an operator
means executing the action and updating the current state in term of the oper
ator's add-list and delete-list. Since our program is just a simulation—it won't
be actually driving a car or dialing a telephone—we must be content simply to
print out the action, rather than taking any real action.

4.3 Stage 3: Implementation

The specification is complete enough to lead directly to a complete Common Lisp
program. Figure 4.1 summarizes the variables, data types, and functions that make
up the G P S program, along with some of the Common Lisp functions used to imple
ment it.

114 CPS; THE GENERAL PROBLEM SOLVER

GPS
Top-Level Function
Solve a goal from a state using a list of operators.

s ta te
ops

Special Variables
The current state: a list of conditions.
A list of available operators.

op
Data Types
An operation with preconds, add-list and del-list.

achieve
appropriate-p
apply-op

Functions
Achieve an individual goal.
Decide if an operator is appropriate for a goal.
Apply operator to current state.

member
set-di f ference
union
every
some

Selected Common Lisp Functions
Test if an element is a member of a list. (p. 78)
All elements in one set but not the other.
All elements in either of two sets.
Test if every element of a list passes a test. (p. 62)
Test if any element of a list passes a test.

f ind-a l l
Previously Defined Functions
A list of all matching elements, (p. 101)

Figure 4.1: Glossary for the GPS Program

Here is the complete GPS program itself:

(defvar *s ta te* ni l "The current s ta te : a l i s t of cond i t ions . ")

(defvar *ops* ni l "A l i s t of avai lable operators . ")

(defstruct op "An operation"
(act ion n i l) (preconds n i l) (add- l i s t n i l) (d e l - l i s t n i l))

(defun GPS (*state* goals *ops*)
"General Problem Solver : achieve al l goals using * o p s * . "
(i f (every #'achieve goals) ' so lved))

(defun achieve (goal)
"A goal i s achieved i f i t already ho lds,
or i f there i s an appropriate op for i t that i s app l icab le . "
(or (member goal *s ta te*)

(some #'apply-op
(f ind-a l l goal *ops * : test # 'appropr ia te-p))))

(defun appropriate-p (goal op)
"An op i s appropriate to a goal i f i t i s in i t s add l i s t . "
(member goal (op-add- l i s t op)))

4.3 STAGE 3: IMPLEMENTATION 115

(defun apply-op (op)
"Pr int a message and update *s ta te* i f op i s appl icab le . "
(when (every #*achieve (op-preconds op))

(pr int (l i s t 'executing (op-action op)))
(se t f *s ta te* (set-d i f ference *s ta te* (op -de l - l i s t op)))
(set f *s ta te* (union *s ta te* (op-add- l i s t op)))
t))

We can see the program is made up of seven definitions. These correspond to the
seven items in the specification above. In general, you shouldn't expect such a
perfect fit between specification and implementation. There are two def var forms,
one def s t r uct, and four defun forms. These are the Common Lisp forms for defining
variables, structures, and functions, respectively. They are the most common top-
level forms in Lisp, but there is nothing magic about them; they are just special forms
that have the side effect of adding new definitions to the Lisp environment.

The two def var forms, repeated below, declare special variables named *s ta te*
and *ops*, which can then be accessed from anywhere in the program.

(defvar *s ta te* ni l "The current s ta te : a l i s t of cond i t ions . ")

(defvar *ops * ni l "A l i s t of avai lable operators . ")

The defstruct form defines a structure called an op, which has slots called ac t i on,
preconds, add -1 i s t , and del -1 i s t . Structures in Common Lisp are similar to struc
tures in C, or records in Pascal. The defstruct automatically defines a constructor
function, which is called make-op, and an access function for each slot of the struc
ture. The access functions are called op -act ion, op-preconds, op -add- l i s t , and
op-del -1 i s t . The defstruct also defines a copier function, copy-op, a predicate,
op-p , and s e t f definitions for changing each slot. None of those are used in the GPS
program. Roughly speaking, it is as if the defstruct form

(defstruct op "An operation"
(act ion n i l) (preconds n i l) (add- l i s t n i l) (d e l - l i s t n i l))

expanded into the following definitions:

(defun make-op (&key action precondsadd-1 ist del-1 i s t)
(vector 'op action preconds add- l i s t d e l - l i s t))

(defun op-action (op) (e l t op 1))
(defun op-preconds (op) (e l t op 2))
(defun op-add- l i s t (op) (e l t op 3))
(defun op -de l - l i s t (op) (e l t op 4))

(defun copy-op (op) (copy-seq op))

116 CPS; THE GENERAL PROBLEM SOLVER

(defun op-p (op)
(and (vectorp op) (eq (e l t op 0) O p)))

(set f (documentation 'op 's t ructure) "An operat ion")

Next in tlie GPS program are four function definitions. The main function, GPS, is
passed three arguments. The first is the current state of the world, the second the
goal state, and the third a list of allowable operators. The body of the function says
simply that if we can achieve every one of the goals we have been given, then the
problem is solved. The unstated alternative is that otherwise, the problem is not
solved.

The function a ch i eve is given as an argument a single goal. The function succeeds
if that goal is already true in the current state (in which case we don't have to do
anything) or if we can apply an appropriate operator. This is accomplished by first
building the list of appropriate operators and then testing each in turn until one can
be applied, achieve calls f i n d - a l 1, which we defined on page 101. In this use,
f ind -a l 1 returns a list of operators that match the current goal, according to the
predicate appropr ia te -p .

The function appropr ia te -p tests if an operator is appropriate for achieving a
goal. (It follows the Lisp naming convention that predicates end in - p.)

Finally, the function app ly -op says that if we can achieve all the preconditions
for an appropriate operator, then we can apply the operator. This involves printing
a message to that effect and changing the state of the world by deleting what was in
the delete-list and adding what was in the add-Hst. app ly -op is also a predicate; it
returns t only when the operator can be applied.

4.4 Stage 4: Test

This section will define a list of operators applicable to the "driving to nursery school"
domain and will show how to pose and solve some problems in that domain. First,
we need to construct the list of operators for the domain. The defstruct form for the
type op automatically defines the function ma ke - op, which can be used as follows:

(make-op :act ion 'd r ive-son- to-school
ipreconds *(son-at-home car-works)
: add - l i s t ' (son-a t -schoo l)
: d e l - l i s t ' (son-at-home))

This expression returns an operator whose action is the symbol drive-son-to-school
and whose preconditions, add-list and delete-list are the specified lists. The intent

4.4 STAGE 4: TEST 117

of this operator is that whenever the son is at home and the car works, dri ve -son-
to-school can be appHed, changing the state by deleting the fact that the son is at
home, and adding the fact that he is at school.

It should be noted that using long hyphenated atoms like son - at - home is a useful
approach only for very simple examples like this one. A better representation would
break the atom into its components: perhaps (a t son home). The problem with
the atom-based approach is one of combinatorics. If there are 10 predicates (such
as at) and 10 people or objects, then there will be 10 χ 10 χ 10 = 1000 possible
hyphenated atoms, but only 20 components. Clearly, it would be easier to describe
the components. In this chapter we stick with the hyphenated atoms because it is
simpler, and we do not need to describe the whole world. Subsequent chapters take
knowledge representation more seriously.

With this operator as a model, we can define other operators corresponding to
Newell and Simon's quote on page 109. There will be an operator for installing a
battery, telling the repair shop the problem, and telephoning the shop. We can fill in
the "and so on" by adding operators for looking up the shop's phone number and for
giving the shop money:

(defparameter *schoo l -ops*
(l i s t

(make-op taction 'dr ive-son- to-school
:preconds '(son-at-home car-works)
: add - l i s t ' (son-a t -schoo l)
: d e l - l i s t ' (son-at-home))

(make-op taction ' shop- ins ta l l s -ba t te ry
ipreconds ' (car-needs-battery shop-knows-problem shop-has-money)
:add - l i s t ' (car -works))

(make-op taction ' te l l -shop-problem
:preconds '(in-communication-with-shop)
:add - l i s t '(shop-knows-problem))

(make-op raction 'telephone-shop
rpreconds '(know-phone-number)
:add- l i s t '(in-communication-with-shop))

(make-op .-action 'look-up-number
ipreconds '(have-phone-book)
: add - l i s t '(know-phone-number))

(make-op taction 'give-shop-money
ipreconds '(have-money)
:add- l i s t '(shop-has-money)
: d e l - l i s t '(have-money))))

The next step is to pose some problems to GPS and examine the solutions. Following
are three sample problems. In each case, the goal is the same: to achieve the single
condition son-at - schoo l . The Hst of available operators is also the same in each

118 CPS: THE GENERAL PROBLEM SOLVER

problem; the difference is in the initial state. Each of the three examples consists of
the prompt, ">", which is printed by the Lisp system, followed by a call to G P S , " (gps
. . . w h i c h is typed by the user, then the output from the program, "(EXECUTING
. . .) " , and finally the result of the function call, which can be either SOLVED or NI L.

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
' (son-a t -schoo l)
schoo l -ops)

(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL)
SOLVED

> (gps '(son-at-home car-needs-battery have-money)
' (son-at -schoo1)
schoo l -ops)

NIL

> (gps '(son-at-home car-works)
' (son-a t -schoo l)
schoo l -ops)

(EXECUTING DRIVE-SON-TO-SCHOOL)
SOLVED

In all three examples the goal is to have the son at school. The only operator that
has s o n - a t - s c h o o l in its add-list is d r i v e - s o n - t o - s c h o o l , so G P S selects that op
erator initially. Before it can execute the operator, G P S has to solve for the pre
conditions. In the first example, the program ends up working backward through
the operators s h o p - i n s t a l 1 s -ba t te ry , give-shop-money, tel 1 -shop-problem, and
te lephone-shop to look-up-number, whichhasnooutstandingpreconditions. Thus,
the 1 ook-up-number action can be executed, and the program moves on to the other
actions. As Aristotle said, "What is the last in the order of analysis seems to be first
in the order of becoming."

The second example starts out exactly the same, but the 1 ook - up - ηumbe r operator
fails because its precondition, have-phone-book, cannot be achieved. Knowing the
phone number is a precondition, directly or indirectly, of all the operators, so no
action is taken and G P S returns NIL.

Finally, the third example is much more direct; the initial state specifies that the
car works, so the driving operator can be applied immediately.

4.5 STAGE 5: ANALYSIS, OR ''WE LIED ABOUT THE C" VI9

4.6 The Running Around the Block Problem

Representing the operator "driving from home to school" is easy: the precondition
and delete-list includes being at home, and the add-list includes being at school. But
suppose we wanted to represent "running around the block." There would be no
net change of location, so does that mean there would be no add- or delete-list? If
so, there would be no reason ever to apply the operator. Perhaps the add-list should
contain something like "got some exercise" or "feel tired," or something more general
like "experience running around the block." We will return to this question later.

4.7 The Clobbered Sibling Goal Problem

Consider the problem of not only getting the child to school but also having some
money left over to use for the rest of the day. GPS can easily solve this problem from
the following initial condition:

> (gps *(son-at-home have-money car-works)
'(have-money son-at -school)
schoo l -ops)

(EXECUTING DRIVE-SON-TO-SCHOOL)
SOLVED

However, in the next example GPS incorrectly reports success, when in fact it has
spent the money on the battery.

4.5 Stage 5: Analysis, or ''We Lied about the C

In the sections that follow, we examine the question of just how general this General
Problem Solver is. The next four sections point out limitations of our version of GPS,
and we will show how to correct these limitations in a second version of the program.

One might ask if "limitations" is just a euphemism for "bugs." Are we "enhancing"
the program, or are we "correcting" it? There are no clear answers on this point,
because we never insisted on an unambiguous problem description or specification.
AI programnüng is largely exploratory programming; the aim is often to discover
more about the problem area rather than to meet a clearly defined specification. This
is in contrast to a more traditional notion of programming, where the problem is
completely specified before the first line of code is written.

120 CPS: THE GENERAL PROBLEM SOLVER

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
'(have-money son-at -school)
^school -ops*)

(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL)
SOLVED

The "bug" is that G P S uses the expression (every # ' ach ieve g o a l s) to achieve
a set of goals. If this expression returns true, it means that every one of the
goals has been achieved in sequence, but it doesn't mean they are all still true
at the end. In other words, the goal (have-money s o n - a t - s c h o o l) , which we in
tended to mean "end up in a state where both have-money and s o n - a t - s c h o o l are
true," was interpreted by G P S to mean "first achieve have-money, and then achieve
s o n - a t - s c h o o l . " Sometimes achieving one goal can undo another, previously
achieved goal. We will call this the "prerequisite clobbers sibling goal" problem.^
That is, have-money and s o n - a t - s c h o o l are sibling goals, one of the prerequisites
for the plan for s o n - a t - s c h o o l is car-works, and achieving that goal clobbers the
have-money goal.

Modifying the program to recognize the "prerequisite clobbers sibling goal" prob
lem is straightforward. First note that we call (every # ' ach ieve something) twice
within the program, so let's replace those two forms with (achi eve - al 1 something).
We can then define achi eve-al 1 as follows:

(defun achieve-al l (goals)
"Try to achieve each goa l , then make sure they s t i l l ho ld . "
(and (every #'achieve goals) (subsetp goals * s ta te *)))

The Common Lisp function subsetp returns true if its first argument is a subset of its
second. In achi eve-al 1 , it returns true if every one of the goals is still in the current
state after achieving all the goals. This is just what we wanted to test.

The introduction of achi eve-al 1 prevents G P S from returning true when one of
the goals gets clobbered, but it doesn't force G P S to replan and try to recover from a
clobbered goal. We won't consider that possibility now, but we will take it up again
in the section on the blocks world domain, which was Sussman's primary example.

^Gerald Sussman, in his book A Computer Model of Skill Acquisition, uses the term "prereq
uisite clobbers brother goal" or PCBG. I prefer to be gender neutral, even at the risk of being
labeled a historical revisionist.

4.8 THE LEAPING BEFORE YOU LOOK PROBLEM 121

4 · 8 The Leaping before You Look Problem

Another way to address the "prerequisite clobbers sibling goal" problem is just to be
more careful about the order of goals in a goal list. If we want to get the kid to school
and still have some money left, why not just specify the goal as (son-at-school
have-money) rather than (have-money son-at-school)? Let's see what happens
when we try that:

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
' (son-at -school have-money)
schoo l -ops)

(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL)
NIL

G P S returns nil, reflecting the fact that the goal cannot be achieved, but only after
executing all actions up to and including driving to school. I call this the "leaping
before you look" problem, because if you asked the program to solve for the two goals
(j ump - of f - c 1 i f f 1 a nd - s a f e 1 y) it would happily jump first, only to discover that it
had no operator to land safely. This is less than prudent behavior.

The problem arises because planning and execution are interleaved. Once the
preconditions for an operator are achieved, the action is taken—and *sta te* is irrevo
cably changed—even if this action may eventually lead to a dead end. An alternative
would be to replace the single global *sta te* with distinct local state variables, such
that a new variable is created for each new state. This alternative is a good one for
another, independent reason, as we shall see in the next section.

4.9 The Recursive Subgoal Problem

In our simulated nursery school world there is only one way to find out a phone
number: to look it up in the phone book. Suppose we want to add an operator for
finding out a phone number by asking someone. Of course, in order to ask someone
something, you need to be in communication with him or her. The asking-for-a-
phone-number operator could be implemented as follows:

122 CPS: THE GENERAL PROBLEM SOLVER

(push (make-op :act ion 'ask-phone-number
:preconds '(in-communication-with-shop)
; add - l i s t '(know-phone-number))

schoo l -ops)

(The special form (push item list) puts the item on the front of the list; it is equiv
alent to (s e t f list (cons item /fsO) in the simple case.) Unfortunately, something
unexpected happens when we attempt to solve seemingly simple problems with this
new set of operators. Consider the following:

> (gps *(son-at-home car-needs-battery have-money)
' (son-a t -schoo l)
schoo l -ops)

»TRAP 14877 (SYSTEM:PDL-OVERFLOW EH::REGULAR)
The regular push-down l i s t has overflown.
While in the function ACHIEVE < - EVERY < - REMOVE

The error message (which will vary from one implementation of Common Lisp to
another) means that too many recursively nested function calls were made. This
indicates either a very complex problem or, more commonly, a bug in the program
leading to infinite recursion. One way to try to see the cause of the bug is to trace a
relevant function, such as ach i eve:

> (trace achieve) =^ (ACHIEVE)

> (gps '(son-at-home car-needs-battery have-money)
' (son-a t -schoo l)
schoo l -ops)

(1 ENTER ACHIEVE: SON-AT-SCHOOL)
(2 ENTER ACHIEVE: SON-AT-HOME)
(2 EXIT ACHIEVE: (SON-AT-HOME CAR-NEEDS-BATTERY HAVE-MONEY))
(2 ENTER ACHIEVE: CAR-WORKS)

(3 ENTER ACHIEVE: CAR-NEEDS-BATTERY)
(3 EXIT ACHIEVE: (CAR-NEEDS-BATTERY HAVE-MONEY))
(3 ENTER ACHIEVE: SHOP-KNOWS-PROBLEM)

(4 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(5 ENTER ACHIEVE: KNOW-PHONE-NUMBER)

(6 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(7 ENTER ACHIEVE: KNOW-PHONE-NUMBER)

(8 ENTER ACHIEVE: IN-COMMUNICATION-WITH-SHOP)
(9 ENTER ACHIEVE: KNOW-PHONE-NUMBER)

4.10 THE LACK OF INTERMEDIATE INFORMATION PROBLEM 123

The output from t race gives us the necessary clues. Newell and Simon talk of
"oscillating among ends, functions required, and means that perform them." Here
it seems we have an infinite oscillation between being in communication with the
shop (levels 4, 6, 8 , . . .) and knowing the shop's phone number (levels 5, 7, 9 , . . .) .
The reasoning is as follows: we want the shop to know about the problem with the
battery, and this requires being in communication with him or her. One way to get in
communication is to phone, but we don't have a phone book to look up the number.
We could ask them their phone number, but this requires being in communication
with them. As Aristotle put it, "If we are to be always deliberating, we shall have to
go on to infinity." We will call this the "recursive subgoal" problem: trying to solve
a problem in terms of itself. One way to avoid the problem is to have achi eve keep
track of all the goals that are being worked on and give up if it sees a loop in the
goal stack.

4.10 The Lack of Intermediate Information
Problem

When GPS fails to find a solution, it just returns n i l . This is annoying in cases where
the user expected a solution to be found, because it gives no information about the
cause of failure. The user could always trace some function, as we traced achi eve
above, but the output from trace is rarely exactly the information desired. It would
be nice to have a general debugging output tool where the programmer could insert
print statements into his code and have them selectively printed, depending on the
information desired.

The function dbg provides this capability, dbg prints output in the same way as
format, but it will only print when debugging output is desired. Each call to dbg is
accompanied by an identifer that is used to specify a class of debugging messages.
The functions debug and undebug are used to add or remove message classes to the
list of classes that should be printed. In this chapter, all the debugging output will
use the identifier : g p s . Other programs will use other identifiers, and a complex
program will use many identifiers.

A call to dbg will result in output if the first argument to dbg, the identifier, is one
that was specified in a call to debug. The other arguments to dbg are a format string
followed by a list of arguments to be printed according to the format string. In other
words, we will write functions that include calls to dbg like:

(dbg :gps "The current goal i s : ~a" goal)

If we have turned on debugging with (debug : g p s) , then calls to dbg with the
identifier : g p s will print output. The output is turned off with (undebug : g p s) .

124 CPS; THE GENERAL PROBLEM SOLVER

debug and undebug are designed to be similar to t race and untrace, in that they turn
diagnostic output on and off. They also follow the convention that debug with no
arguments returns the current list of identifiers, and that undebug with no arguments
turns all debugging off. However, they differ from t race and untrace in that they
are functions, not macros. If you use only keywords and integers for identifiers, then
you won't notice the difference.

Two new built-in features are introduced here. First, * d e b u g - i o * is the stream
normally used for debugging input/output. In all previous calls to format we have
used t as the stream argument, which causes output to go to the *s tanda rd - output*
stream. Sending different types of output to different streams allows the user some
flexibility. For example, debugging output could be directed to a separate window,
or it could be copied to a file. Second, the function fresh -1 i ne advances to the next
line of output, unless the output stream is already at the start of the line.

(defvar *dbg - i ds * n i l " Iden t i f i e rs used by dbg")

(defun dbg (id format-str ing &rest args)
"Pr int debugging info i f (DEBUG ID) has been spec i f i ed . "
(when (member id *dbg- ids*)

(f resh- l ine *debug- io*)
(apply #'format *debug- io* format-str ing a rgs)))

(defun debug (&rest ids)
"Star t dbg output on the given i d s . "
(set f *dbg - i ds * (union ids *dbg - i ds *)))

(defun undebug (&rest i ds)
"Stop dbg on the i d s . With no i d s . stop dbg a l together."
(set f *dbg - i ds * (i f (null ids) n i l

(set-d i f ference *dbg - i ds * i d s))))

Sometimes it is easier to view debugging output if it is indented according to some
pattern, such as the depth of nested calls to a function. To generate indented output,
the function dbg -1 ndent is defined:

(defun dbg-indent (id indent format-str ing &rest args)
"Pr int indented debugging info i f (DEBUG ID) has been spec i f i ed . "
(when (member id *dbg- ids*)

(f resh- l ine *debug- io*)
(dotimes (i indent) (pr inc " " *debug- io*))
(apply #*format *debug- io* format-str ing a rgs)))

4.11 GPS VERSION 2: A MORE GENERAL PROBLEM SOLVER 125

4.11 GPS Version 2: A More General
Problem Solver

At this point we are ready to put together a new version of GPS with solutions for
the "running around the block," "prerequisite clobbers sibling goal," "leaping before
you look," and "recursive subgoal" problems. The glossary for the new version is in
figure 4.2.

Top-Level Function
GPS Solve a goal from a state using a list of operators.

Special Variables
* o p s * A list of available operators.

Data Types
op An operation with preconds, add-list and del-Hst.

Major Functions
a c h i e v e - a l l Achieve a list of goals.
achieve Achieve an individual goal.
appropr ia te -p Decide if an operator is appropriate for a goal.
apply-op Apply operator to current state.

Auxiliary Functions
execut ing-p Is a condition an executi ng form?
s t a r t s - w i t h Is the argument a list that starts with a given atom?
convert -op Convert an operator to use the executi ng convention.
op Create an operator.
use Use a list of operators.
member-equal Test if an element is equal to a member of a list.

Selected Common Lisp Functions
member Test if an element is a member of a list. (p. 78)
s e t - d i f f e r e n c e All elements in one set but not the other.
subsetp Is one set wholly contained in another?
union All elements in either of two sets.
every Test if every element of a list passes a test. (p. 62)
some Test if any element of a list passes a test.
remove-i f Remove all items satisfying a test.

Previously Defined Functions
f i n d - a l l A list of all matching elements, (p. 101)
f i n d - a l l - i f A list of all elements satisfying a predicate.

Figure 4.2: Glossary for Version 2 of GPS

The most important change is that, instead of printing a message when each
operator is applied, we will instead have GPS return the resulting state. A list of

126 CPS: THE GENERAL PROBLEM SOLVER

"messages" in each state indicates what actions have been taken. Each message is
actuallyacondition,aHstof the form (executing operator). This solves the "running
around the block" problem: we could call GPS with an initial goal of ((executing
run - a round - bl ock)) , and it would execute the run - a round - bl ock operator, thereby
satisfying the goal. The following code defines a new function, op, which builds
operators that include the message in their add-list.

(defun executing-p (x)
" I s X of the form: (executing . . .) ? "
(s tar ts-wi th χ 'execut ing))

(defun s tar ts-wi th (l i s t x)
" I s th is a l i s t whose f i r s t element i s x ? "
(and (consp l i s t) (eql (f i r s t l i s t) x)))

(defun convert-op (op)
"Make op conform to the (EXECUTING op) convent ion."
(unless (some #'execut ing-p (op-add- l i s t op))

(push (l i s t 'executing (op-action op)) (op-add- l i s t op)))
op)

(defun op (action &key preconds add- l i s t d e l - l i s t)
"Make a new operator that obeys the (EXECUTING op) convent ion."
(convert-op

(make-op :act ion action :preconds preconds
:add - l i s t add- l i s t : d e l - l i s t d e l - l i s t)))

Operators built by op will be correct, but we can convert existing operators using
convert-op directly:

(mapc #'convert-op ^school -ops*)

This is an example of exploratory programming: instead of starting all over when
we discover a limitation of the first version, we can use Lisp to alter existing data
structures for the new version of the program.

The definition of the variable *ops* and the structure op are exactly the same as
before, and the rest of the program consists of five functions we have already seen:
GPS, achieve -a l l , achieve, appropriate-p, and apply-op. At the top level, the
function GPS calls achieve-al 1, which returns either nil or a valid state. From this
we remove all the atoms, which leaves only the elements of the final state that are
lists—in other words, the actions of the form (executi ng operator). Thus, the value
of GPS itself is the Hst of actions taken to arrive at the final state. GPS no longer returns
SOLVED when it finds a solution, but it still obeys the convention of returning nil for
failure, and non-nil for success. In general, it is a good idea to have a program return

4.11 GPS VERSION 2: A MORE GENERAL PROBLEM SOLVER 127

a meaningful value rather than print that value, if there is the possibility that some
other program might ever want to use the value.

(defvar *ops* ni l "A l i s t of avai lable operators . ")

(defstruct op "An operation"
(action n i l) (preconds n i l) (add- l i s t n i l) (d e l - l i s t n i l))

(defun GPS (state goals &optional (*ops* *ops*))
"General Problem So lver : from s ta te , achieve goals using * o p s * . "
(remove-if #'atom (achieve-al l (cons ' (s t a r t) state) goals n i l)))

The first major change in version 2 is evident from the first line of the program: there
is no *state* variable. Instead, the program keeps track of local state variables.
This is to solve the "leaping before you look" problem, as outlined before. The
functions achieve, achieve-al 1, and apply-op all take an extra argument which is
the current state, and all return a new state as their value. They also must still obey
the convention of returning nil when they fail.

Thus we have a potential ambiguity: does nil represent failure, or does it rep
resent a valid state that happens to have no conditions? We resolve the ambiguity
by adopting the convention that all states must have at least one condition. This
convention is enforced by the function GPS. Instead of calling (achieve-al 1 s ta te
goals nil), GPS calls (achieve-al l (cons ' (s t a r t) s ta t e) goals nil). Soeven
if the user passes GPS a null initial state, it will pass on a state containing (s t a r t)
to achieve-al 1. From then on, we are guaranteed that no state will ever become
nil, because the only function that builds a new state is a ppl y - op, and we can see by
looking at the last line of appl y - op that it always appends something onto the state it
is returning. (An add-list can never be nil, because if it were, the operator would not
be appropriate. Besides, every operator includes the (executi ng . . .) condition.)

Note that the final value we return from GPS has all the atoms removed, so we end
up reporting only the actions performed, since they are represented by conditions
of the form (executi ng action). Adding the (s t a r t) condition at the beginning also
serves to differentiate between a problem that cannot be solved and one that is solved
without executing any actions. Failure returns nil, while a solution with no steps will
at least include the (sta r t) condition, if nothing else.

Functions that return nil as an indication of failure and return some useful value
otherwise are known as semipredicates. They are error prone in just these cases
where nil might be construed as a useful value. Be careful when defining and using
semipredicates: (1) Decide if nil could ever be a meaningful value. (2) Insure that
the user can't corrupt the program by supplying nil as a value. In this program, GPS
is the only function the user should call, so once we have accounted for it, we're
covered. (3) Insure that the program can't supply nil as a value. We did this by seeing
that there was only one place in the program where new states were constructed,
and that this new state was formed by appending a one-element list onto another

128 CPS; THE GENERAL PROBLEM SOLVER

state. By following this three-step procedure, we have an informal proof that the
semipredicates involving states will function properly. This kind of informal proof
procedure is a common element of good program design.

The other big change in version 2 is the introduction of a goal stack to solve the
recursive subgoal problem. The program keeps track of the goals it is working on
and immediately fails if a goal appears as a subgoal of itself. This test is made in the
second clause of achi eve.

The function a ch i eve - a 11 tries to achieve each one of the goals in turn, setting the
variable s t a t e 2 to be the value returned from each successive call to achi eve. If all
goals are achieved in turn, and if all the goals still hold at the end (as subsetp checks
for), then the final state is returned; otherwise the function fails, returning nil.

Most of the work is done by achieve, which gets passed a state, a single goal
condition, and the stack of goals worked on so far. If the condition is already in the
state, then achieve succeeds and returns the state. On the other hand, if the goal
condition is already in the goal stack, then there is no sense continuing—we will be
stuck in an endless loop—so achi eve returns nil. Otherwise, achi eve looks through
the list of operators, trying to find one appropriate to apply.

(defun achieve-al l (state goals goal -s tack)
"Achieve each goa l , and make sure they s t i l l hold at the end."
(le t ((current-state s ta te))

(i f (and (every #'(lambda (g)
(set f current-state

(achieve current-state g goa l -s tack)))
goals)

(subsetp goals current-state rtest # 'equal))
current -s ta te)))

(defun achieve (state goal goa l -s tack)
"A goal i s achieved i f i t already ho lds,
or i f there i s an appropriate op for i t that i s app l icab le . "
(dbg-indent :gps (length goal -s tack) "Goal: " a " goal)
(cond ((member-equal goal state) state)

((member-equal goal goa l -s tack) n i l)
(t (some #'(lambda (op) (apply-op state goal op goa l -s tack))

(f ind-a l l goal * ops * : test #*appropr ia te-p)))))

The goal ((e x e c u t i n g r u n - a r o u n d - b l o c k)) is a list of one condition, where the
condition happens to be a two-element list. Allowing lists as conditions gives us
more flexibility, but we also have to be careful. The problem is that not all Usts that
look alike actually are the same. The predicate equal essentially tests to see if its two
arguments look alike, while the predicate eql tests to see if its two arguments actually
are identical. Since functions like member use eql by default, we have to specify with
a : t e s t keyword that we want equal instead. Since this is done several times, we

4.11 CPS VERSION 2: A MORE GENERAL PROBLEM SOLVER 129

introduce the function member-equal. In fact, we could have carried the abstraction
one step further and defined member-si tuat ion, a function to test if a condition is
true in a situation. This would allow the user to change the matching function from
eql to equal , and to anything else that might be useful.

(defun member-equal (item l i s t)
(member item l i s t : test #*equal))

The function app ly -op , which used to change the state irrevocably and print a mes
sage reflecting this, now returns the new state instead of printing anything. It first
computes the state that would result from achieving all the preconditions of the
operator. If it is possible to arrive at such a state, then app ly -op returns a new state
derived from this state by adding what's in the add-list and removing everything in
the delete-list.

(defun apply-op (state goal op goal -s tack)
"Return a new, transformed state i f op i s appl icab le . "
(dbg-indent :gps (length goal -s tack) "Consider: ~a" (op-act ion op))
(le t ((state2 (achieve-al l state (op-preconds op)

(cons goal goa l - s tack))))
(unless (null state2)

; ; Return an updated state
(dbg-indent :gps (length goa l -s tack) "Act ion: ~a" (op-act ion op))
(append (remove-if #*(lambda (x)

(member-equal χ (op -de l - l i s t op)))
stateZ)

(op-add- l i s t op)))))

(defun appropriate-p (goal op)
"An op i s appropriate to a goal i f i t i s in i t s a d d - l i s t . "
(member-equal goal (op-add- l i s t op)))

There is one last complication in the way we compute the new state. In version
1 of GPS, states were (conceptually) unordered sets of conditions, so we could use
uni on and s e t -d i f f erence to operate on them. In version 2, states become ordered
lists, because we need to preserve the ordering of actions. Thus, we have to use the
functions append and remove-if , since these are defined to preserve order, while
union and s e t - d i f f e r e n c e are not.

Finally, the last difference in version 2 is that it introduces a new function: use.
This function is intended to be used as a sort of declaration that a given list of operators
is to be used for a series of problems.

130 CPS; THE GENERAL PROBLEM SOLVER

(defun use (op l i s t)
"Use op l i s t as the default l i s t of operators . "

Return something use fu l , but not too verbose:
the number of operators,

(length (set f * o p s * o p l i s t)))

Calling use sets the parameter *ops* , so that it need not be specified on each call
to GPS. Accordingly, in the definition of GPS itself the third argument, *ops* , is now
optional; if it is not supplied, a default will be used. The default value for *ops* is
given as *ops* . This may seem redundant or superfluous—how could a variable be
its own default? The answer is that the two occurrences of *ops* look alike, but they
actually refer to two completely separate bindings of the special variable *ops* . Most
of the time, variables in parameter lists are local variables, but there is no rule against
binding a special variable as a parameter. Remember that the effect of binding a
special Vciriable is that all references to the special variable that occur anywhere in
the program—even outside the lexical scope of the function—refer to the new binding
of the special variable. So after a sequence of calls we eventually reach achieve,
which references *ops* , and it will see the newly bound value of *ops* .

The definition of GPS is repeated here, along with an alternate version that binds
a local variable and explicitly sets and resets the special variable *ops*. Clearly,
the idiom of binding a special variable is more concise, and while it can be initially
confusing, it is useful once understood.

(defun GPS (state goals Äoptional (*ops* *ops*))
"General Problem So lver : from s ta te , achieve goals using * o p s * . "
(remove-if #'atom (achieve-al l (cons ' (s t a r t) state) goals n i l)))

(defun GPS (state goals Äoptional (ops *ops*))
"General Problem So lver : from s ta te , achieve goals using * o p s * . "
(le t ((o ld-ops *ops*))

(set f * o p s * ops)
(le t ((resu l t (remove-if #'atom (achieve-al l

(cons ' (s t a r t) state)
g o a l s n i l))))

(set f * o p s * o ld-ops)
resu l t)))

Now let's see how version 2 performs. We use the list of operators that includes the
"asking the shop their phone number" operator. First we make sure it will still do the
examples version 1 did:

> (use *schoo l -ops*) 7

4.11 CPS VERSION 2: A MORE GENERAL PROBLEM SOLVER 131

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
' (son -a t -schoo l))

((START)
(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL))

> (debug :gps) => (:GPS)

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
' (son -a t - schoo l))

Goal: SON-AT-SCHOOL
Consider: DRIVE-SON-TO-SCHOOL

Goal: SON-AT-HOME
Goal: CAR-WORKS
Consider: SHOP-INSTALLS-BATTERY

Goal: CAR-NEEDS-BATTERY
Goal: SHOP-KNOWS-PROBLEM
Consider: TELL-SHOP-PROBLEM

Goal: IN-COMMUNICATION-WITH-SHOP
Consider: TELEPHONE-SHOP

Goal: KNOW-PHONE-NUMBER
Consider: ASK-PHONE-NUMBER

Goal: IN-COMMUNICATION-WITH-SHOP
Consider: LOOK-UP-NUMBER

Goal: HAVE-PHONE-BOOK
Act ion: LOOK-UP-NUMBER

Act ion: TELEPHONE-SHOP
Act ion: TELL-SHOP-PROBLEM
Goal: SHOP-HAS-MONEY
Consider: GIVE-SHOP-MONEY

Goal: HAVE-MONEY
Act ion: GIVE-SHOP-MONEY

Act ion: SHOP-INSTALLS-BATTERY
Act ion: DRIVE-SON-TO-SCHOOL
((START)

(EXECUTING LOOK-UP-NUMBER)
(EXECUTING TELEPHONE-SHOP)
(EXECUTING TELL-SHOP-PROBLEM)
(EXECUTING GIVE-SHOP-MONEY)
(EXECUTING SHOP-INSTALLS-BATTERY)
(EXECUTING DRIVE-SON-TO-SCHOOL))

> (undebug) NIL

132 CPS: THE GENERAL PROBLEM SOLVER

> (gps *(son-at-home car-works)
' (son -a t -schoo l))

((START)
(EXECUTING DRIVE-SON-TO-SCHOOL))

Now we see that version 2 can also handle the three cases that version 1 got wrong.
In each case, the program avoids an infinite loop, and also avoids leaping before
it looks.

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
'(have-money son-a t -schoo l))

NIL

> (gps '(son-at-home car-needs-battery have-money have-phone-book)
' (son-at -school have-money))

NIL

> (gps '(son-at-home car-needs-battery have-money)
' (son -a t -schoo l))

NIL

Finally, we see that this version of G P S also works on trivial problems requiring no
action:

> (gps '(son-at-home) ' (son-at-home)) =^ ((START))

4.12 The New Domain Problem: Monkey
and Bananas

To show that G P S is at all general, we have to make it work in different domains. We
will start with a "classic" AI problem.^ Imagine the following scenario: a hungry
monkey is standing at the doorway to a room. In the middle of the room is a bunch
of bananas suspended from the ceiling by a rope, well out of the monkey's reach.
There is a chair near the door, which is light enough for the monkey to push and tall
enough to reach almost to the bananas. Just to make things complicated, assume the
monkey is holding a toy ball and can only hold one thing at a time.

In trying to represent this scenario, we have some flexibility in choosing what to
put in the current state and what to put in with the operators. For now, assume we
define the operators as follows:

^Originally posed by Saul Amarel (1968).

4.12 THE NEW DOMAIN PROBLEM: MONKEY AND BANANAS 133

(defparameter *banana-ops*
(l i s t

(op 'c l imb-on-chair
ipreconds ' (chair-at-middle-room at-middle-room on- f loor)
: add - l i s t ' (at-bananas on-chair)
: d e l - l i s t '(at-middle-room on- f loor))

(op 'push-chair-from-door-to-middle-room
:preconds ' (cha i r -a t -door at-door)
: add - l i s t ' (chair-at-middle-room at-middle-room)
: d e l - l i s t ' (cha i r -a t -door at-door))

(op 'walk-from-door-to-middle-room
ipreconds ' (at -door on- f loor)
; add - l i s t '(at-middle-room)
: d e l - l i s t ' (a t -door))

(op 'grasp-bananas
rpreconds ' (at-bananas empty-handed)
:add - l i s t ' (has-bananas)
: d e l - l i s t '(empty-handed))

(op 'drop-bal l
ipreconds ' (h a s - b a l l)
l add- l i s t '(empty-handed)
i d e l - l i s t ' (h a s - b a l D)

(op 'eat-bananas
ipreconds ' (has-bananas)
l add- l i s t '(empty-handed not-hungry)
i d e l - l i s t ' (has-bananas hungry))))

Using these operators, we could pose the problem of becoming not-hungry, given
the initial state of being at the door, standing on the floor, holding the ball, hungry,
and with the chair at the door. GPS can find a solution to this problem:

> (use *banana-ops*) => 6

> (GPS ' (at -door on-f loor has-bal l hungry chai r -at -door)
' (not-hungry))

((START)
(EXECUTING PUSH-CHAIR-FROM-DOOR-TO-MIDDLE-ROOM)
(EXECUTING CLIMB-ON-CHAIR)
(EXECUTING DROP-BALL)
(EXECUTING GRASP-BANANAS)
(EXECUTING EAT-BANANAS))

Notice we did not need to make any changes at all to the GPS program. We just used
a different set of operators.

134 CPS: THE GENERAL PROBLEM SOLVER

4.13 The Maze Searching Domain

Now we will consider another "classic" problem, maze searching. We will assume a
particular maze, diagrammed here.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

It is much easier to define some functions to help build the operators for this
domain than it would be to type in all the operators directly. The following code
defines a set of operators for mazes in general, and for this maze in particular:

(defun make-maze-ops (pa i r)
"Make maze ops in both d i rec t ions"
(l i s t (make-maze-op (f i r s t pa i r) (second pa i r))

(make-maze-op (second pai r) (f i r s t pa i r))))

(defun make-maze-op (here there)
"Make an operator to move between two places"
(op '(move from ,here to .there)

ipreconds ' ((a t .here))
:add- l i s t ' ((a t . there))
: d e l - l i s t ' ((a t .here))))

(defparameter *maze-ops*
(mappend #'make-maze-ops

' ((1 2) (2 3) (3 4) (4 9) (9 14) (9 8) (8 7) (7 12) (12 13)
(12 11) (11 6) (11 16) (16 17) (17 22) (21 22) (22 23)
(23 18) (23 24) (24 19) (19 20) (20 15) (15 10) (10 5) (20 25))))

Note the backquote notation, (I t is covered in section 3.2, page 67.
We can now use this list of operators to solve several problems with this maze.

And we could easily create another maze by giving another list of connections. Note
that there is nothing that says the places in the maze are arranged in a five-by-five
layout—that is just one way of visualizing the connectivity.

> (use *maze-ops*) 48

4.13 THE MAZE SEARCHING DOMAIN 135

> (gps ' ((a t D) •((at 25)))

((START)

(EXECUTING (MOVE FROM 1 TO 2))

(EXECUTING (MOVE FROM 2 TO 3))

(EXECUTING (MOVE FROM 3 TO 4))

(EXECUTING (MOVE FROM 4 TO 9))

(EXECUTING (MOVE FROM 9 TO 8))

(EXECUTING (MOVE FROM 8 TO 7))

(EXECUTING (MOVE FROM 7 TO 12))

(EXECUTING (MOVE FROM 12 TO I D)

(EXECUTING (MOVE FROM 11 TO 16))

(EXECUTING (MOVE FROM 16 TO 17))

(EXECUTING (MOVE FROM 17 TO 22))

(EXECUTING (MOVE FROM 22 TO 23))

(EXECUTING (MOVE FROM 23 TO 24))

(EXECUTING (MOVE FROM 24 TO 19))

(EXECUTING (MOVE FROM 19 TO 20))

(EXECUTING (MOVE FROM 20 TO 25))

(AT 25))

There is one subtle bug that the maze domain points out. We wanted GPS to return
a list of the actions executed. However, in order to account for the case where the
goal can be achieved with no action, I included (START) in the value returned by
GPS. These examples include the START and EXECUTING forms but also a list of the
form (AT n) , for some n. This is the bug. If we go back and look at the function
GPS, we find that it reports the result by removing all atoms from the state returned
by achieve-al 1 . This is a "pun"—we said remove atoms, when we really meant
to remove all conditions except the (START) and (EXECUTING action) forms. Up to
now, all these conditions were atoms, so this approach worked. The maze domain
introduced conditions of the form (AT n) , so for the first time there was a problem.
The moral is that when a programmer uses puns—saying what's convenient instead
of what's really happening—there's bound to be trouble. What we really want to do
is not to remove atoms but to find all elements that denote actions. The code below
says what we mean:

(defun GPS (state goals Äoptional (*ops* *ops*))

"General Problem Solver : from s ta te , achieve goals using * o p s * . "

(f i n d - a l l - i f #*act ion-p

(achieve-al l (cons ' (s t a r t) state) goals n i l)))

136 CPS; THE GENERAL PROBLEM SOLVER

(defun act ion-p (x)
" I s χ something that i s (s ta r t) or (executing . . .) ? "
(or (equal χ ' (s t a r t)) (executing-p x)))

The domain of maze solving also points out an advantage of version 2: that it returns
a representation of the actions taken rather than just printing them out. The reason
this is an advantage is that we may want to use the results for something, rather than
just look at them. Suppose we wanted a function that gives us a path through a maze
as a list of locations to visit in turn. We could do this by calling GPS as a subfunction
and then manipulating the results:

(defun f ind-path (s tar t end)
"Search a maze for a path from star t to end."
(le t ((resu l t s (GPS ' ((a t . s ta r t)) ' ((a t .end)))))

(unless (null resu l t s)
(cons s tar t (mapcar # 'dest ina t ion

(remove ' (s t a r t) resu l ts
: test # ' equa l))))))

(defun dest inat ion (act ion)
"Find the Y in (executing (move from X to Y)) "
(f i f t h (second ac t ion)))

The function f i nd - path calls GPS to get the resul t s . If this is ni 1, there is no answer,
but if it is not, then take the res t of resul ts (in other words, ignore the (START) part).
Pick out the destination,!/, from each (EXECUTING (MOVE FROM χ TO y)) form, and
remember to include the starting point.

> (use *maze-ops*) => 48

> (f ind-path 1 25) ^
(1 2 3 4 9 8 7 12 11 16 17 22 23 24 19 20 25)

> (f ind-path 1 1) (1)

> (equal (f ind-path 1 25) (reverse (f ind-path 25 1))) =^ Τ

4·14 The Blocks World Domain
Another domain that has attracted more than its share of attention in AI circles is
the blocks world domain. Imagine a child's set of building blocks on a table top.
The problem is to move the blocks from their starting configuration into some goal
configuration. We will assume that each block can have only one other block directly

4.14 THE BLOCKS WORLD DOMAIN 137

on top of it, although they can be stacked to arbitrary height. The only action that
can be taken in this world is to move a single block that has nothing on top of it either
to the top of another block or onto the table that represents the block world. We will
create an operator for each possible block move.

(defun make-block-ops (blocks)
(let ((ops n i l))

(do l i s t (a blocks)
(do l i s t (b blocks)

(unless (equal a b)
(do l i s t (c b locks)

(unless (or (equal c a) (equal c b))
(push (move-op a b c) ops)))

(push (move-op a ' table b) ops)
(push (move-op a b ' tab le) ops))))

ops))

(defun move-op (a b c)
"Make an operator to move A from Β to C . "
(op '(move .a from .b to ,c)

ipreconds ' ((space on ,a) (space on ,c) (,a on .b))
l add- l i s t (move-ons a b c)
i d e l - l i s t (move-ons a c b)))

(defun move-ons (a b c)
(i f (eq b ' tab le)

* ((,a on , c))
* ((.a on ,c) (space on ,b))))

Now we try these operators out on some problems. The simplest possible problem
is stacking one block on another:

Β

start goal

> (use (make-block-ops ' (a b))) =^ 4

> (gps ' ((a on table) (b on table) (space on a) (space on b)
(space on table))

' ((a on b) (b on tab le)))
((START)

(EXECUTING (MOVE A FROM TABLE TO B)))

138 CPS; THE GENERAL PROBLEM SOLVER

Here is a slightly more complex problem: inverting a stack of two blocks. This time
we show the debugging output.

start goa

> (debug :gps) (:GPS)

> (gps *((a on b) (b on table) (space on a) (space on table))
' ((b on a)))

Goal: (B ON A)
Consider: (MOVE Β FROM TABLE TO A)

Goal: (SPACE ON B)
Consider: (MOVE A FROM Β TO TABLE)

Goal: (SPACE ON A)
Goal: (SPACE ON TABLE)
Goal: (A ON B)

Act ion: (MOVE A FROM Β TO TABLE)
Goal: (SPACE ON A)
Goal: (B ON TABLE)

Act ion: (MOVE Β FROM TABLE TO A)
((START)

(EXECUTING (MOVE A FROM Β TO TABLE))
(EXECUTING (MOVE Β FROM TABLE TO A)))

> (undebug) NIL

Sometimes it matters what order you try the conjuncts in. For example, you can't
have your cake and eat it too, but you can take a picture of your cake and eat it too, as
long as you take the picture before eating it. In the blocks world, we have:

A C
B _B_
C A

start goal

> (use (make-block-ops ' (a b c))) 18

> (gps ' ((a on b) (b on c) (c on table) (space on a) (space on table))
' ((b on a) (c on b)))

((START)
(EXECUTING (MOVE A FROM Β TO TABLE))
(EXECUTING (MOVE Β FROM C TO A))
(EXECUTING (MOVE C FROM TABLE TO B)))

4.14 THE BLOCKS WORLD DOMAIN 139

> (gps ' ((a on b) (b on c) (c on table) (space on a) (space on table))
' ((c on b) (b on a)))

NIL

In the first case, the tower was built by putting Β on A first, and then C on B . In
the second case, the program gets C on Β first, but clobbers that goal while getting Β
on A. The "prerequisite clobbers sibling goal" situation is recognized, but the program
doesn't do anything about it. One thing we could do is try to vary the order of the
conjunct goals. That is, we could change a c h i e v e - a l 1 as follows:

(defun achieve-al l (state goals goal -s tack)
"Achieve each goa l , t ry ing several o rder ings . "
(some #'(lambda (goals) (achieve-each state goals goa l -s tack))

(orderings goa ls)))

(defun achieve-each (state goals goal -s tack)
"Achieve each goa l , and make sure they s t i l l hold at the end."
(let ((current-state s ta te))

(i f (and (every #'(lambda (g)
(set f current-state

(achieve current-state g goa l -s tack)))
goals)

(subsetp goals current-state : test #*equal))
cur rent -s ta te)))

(defun orderings (1)
(i f (> (length 1) 1)

(1 i s t 1 (reverse 1))
(l i s t 1)))

Now we can represent the goal either way, and we'll still get an answer. Notice that
we only consider two orderings: the order given and the reversed order. Obviously,
for goal sets of one or two conjuncts this is all the orderings. In general, if there
is only one interaction per goal set, then one of these two orders will work. Thus,
we are assuming that "prerequisite clobbers sibling goal" interactions are rare, and
that there will seldom be more than one interaction per goal set. Another possibility
would be to consider all possible permutations of the goals, but that could take a long
time with large goal sets.

Another consideration is the efficiency of solutions. Consider the simple task of
getting block C on the table in the following diagram:

A] \B] [A] [B]

start goal

140 GPS: THE GENERAL PROBLEM SOLVER

> (gps ' ((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))

' ((c on tab le)))
((START)

(EXECUTING (MOVE C FROM A TO B))
(EXECUTING (MOVE C FROM Β TO TABLE)))

The solution is correct, but there is an easier solution that moves C directly to the
table. The simpler solution was not found because of an accident: it happens that
make-bl ock-ops defines the operators so that moving C from Β to the table comes
before moving C from A to the table. So the first operator is tried, and it succeeds
provided C is on B. Thus, the two-step solution is found before the one-step solution is
ever considered. The following example takes four steps when it could be done in two:

Β
start goal

> (gps ' ((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))

' ((c on table) (a on b)))
((START)

(EXECUTING (MOVE C FROM A TO B))
(EXECUTING (MOVE C FROM Β TO TABLE))
(EXECUTING (MOVE A FROM TABLE TO O)
(EXECUTING (MOVE A FROM C TO B)))

How could we find shorter solutions? One way would be to do a full-fledged search:
shorter solutions are tried first, temporarily abandoned when something else looks
more promising, and then reconsidered later on. This approach is taken up in
chapter 6, using a general searching function. A less drastic solution is to do a limited
rearrangement of the order in which operators are searched: the ones with fewer
unfulfilled preconditions are tried first. In particular, this means that operators with
all preconditions filled would always be tried before other operators. To implement
this approach, we change achi eve:

(defun achieve (state goal goa l -s tack)
"A goal i s achieved i f i t already ho lds,
or i f there i s an appropriate op for i t that i s appl icab le . "
(dbg-indent :gps (length goal -s tack) "Goa l :~a" goal)
(cond ((member-equal goal state) state)

((member-equal goal goa l -s tack) n i l)

4,14 THE BLOCKS WORLD DOMAIN 141

(t (some #'(lambda (op) (apply-op state goal op goa l -s tack))
(appropriate-ops goal s ta te)))))

(defun appropriate-ops (goal state)
"Return a l i s t of appropriate operators,
sorted by the number of un fu l f i l l ed precondi t ions."
(sor t (copy- l i s t (f ind-a l l goal *ops* : test # 'appropr iate-p)) # ' <

:key #*(lambda (op)
(count- i f #'(lambda (precond)

(not (member-equal precond s ta te)))
(op-preconds op)))))

Now we get the solutions we wanted:

start goal

> (gps ' ((c on a) (a on table) (b on table)
(space on c) (space on b) (space on table))

' ((c on table) (a on b)))
((START)

(EXECUTING (MOVE C FROM A TO TABLE))
(EXECUTING (MOVE A FROM TABLE TO B)))

start goal

> (gps ' ((a on b) (b on c) (c on table) (space on a) (space on table))
' ((b on a) (c on b)))

((START)
(EXECUTING (MOVE A FROM Β TO TABLE))
(EXECUTING (MOVE Β FROM C TO A))
(EXECUTING (MOVE C FROM TABLE TO B)))

> (gps ' ((a on b) (b on c) (c on table) (space on a) (space on tab le))
' ((c on b) (b on a)))

((START)
(EXECUTING (MOVE A FROM Β TO TABLE))
(EXECUTING (MOVE Β FROM C TO A))
(EXECUTING (MOVE C FROM TABLE TO B)))

142 CPS; THE GENERAL PROBLEM SOLVER

The Sussman Anomaly

Surprisingly, there are problems that can't be solved by any reordering of goals.
Consider:

Β A
Start goal

This doesn't look too hard, so let's see how our GPS handles it:

> (setf start ' ((c on a) (a on table) (b on table) (space on c)
(space on b) (space on table)))

((C ON A) (A ON TABLE) (B ON TABLE) (SPACE ON C)
(SPACE ON B) (SPACE ON TABLE))

> (gps start ' ((a on b) (b on c))) NIL

> (gps start *((b on c) (a on b))) =^ NIL

There is a "prerequisite clobbers sibling goal" problem regardless of which way we
order the conjuncts! In other words, no combination of plans for the two individual
goals can solve the conjunction of the two goals. This is a surprising fact, and the
example has come to be known as "the Sussman anomaly."^ We will return to this
problem in chapter 6.

4.15 Stage 5 Repeated: Analysis of Version 2

We have shown that GPS is extensible to multiple domains. The main point is that
we didn't need to change the program itself to get the new domains to work; we
just changed the list of operators passed to GPS. Experience in different domains
did suggest changes that could be made, and we showed how to incorporate a few
changes. Although version 2 is a big improvement over version 1, it still leaves much
to be desired. Now we will discover a few of the most troubling problems.

^ A footnote in Waldinger 1977 says, 'This problem was proposed by Allen Brown. Perhaps
many children thought of it earlier but did not recognize that it was hard." The problem is
named after Gerald Sussman because he popularized it in Sussman 1973.

4.16 THE NOT LOOKING AFTER YOU ΡΟΝΊ LEAP PROBLEM 143

4.16 The Not Looking after You Don t̂
Leap Problem

We solved the "leaping before you look" problem by introducing variables to hold a
representation of possible future states, rather than just a single variable representing
the current state. This prevents GPS from taking an ill-advised action, but we shall
see that even with all the repair strategies introduced in the last section, it doesn't
guarantee that a solution will be found whenever one is possible.

To see the problem, add another operator to the front of the ^school - ops* Hst
and turn the debugging output back on:

(use(push (op ' tax i -son- to-schoo l
:preconds *(son-at-home have-money)
: add - l i s t ' (son-a t -schoo l)
: d e l - l i s t '(son-at-home have-money))

schoo l -ops))

(debug :gps)

Now, consider the problem of getting the child to school without using any money:

> (gps '(son-at-home have-money car-works)
' (son-at -school have-money))

Goal: SON-AT-SCHOOL
Consider: TAXI-SON-TO-SCHOOL

Goal: SON-AT-HOME
Goal: HAVE-MONEY

Act ion: TAXI-SON-TO-SCHOOL
Goal: HAVE-MONEY
Goal: HAVE-MONEY
Goal: SON-AT-SCHOOL
Consider: TAXI-SON-TO-SCHOOL

Goal: SON-AT-HOME
Goal: HAVE-MONEY

Act ion: TAXI-SON-TO-SCHOOL
NIL

The first five lines of output succesfully solve the son-at-school goal with the
TAX I - SON - TO - SCHOO L action. The next line shows an unsuccesf ul attempt to solve the
have - money goal. The next step is to try the other ordering. This time, the have - money
goal is tried first, and succeeds. Then, the son-at-school goal is achieved again by
the TAX I - SON - TO - SCHOO L action. But the check for consistency in achi eve-each fails,
and there are no repairs available. The goal fails, even though there is a valid solution:
driving to school.

144 CPS; THE GENERAL PROBLEM SOLVER

The problem is that achi eve uses some to look at the appropri a te -ops . Thus, if
there is some appropriate operator, achi eve succeeds. If there is only one goal, this
will yield a correct solution. However, if there are multiple goals, as in this case,
achi eve will still only find one way to fulfill the first goal. If the first solution is a bad
one, the only recourse is to try to repair it. In domains like the block world and maze
world, repair often works, because all steps are reversible. But in the taxi example, no
amount of plan repair can get the money back once it is spent, so the whole plan fails.

There are two ways around this problem. The first approach is to examine all
possible solutions, not just the first solution that achieves each subgoal. The language
Prolog, to be discussed in chapter 11, does just that. The second approach is to have
achi eve and achi eve-al 1 keep track of a list of goals that must be protected. In the
taxi example, we would trivially achieve the have-money goal and then try to achieve
son-at - schoo l , while protecting the goal have-money. An operator would only
be appropriate if it didn't delete any protected goals. This approach still requires
some kind of repair or search through multiple solution paths. If we tried only
one ordering-achieving son - a t - school and then trying to protect it while achieving
have - money—then we would not find the solution. David Warren's WARPLAN planner
makes good use of the idea of protected goals.

4.17 The Lack of Descriptive Power Problem
It would be a lot more economical, in the maze domain, to have one operator that
says we can move from here to there if we are at "here," and if there is a connection
from "here" to "there." Then the input to a particular problem could list the valid
connections, and we could solve any maze with this single operator. Similarly, we
have defined an operator where the monkey pushes the chair from the door to the
middle of the room, but it would be better to have an operator where the monkey
can push the chair from wherever it is to any other nearby location, or better yet, an
operator to push any "pushable" object from one location to a nearby one, as long
as there is no intervening obstacle. The conclusion is that we would like to have
variables in the operators, so we could say something like:

(op ' (push X from A to B)
:preconds '((monkey at A) (X at A) (pushable X) (path A B))
:add - l i s t '((monkey at B) (X at B))
: d e l - l i s t '((monkey at A) (X at A)))

Often we want to characterize a state in terms of something more abstract than a
list of conditions. For example, in solving a chess problem, the goal is to have the
opponent in checkmate, a situation that cannot be economically described in terms
of primitives like (bl ack ki ng on A 4) , so we need to be able to state some kind

4.18 THE PERFECT INFORMATION PROBLEM 145

of constraint on the goal state, rather than just listing its components. We might
want to be able to achieve a disjunction or negation of conditions, where the current
formalism allows only a conjunction.

It also is important, in many domains, to be able to state problems dealing with
time: we want to achieve X before time To, and then achieve Y before time T2, but
not before Ti. Scheduling work on a factory floor or building a house are examples
of planning where time plays an important role.

Often there are costs associated with actions, and we want to find a solution
with minimal, or near-minimal costs. The cost might be as simple as the number of
operators required for a solution—we saw in the blocks world domain that sometimes
an operator that could be applied immediately was ignored, and an operator that
needed several preconditions satisfied was chosen instead. Or we may be satisfied
with a partial solution, if a complete solution is impossible or too expensive. We may
also want to take the cost (and time) of computation into account.

4.18 The Perfect Information Problem
All the operators we have seen so far have unambiguous results; they add or delete
certain things from the current state, and GPS always knows exactly what they are
going to do. In the real world, things are rarely so cut and dried. Going back to the
problem of becoming rich, one relevant operator would be playing the lottery. This
operator has the effect of consuming a few dollars, and once in a while paying off a
large sum. But we have no way to represent a payoff "once in a while." Similarly,
we have no way to represent unexpected difficulties of any kind. In the nursery
school problem, we could represent the problem with the car battery by having GPS
explicitly check to see if the car was working, or if it needed a battery, every time
the program considered the driving operator. In the real world, we are seldom this
careful; we get in the car, and only when it doesn't start do we consider the possibility
of a dead battery.

4.19 The Interacting Goals Problem
People tend to have multiple goals, rather than working on one at a time. Not only do
I want to get the kid to nursery school, but I want to avoid getting hit by another car,
get to my job on time, get my work done, meet my friends, have some fun, continue
breathing, and so on. I also have to discover goals on my own, rather than work on
a set of predefined goals passed to me by someone else. Some goals I can keep in
the background for years, and then work on them when the opportunity presents
itself. There is never a notion of satisfying all possible goals. Rather, there is a

146 CPS; THE GENERAL PROBLEM SOLVER

continual process of achieving some goals, partially achieving others, and deferring
or abandoning still others.

In addition to having active goals, people also are aware of undesirable situations
that they are trying to avoid. For example, suppose I have a goal of visiting a friend
in the hospital. This requires being at the hospital. One appHcable operator might
be to walk to the hospital, while another would be to severly injure myself and wait
for the ambulance to take me there. The second operator achieves the goal just as
well (perhaps faster), but it has an undesirable side effect. This could be addressed
either with a notion of solution cost, as outlined in the last section, or with a list of
background goals that every solution attempts to protect.

Herb Simon coined the term "satisficing" to describe the strategy of satisfying a
reasonable number of goals to a reasonable degree, while abandoning or postponing
other goals. GPS only knows success and failure, and thus has no way of maximizing
partial success.

4.20 The End of GPS
These last four sections give a hint as to the scope of the limitations of GPS. In fact, it
is not a very general problem solver at all. It is general in the sense that the algorithm
is not tied to a particular domain; we can change domain by changing the operators.
But GPS fails to be general in that it can't solve many interesting problems. It is
confined to small tricks and games.

There is an important yet subtle reason why GPS was destined to fail, a reason
that was not widely appreciated in 1957 but now is at the core of computer science.
It is now recognized that there are problems that computers can't solve—not because
a theoretically correct program can't be written, but because the execution of the
program will take too long. A large number of problems can be shown to fall into
the class of "NP-hard" problems. Computing a solution to these problems takes
time that grows exponentially as the size of the problem grows. This is a property
of the problems themselves, and holds no matter how clever the programmer is.
Exponential growth means that problems that can be solved in seconds for, say, a
five-input case may take trillions of years when there are 100 inputs. Buying a faster
computer won't help much. After all, if a problem would take a trillion years to solve
on your computer, it won't help much to buy 1000 computers each 1000 times faster
than the one you have: you're still left with a million years wait. For a theoretical
computer scientist, discovering that a problem is NP-hard is an end in itself. But for
an AI worker, it means that the wrong question is being asked. Many problems are
NP-hard when we insist on the optimal solution but are much easier when we accept
a solution that might not be the best.

The input to GPS is essentially a program, and the execution of GPS is the execution
of that program. If GPS's input language is general enough to express any program.

4.21 HISTORY AND REFERENCES 147

then there will be problems that can't be solved, either because they take too long
to execute or because they have no solution. Modern problem-solving programs
recognize this fundamental limitation, and either limit the class of problems they try
to solve or consider ways of finding approximate or partial solutions. Some problem
solvers also monitor their own execution time and know enough to give up when a
problem is too hard.

The following quote from Drew McDermott's article "Artificial Intelligence Meets
Natural Stupidity" sums up the current feeling about GPS. Keep it in mind the next
time you have to name a program.

Remember GPS? By now, " G P S " is a colorless term denoting a particularly stupid
program to solve puzzles. But it originally meant ''General Problem Solver,"
which caused everybody a lot of needless excitement and distraction. It should
have been called LFGNS-"Loca/ Feature-Guided Network Searcher."

Nonetheless, GPS has been a useful vehicle for exploring programnüng in general,
and AI programming in particular. More importantly, it has been a useful vehicle
for exploring "the nature of deliberation." Surely we'll admit that Aristotle was
a smarter person than you or me, yet with the aid of the computational model of
mind as a guiding metaphor, and the further aid of a working computer program
to help explore the metaphor, we have been led to a more thorough appreciation of
means-ends analysis—at least within the computational model. We must resist the
temptation to believe that all thinking follows this model.

The appeal of AI can be seen as a split between means and ends. The end of a
successful AI project can be a program that accomplishes some useful task better,
faster, or cheaper than it could be before. By that measure, GPS is a mostly a failure,
as it doesn't solve many problems particularly well. But the means toward that end
involved an investigation and formalization of the problem-solving process. By that
measure, our reconstruction of GPS is a success to the degree in which it leads the
reader to a better understanding of the issues.

4.21 History and References
The original GPS is documented in Newell and Simon's 1963 paper and in their 1972
book. Human Problem Solving, as well as in Ernst and Newell 1969. The implementa
tion in this chapter is based on the STRIPS program (Fikes and Nilsson 1971).

There are other important planning programs. Earl Sacerdoti's ABSTRIPS program
was a modification of STRIPS that allowed for hierarchical planning. The idea was to
sketch out a skeletal plan that solved the entire program at an abstract level, and then
fill in the details. David Warren's WARPLAN planner is covered in Warren 1974a,b
and in a section of Coelho and Cotta 1988. Austin Tate's NONLIN system (Tate 1977)

148 CPS; THE GENERAL PROBLEM SOLVER

achieved greater efficiency by considering a plan as a partially ordered sequence of
operations rather than as a strictly ordered sequence of situations. David Chapman's
TWEAK synthesizes and formalizes the state of the art in planning as of 1987.

All of these papers-and quite a few other important planning papers-are
reprinted in Allen, Hendler, and Tate 1990.

4.22 Exercises

t¿3 Exercise 4.1 [m] It is possible to implement dbg using a single call to format. Can
you figure out the format directives to do this?

t¿3 Exercise 4.2 [m] Write a function that generates all permutations of its input.

13 Exercise 4.3 [h] GPS does not recognize the situation where a goal is accidentally
solved as part of achieving another goal. Consider the goal of eating dessert. Assume
that there are two operators available: eating ice cream (which requires having the
ice cream) and eating cake (which requires having the cake). Assume that we can
buy a cake, and that the bakery has a deal where it gives out free ice cream to each
customer who purchases and eats a cake. (1) Design a list of operators to represent
this situation. (2) Give gps the goal of eating dessert. Show that, with the right list
of operators, gps will decide to eat ice cream, then decide to buy and eat the cake in
order to get the free ice cream, and then go ahead and eat the ice cream, even though
the goal of eating dessert has already been achieved by eating the cake. (3) Fix gps so
that it does not manifest this problem.

The following exercises address the problems in version 2 of the program.

SI Exercise 4.4 [h] The Not Looking after You Don't Leap Problem. Write a program that
keeps track of the remaining goals so that it does not get stuck considering only one
possible operation when others will eventually lead to the goal. Hint: have achi eve
take an extra argument indicating the goals that remain to be achieved after the
current goal is achieved, achi eve should succeed only if it can achieve the current
goal and also achi eve-al l the remaining goals.

@ Exercise 4.5 [d] Write a planning program that, like Warren's WARPLAN, keeps
track of the list of goals that remain to be done as well as the list of goals that have
been achieved and should not be undone. The program should never undo a goal
that has been achieved, but it should allow for the possibility of reordering steps that

4.23 ANSWERS 149

have already been taken. In this way, the program will solve the Sussman anomaly
and sinülar problems.

@ Exercise 4.6 [d] The Lack of Descriptive Power Problem. Read chapters 5 and 6 to learn
about pattern matching. Write a version of GPS that uses the pattern matching tools,
and thus allows variables in the operators. Apply it to the maze and blocks world
domains. Your program will be more efficient if, like Chapman's TWEAK program,
you allow for the possibility of variables that remain unbound as long as possible.

E¿] Exercise 4.7 [d] Speculate on the design of a planner that can address the Perfect
Information and Interacting Goals problems.

4.23 Answers

Answer 4.1 In this version, the format string " ~&~V®T~?" breaks down as follows:
means go to a fresh line; "~V®T" means insert spaces (®T) but use the next

argument (V) to get the number of spaces. The " ~?" is the indirection operator: use
the next argument as a format string, and the argument following that as the list of
arguments for the format string.

(defun dbg-indent (id indent format-str ing &rest args)
"Pr int indented debugging info i f (DEBUG ID) has been spec i f i ed . "
(when (member id *dbg- ids*)

(format *debug- io* "~&~v®T~?" (* 2 indent) format-str ing a rgs)))

150 CPS; THE GENERAL PROBLEM SOLVER

Answer 4.2 Here is one solution. The sophisticated Lisp programmer should also
see the exercise on page 680.

(defun permutations (bag)
"Return a l i s t of a l l the permutations of the input . "

I f the input i s n i l , there i s only one permutation:
ni l i t s e l f

(i f (null bag)
' (())

Otherwise, take an element, e, out of the bag.
Generate a l l permutations of the remaining elements.
And add e to the front of each of these.
Do th i s for al l poss ib le e to generate al l permutations,

(mapcan #'(lambda (e)
(mapcar #*(lambda (p) (cons e p))

(permutations
(remove e bag :count 1 : test # ' eq))))

bag)))

CHAPTER 5

ELIZA: Dialog with a Machine

It is said that to explain is to explain away.
—Joseph Weizenbaum
MIT computer scientist

I I 1 his chapter and the rest of part I will examine three more well-known AI programs of
I the 1960s. ELIZA held a conversation with the user in which it simulated a psychother-

apist. STUDENT solved word problems of the kind found in high school algebra books,
and MACSYMA solved a variety of symbolic mathematical problems, including differential and
integral calculus. We will develop versions of the first two programs that duplicate most of
the essential features, but for the third we will implement only a tiny fraction of the original
program's capabilities.

All three programs make heavy use of a technique called pattern matching. Part I serves to
show the versatility—and also the limitations—of this technique.

Of the three programs, the first two process input in plain English, and the last two solve non-
trivial problems in mathematics, so there is some basis for describing them as being "intelligent."
On the other hand, we shall see that this intelligence is largely an illusion, and that ELIZA in
particular was actually designed to demonstrate this illusion, not to be a "serious" AI program.

152 ELIZA; DIALOG WITH A MACHINE

ELIZA was one of the first programs to feature English output as well as input.
The program was named after the heroine of Pygmalion, who was taught to speak
proper English by a dedicated teacher. ELIZA'S principal developer, MIT professor
Joseph Weizenbaum, published a paper on ELIZA in the January 1966 issue of the
Communications of the Association for Computing Machinery. The introduction to that
paper is reproduced in its entirety here:

It is said that to explain is to explain away. This maxim is nowhere so well
fulfilled as in the area of computer programming, especially in what is called
heuristic programming and artificial intelligence. For in those realms machines
are made to behave in wondrous ways, often sufficient to dazzle even the most
experienced observer. But once a particular program is unmasked, once its inner
workings are explained in language sufficiently plain to induce understanding
its magic crumbles away; it stands revealed as a mere collection of procedures,
each quite comprehensible. The observer says to himself, "I could have written
that." With that thought he moves the program in question from the shelf
marked "intelligent," to that reserved for curios, fit to be discussed only with
people less enlightened than he.

The object of this paper is to cause just such a re-evaluation of the program about
to be "explained." Few programs ever needed it more.

Let me point out in passing that the main object of this book is to cause the reader
to say to him or herself, "I could have written that." It is hoped that in some cases
this will be because the reader has gained something, and not solely because the
programs in question have lost their ability to dazzle.

Let's start our investigation of ELIZA by looking at a sample dialog from the
Weizenbaum article. ELIZA was designed to be instructed by a variety of scripts, or
patterns of interaction. In fact it had several scripts, including ones in German and
Welsh. But the only script that was used to any extent was in English, and it made
ELIZA emulate a Rogerian psychoanalyst. Rogerians are "nondirective"—they try to
let the patient reveal himself. This is an easy script for ELIZA to follow, because it
involves being passive and reacting, rather than volunteering new information. In
the listing that follows, the user's input is in mixed case, and ELIZA'S response is in
capitals:

Men are al l a l i ke .
IN WHAT WAY
They're always bugging us about something or another.
CAN YOU BE MORE SPECIFIC
Wel l , my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

INTRODUCTION 153

I t ' s t rue. I am unhappy.
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY
I need some help, that much seems cer ta in .
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP
Perhaps I could learn to get along with my mother.
TELL ME MORE ABOUT YOUR FAMILY

This seems quite impressive; the program is responding reasonably to a variety of
inputs and appears to be exhibiting true "understanding." But, as Weizenbaum
explains, this appearance is an illusion, and the program has finessed the difficult
task of understanding by carefully recognizing, transforming, and echoing pieces
of the input. The procedure is to look for specific patterns, based on a key word
or words in the input. For example, whenever the program sees the words "alike"
or "same," it prints a message asking about similarity, in this case, "IN WHAT WAY."
Other patterns are more complicated. In the next to last exchange, ELIZA first throws
away everything after the comma, and then uses a pattern that looks for input of
the form "I need X" and transforms it to the output "What would it mean to you if
you got X," where X is the phrase "some help" in this case. The great advantage of
this approach is that the response will make sense for a variety of inputs: "I need
a vacation" will elicit "What would it mean to you if you got a vacation." This will
work automatically, without having to tell the program the difference between "some
help" and "a vacation." The disadvantage is that the program will sometimes make
silly responses: "I need this like a hole in the head" will be answered with "What
would it mean to you if you got this like a hole in the head." In fact, the program only
makes any sense at all if it is receiving input from someone who makes sense—and
someone who interprets its answers charitably. When given "I need gibble plix zzq,"
ELIZA would reply " What would it mean to you if you got gibble plix zzq," without any
inkling that something is wrong. Another example of the original ELIZA program has
it communicating with another program, PARRY, which was written by Dr. Kenneth
Colby to mimic paranoid behavior. Part of the conversation follows, with ELIZA again
in capitals and PARRY in mixed case:

I don' t understand your motives.
WHY DON'T YOU UNDERSTAND MY MOTIVES?
Shouldn' t I be?
WHY DO YOU SAY THAT JUST NOW?
That 's just the way i t i s .
SUPPOSE THAT'S JUST THE WAY IT WERE NOT.
So?
I AM NOT SURE I UNDERSTAND YOU FULLY.
You harp on the same questions too much.
WHAT DOES THAT SIMILARITY SUGGEST TO YOU?
I don' t get you.
DO YOU WISH THAT YOU DID GET I ?

154 E L I Z A ; DIALOG WITH A MACHINE

This suggests that neither ELIZA nor PARRY had a deep understanding of the dialog.
When there is a human to take on most of the burden of carrying forth the conver
sation, these programs can be convincing, but when the human is taken out of the
conversation, the weaknesses of the programs are revealed.

5.1 Describing and Specifying ELIZA

Now that we have an idea of what ELIZA is like, we can begin the description and spec
ification of the program, and eventually move to the implementation and debugging.

The ELIZA algorithm can be described simply as: (1) read an input, (2) find a
pattern that matches the input, (3) transform the input into a response, and (4) print
the response. These four steps are repeated for each input.

The specification and implementation of steps (1) and (4) are trivial: for (1), use
the built-in read function to read a list of words, and for (4) use print to print the list
of words in the response.

Of course, there are some drawbacks to this specification. The user will have
to type a real list—using parentheses—and the user can't use characters that are
special to read, like quotation marks, commas, and periods. So our input won't
be as unconstrained as in the sample dialog, but that's a small price to pay for the
convenience of having half of the problem neatly solved.

5.2 Pattern Matching

The hard part comes with steps (2) and (3)—this notion of pattern matching and
transformation. There are four things to be concerned with: a general pattern and
response, and a specific input and transformation of that input. Since we have agreed
to represent the input as a list, it makes sense for the other components to be lists
too. For example, we might have:

Pattern: (i need a X)

Response: (what would i t mean to you i f you got a X ?)

Input: (i need a vacation)
Transformation: (what would i t mean to you i f you got a vacation ?)

The pattern matcher must match the literals i with i , need with need, and a with a,
as well as match the variable X with va cat i on. This presupposes that there is some
way of deciding that X is a variable and that need is not. We must then arrange to
substitute vacation for X within the response, in order to get the final transformation.

5.2 PAnERN MATCHING 155

Ignoring for a moment the problem of transforming the pattern into the response,
we can see that this notion of pattern matching is just a generalization of the Lisp
function equa 1. Below we show the function s i mpl e - equa 1, which is like the built-in
function equal,^ and the function pat-match, which is extended to handle pattern-
matching variables:

(defun simple-equal (x y)
"Are χ and y equal? (Don't check ins ide s t r i n g s .) "
(i f (or (atom x) (atom y))

(eql χ y)
(and (simple-equal (f i r s t x) (f i r s t y))

(simple-equal (rest x) (rest y)))))

(defun pat-match (pattern input)
"Does pattern match input? Any var iable can match anyth ing."
(i f (var iable-p pattern)

t
(i f (or (atom pattern) (atom input))

(eql pattern input)
(and (pat-match (f i r s t pattern) (f i r s t input))

(pat-match (rest pattern) (rest i npu t))))))

@ Exercise 5.1 [s] Would it be a good idea to replace the complex and form in
pat-match with the simpler (every # 'pat -match pat tern inpu t)?

Before we can go on, we need to decide on an implementation for pattern-
matching variables. We could, for instance, say that only a certain set of symbols,
such as {Χ,Υ,Ζ}, are variables. Alternately, we could define a structure of type
var i abl e, but then we'd have to type something verbose like (make-vari abl e : name
* X) every time we wanted one. Another choice would be to use symbols, but to dis
tinguish variables from constants by the name of the symbol. For example, in Prolog,
variables start with capital letters and constants with lowercase. But Common Lisp
is case-insensitive, so that won't work. Instead, there is a tradition in Lisp-based AI
programs to have variables be symbols that start with the question mark character.

So far we have dealt with symbols as atoms—objects with no internal structure.
But things are always more compHcated than they first appear and, as in Lisp as
in physics, it turns out that even atoms have components. In particular, symbols
have names, which are strings and are accessible through the symbol - name function.
Strings in turn have elements that are characters, accessible through the function
char. The character ' ? ' is denoted by the self-evaluating escape sequence # \ ? . So
the predicate variab1 e -p can be defined as follows, and we now have a complete
pattern matcher:

^The difference is that simpl e-equal does not handle strings.

156 ELIZA- DIALOG WITH A MACHINE

(defun variab1e-p (x)
" I s X a var iable (a symbol beginning with * ? *) ? "
(and (symbolp x) (equal (char (symbol-name x) 0) # \ ?)))

> (pat-match ' (I need a ?X) ' (I need a vacat ion))
Τ

> (pat-match * (I need a ?X) ' (I rea l ly need a vacat ion))
NIL

In each case we get the right answer, but we don't get any indication of what ?X is, so
we couldn't substitute it into the response. We need to modify pat-match to return
some kind of table of variables and corresponding values. In making this choice, the
experienced Common Lisp programmer can save some time by being opportunistic:
recognizing when there is an existing function that will do a large part of the task at
hand. What we want is to substitute values for variables throughout the response.
The alert programmer could refer to the index of this book or the Common Lisp
reference manual and find the functions s u b s t i tute , s u b s t , and subl i s. All of these
substitute some new expression for an old one within an expression. It turns out that
subl i s is most appropriate because it is the only one that allows us to make several
substitutions all at once, subl 1 s takes two arguments, the first a list of old-new pairs,
and the second an expression in which to make the substitutions. For each one of
the pairs, the car is replaced by the cdr. In other words, we would form each pair
with something like (cons ol d new). (Such a list of pairs is known as an association
Ust, or a-list, because it associates keys with values. See section 3.6.) In terms of the
example above, we would use:

> (sub l i s ' ((? X . vacat ion))
'(what would i t mean to you i f you got a ?X ?))

(WHAT WOULD IT MEAN TO YOU IF YOU GOT A VACATION ?)

Now we need to arrange for pat-match to return an a-Iist, rather than just Τ for
success. Here's a first attempt:

(defun pat-match (pattern input)
"Does pattern match input? WARNING: buggy ve rs i on . "
(i f (var iable-p pattern)

(l i s t (cons pattern input))
(i f (or (atom pattern) (atom input))

(eql pattern input)
(append (pat-match (f i r s t pattern) (f i r s t input))

(pat-match (rest pattern) (rest i npu t))))))

This implementation looks reasonable: it returns an a-list of one element if the pattern
is a variable, and it appends alists if the pattern and input are both lists. However,

5.2 ΡΑπΕΚΝ MATCHING 157

there are several problems. First, the test (eql pattern input) may return T, which
is not a list, so append will complain. Second, the same test might return nil, which
should indicate failure, but it will just be treated as a list, and will be appended to
the rest of the answer. Third, we haven't distinguished between the case where the
match fails—and returns nil—versus the case where everything matches, but there
are no variables, so it returns the null a-list. (This is the semipredicate problem
discussed on page 127.) Fourth, we want the bindings of variables to agree—if ?X is
used twice in the pattern, we don't want it to match two different values in the input.
Finally, it is inefficient for pat-match to check both the f i r s t and res t of Hsts, even
when the corresponding f i r s t parts fail to match. (Isn't it amazing that there could
be five bugs in a seven-line function?)

We can resolve these problems by agreeing on two major conventions. First, it is
very convenient to make pat-match a true predicate, so we will agree that it returns
η i 1 only to indicate failure. That means that we will need a non-nil value to represent
the empty binding list. Second, if we are going to be consistent about the values of
variables, then the f i rstwillhavetoknow what the restisdoing. We can accomplish
this by passing the binding list as a third argument to pat-match. We make it an
optional argument, because we want to be able to say simply (pat-match ab).

To abstract away from these implementation decisions, we define the constants
fai 1 and no-bi ndi ngs to represent the two problematic return values. The special
form defconstant is used to indicate that these values will not change. (It is cus
tomary to give special variables names beginning and ending with asterisks, but this
convention usually is not followed for constants. The reasoning is that asterisks
shout out, "Careful! I may be changed by something outside of this lexical scope."
Constants, of course, will not be changed.)

(defconstant fa i l n i l " Indicates pat-match fa i l u re ")

(defconstant no-bindings ' ((t . t))
" Indicates pat-match success , with no va r i ab les . ")

Next, we abstract away from assoc by introducing the following four functions:

(defun get-binding (var b indings)
"Find a (var iable . value) pair in a binding l i s t . "
(assoc var b ind ings))

(defun binding-val (binding)
"Get the value part of a s ing le b ind ing. "
(cdr b inding))

(defun lookup (var bindings)
"Get the value part (for var) from a binding l i s t . "
(binding-val (get-binding var b ind ings)))

158 ELIZA; DIALOG WITH A MACHINE

(defun extend-bindings (var val b indings)
"Add a (var . value) pair to a binding l i s t . "
(cons (cons var va l) b ind ings))

Now that variables and bindings are defined, pat-match is easy. It consists of five
cases. First, if the binding list is f a i 1 , then the match fails (because some previous
match must have failed). If the pattern is a single variable, then the match returns
whatever match - va r i abl e returns; either the existing binding Ust, an extended one,
or f ai 1 . Next, if both pattern and input are lists, we first call pat-match recursively
on the first element of each list. This returns a binding list (or f a i 1), which we use
to match the rest of the lists. This is the only case that invokes a nontrivial function,
so it is a good idea to informally prove that the function will terminate: each of the
two recursive calls reduces the size of both pattern and input, and pat -match checks
the case of atomic patterns and inputs, so the function as a whole must eventually
return an answer (unless both pattern and input are of infinite size). If none of these
four cases succeeds, then the match fails.

(defun pat-match (pattern input &optional (bindings no-b ind ings))
"Match pattern against input in the context of the b indings"
(cond ((eq bindings f a i l) f a i l)

((var iab le-p pattern)
(match-variable pattern input b ind ings))

((eql pattern input) b indings)
((and (consp pattern) (consp input))

(pat-match (rest pattern) (rest input)
(pat-match (f i r s t pattern) (f i r s t input)

b ind ings)))
(t f a i l)))

(defun match-variable (var input b indings)
"Does VAR match input? Uses (or updates) and returns b ind ings . "
(le t ((binding (get-binding var b ind ings)))

(cond ((not binding) (extend-bindings var input b ind ings))
((equal input (binding-val b inding)) b indings)
(t f a i l))))

We can now test pat-match and see how it works:

> (pat-match ' (i need a ?X) ' (i need a vacat ion))
((?X . VACATION) (T . T))

The answer is a list of variable bindings in dotted pair notation; each element of
the list is a (vanable , value) pair. The (T . T) is a remnant from n o - b i n d i n g s . It
does no real harm, but we can eliminate it by making extend - bi ndi ngs a little more
complicated:

5.3 SEGMENT PAnERN MATCHING 159

(defun extend-bindings (var val b indings)
"Add a (var . value) pair to a binding l i s t . "
(cons (cons var va l)

Once we add a " rea l " b inding,
we can get r id of the dummy no-bindings

(i f (eq bindings no-bindings)
ni l
b indings)

> (sub l i s (pat-match ' (i need a ?X) ' (i need a vacat ion))
'(what would i t mean to you i f you got a ?X ?))

(WHAT WOULD IT MEAN TO YOU IF YOU GOT A VACATION ?)

> (pat-match ' (i need a ?X) ' (i rea l ly need a vacat ion))
NIL

> (pat-match ' (t h i s i s easy) ' (t h i s i s easy))
((T . T))

> (pat-match ' (? X i s ?X) ' ((2 + 2) i s 4))
NIL

> (pat-match ' (? X i s ?X) ' ((2 + 2) i s (2 + 2)))
((?X 2 + 2))

> (pat-match ' (? P need . ?X) ' (i need a long vacat ion))
((?X A LONG VACATION) (?P . I))

Notice the distinction between NIL and ((Τ . Τ)) . The latter means that the match
succeeded, but there were no bindings to return. Also, remember that (? X 2 + 2)
means the same as (? X . (2 + 2)) .

A more powerful implementation of pat -match is given in chapter 6. Yet another
implementation is given in section 10.4. It is more efficient but more cumbersome
to use.

5.3 Segment Pattern Matching
In the pattern (?P need . ? X) , the variable ?X matches the rest of the input Ust,
regardless of its length. This is in contrast to ?P, which can only match a single
element, namely, the first element of the input. For many applications of pattern
matching, this is fine; we only want to match corresponding elements. However,
ELIZA is somewhat different in that we need to account for variables in any position
that match a sequence of items in the input. We will call such variables segment
vanables. We will need a notation to differentiate segment variables from normal

160 ELIZA; DIALOG WITH A MACHINE

variables. The possibilities fall into two classes: either we use atoms to represent
segment variables and distinguish them by some spelling convention (as we did to
distinguish variables from constants) or we use a nonatomic construct. We will
choose the latter, using a list of the form (? * variable) to denote segment variables.
The symbol ?* is chosen because it combines the notion of variable with the Kleene-
star notation. So, the behavior we want from pat-match is now:

> (pat-match ' ((? * ?p) need (? * ? x))
' (Mr Hulot and I need a vacat ion))

((?P MR HULOT AND I) (?X A VACATION))

In other words, when both pattern and input are lists and the first element of the
pattern is a segment variable, then the variable will match some initial part of the
input, and the rest of the pattern will attempt to match the rest. We can update
pat-match to account for this by adding a single cond-clause. Defining the predicate
to test for segment variables is also easy:

(defun pat-match (pattern input &optional (bindings no-b ind ings))
"Match pattern against input in the context of the b indings"
(cond ((eq bindings f a i l) f a i l)

((var iab le-p pattern)
(match-variable pattern input b ind ings))

((eql pattern input) b indings)
((segment-pattern-p pattern) ; * * *

(segment-match pattern input b ind ings)) ; * * *
((and (consp pattern) (consp input))
(pat-match (rest pattern) (rest input)

(pat-match (f i r s t pattern) (f i r s t input)
b ind ings)))

(t f a i l)))

(defun segment-pattern-p (pattern)
" I s th is a segment matching pattern: ((? * var) . pat)"
(and (consp pattern)

(s tar ts-wi th (f i r s t pattern) ' ? *)))

In writing segment-match, the important question is how much of the input the
segment variable should match. One answer is to look at the next element of the
pattern (the one after the segment variable) and see at what position it occurs in the
input. If it doesn't occur, the total pattern can never match, and we should f ai 1. If
it does occur, call its position pos. We will want to match the variable against the
initial part of the input, up to pos. But first we have to see if the rest of the pattern
matches the rest of the input. This is done by a recursive call to pat-match. Let the
result of this recursive call be named b2. If b2 succeeds, then we go ahead and match
the segment variable against the initial subsequence.

5.3 SEGMENT PATTERN MATCHING 161

The tricky part is when bZ fails. We don't want to give up completely, because
it may be that if the segment variable matched a longer subsequence of the input,
then the rest of the pattern would match the rest of the input. So what we want is to
try segment-match again, but forcing it to consider a longer match for the variable.
This is done by introducing an optional parameter, s ta r t , which is initially 0 and is
increased with each failure. Notice that this policy rules out the possibility of any
kind of variable following a segment variable. (Later we will remove this constraint.)

(defun segment-match (pattern input bindings &optional (s tar t 0))
"Match the segment pattern ((? * var) . pat) against input . "
(le t ((var (second (f i r s t pattern)))

(pat (rest pattern)))
(i f (null pat)

(match-variable var input bindings)
We assume that pat s ta r ts with a constant
In other words, a pattern can ' t have 2 consecutive vars

(let ((pos (pos i t ion (f i r s t pat) input
:s ta r t s tar t : test # 'equa l)))

(i f (null pos)
fa i l
(le t ((b2 (pat-match pat (subseq input pos) b ind ings)))

I f t h i s match f a i l e d , try another longer one
I f i t worked, check that the var iables match

(i f (eq b2 f a i l)
(segment-match pattern input bindings (+ pos 1))
(match-variable var (subseq input 0 pos) b 2))))))))

Some examples of segment matching follow:

> (pat-match ' ((? * ?p) need (? * ?x))
'(Mr Hulot and I need a vacat ion))

((?P MR HULOT AND I) (?X A VACATION))

> (pat-match ' ((? * ?x) i s a (? * ? y)) '(what he i s i s a foo l))
((?X WHAT HE IS) (?Y FOOD)

The first of these examples shows a fairly simple case: ?p matches everything up
to need, and ?x matches the rest. The next example involves the more complicated
backup case. First ?x matches everything up to the first i s (this is position 2 , since
counting starts at 0 in Common Lisp). But then the pattern a fails to match the input
i s, so segment - match tries again with starting position 3. This time everything works;
i s matches i s, a matches a, and (? * ? y) matches fool.

162 ELIZA: DIALOG WITH A MACHINE

Unfortunately, this version of s egmen t - ma t ch does not match as much as it should.
Consider the following example:

> (pat-match * ((? * ?x) a b (? * ? x)) ' (1 2 a b a b 1 2 a b)) NIL

This fails because ?x is matched against the subsequence (1 2) , and then
the remaining pattern succesfuUy matches the remaining input, but the final
call to match-var iabl e fails, because ?x has two different values. The fix is to call
match-vari able before testing whether the b2 fails, so that we will be sure to try
segment-match again with a longer match no matter what the cause of the failure.

(defun segment-match (pattern input bindings Äoptional (s ta r t 0))

"Match the segment pattern ((? * var) . pat) against input . "

(le t ((var (second (f i r s t pat tern)))

(pat (rest pat tern)))

(i f (null pat)

(match-variable var input b indings)

We assume that pat s ta r ts with a constant

In other words, a pattern can ' t have 2 consecutive vars

(le t ((pos (pos i t ion (f i r s t pat) input

i s ta r t s ta r t r test # 'equa l)))

(i f (null pos)

fa i l

(le t ((b2 (pat-match

pat (subseq input pos)

(match-variable var (subseq input 0 pos)

b ind ings))))

I f t h i s match f a i l e d , t ry another longer one

(i f (eq b2 f a i l)

(segment-match pattern input bindings (+ pos 1))

b 2)))))))

Now we see that the match goes through:

> (pat-match ' ((? * ?x) a b (? * ? x)) ' (1 2 a b a b 1 2 a b))

((?X 1 2 A B))

Note that this version of segment-match tries the shortest possible match first. It
would also be possible to try the longest match first.

5.4 THE ELIZA PROGRAM: A RULE-BASED TRANSLATOR 163

5.4 The ELIZA Program: A Rule-Based
Translator

Now that we have a working pattern matcher, we need some patterns to match.
What's more, we want the patterns to be associated with responses. We can do this
by inventing a data structure called a ru l e, which consists of a pattern and one or
more associated responses. These are rules in the sense that they assert, "If you
see A, then respond with Β or C, chosen at random." We will choose the simplest
possible implementation for rules: as lists, where the first element is the pattern and
the rest is a list of responses:

(defun rule-pattern (ru le) (f i r s t ru le))
(defun rule-responses (ru le) (rest ru le))

Here's an example of a rule:

(((? * ?x) I want (? * ? y))
(What would i t mean i f you got ?y)
(Why do you want ?y)
(Suppose you got ?y soon))

When applied to the input (I want to t e s t t h i s program), this rule (when in
terpreted by the ELIZA program) would pick a response at random, substitute in the
valueof?y, and respond with, say, (why do you want to t e s t t h i s program).

Now that we know what an individual rule will do, we need to decide how to
handle a set of rules. If ELIZA is to be of any interest, it will have to have a variety of
responses. So several rules may all be applicable to the same input. One possibility
would be to choose a rule at random from among the rules having patterns that match
the input.

Another possibility is just to accept the first rule that matches. This implies that
the rules form an ordered list, rather than an unordered set. The clever ELIZA rule
writer can take advantage of this ordering and arrange for the most specific rules to
come first, while more vague rules are near the end of the list.

The original ELIZA had a system where each rule had a priority number associated
with it. The matching rule with the highest priority was chosen. Note that putting the
rules in order achieves the same effect as having a priority number on each rule: the
first rule implicitly has the highest priority, the second rule is next highest, and so on.

Here is a short list of rules, selected from Weizenbaum's original article, but with
the form of the rules updated to the form we are using. The answer to exercise 5.19
contains a longer list of rules.

164 ELIZA; DIALOG WITH AMACHINE

(defparameter * e l i z a - r u l e s *
' ((((? * ?x) hel lo (? * ? y))

(How do you do. Please state your problem.))
(((? * ?x) I want (? * ? y))
(What would i t mean i f you got ?y)
(Why do you want ?y) (Suppose you got ?y soon))

(((? * ?x) i f (? * ? y))
(Do you real ly think i t s l i ke l y that ?y) (Do you wish that ?y)
(What do you think about ?y) (Rea l l y - - i f ? y))

(((? * ?x) no (? * ? y))
(Why not?) (You are being a b i t negative)
(Are you saying "NO" just to be negat ive?))

(((? * ?x) I was (? * ? y))
(Were you rea l l y?) (Perhaps I already knew you were ?y)
(Why do you te l l me you were ?y now?))

(((? * ?x) I feel (? * ? y))
(Do you often feel ?y ?))

(((? * ?x) I fe l t (? * ? y))
(What other fee l ings do you have?))))

Finally we are ready to define ELIZA proper. As we said earlier, the main program
should be a loop that reads input, transforms it, and prints the result. Transformation
is done primarily by finding some rule such that its pattern matches the input, and
then substituting the variables into the rule's response. The program is summarized
in figure 5.1.

There are a few minor complications. We print a prompt to tell the user to
input something. We use the function f 1 atten to insure that the output won't have
imbedded lists after variable substitution. An important trick is to alter the input
by swapping "you" for "me" and so on, since these terms are relative to the speaker.
Here is the complete program:

(defun el iza ()
"Respond to user input using pattern matching r u l e s . "
(loop

(pr int ' e l i za>)
(write (f la t ten (use-e l i za - ru les (read))) ipretty t)))

(defun use-e l i za - ru les (input)
"Find some rule with which to transform the input . "
(some #*(lambda (ru le)

(le t ((resu l t (pat-match (rule-pattern rule) input)))
(i f (not (eq resul t f a i l))

(sub l i s (switch-viewpoint resu l t)
(random-elt (ru le-responses r u l e))))))

* e l i z a - r u l e s *))

5.4 THE ELIZA PROGRAM: A RULE-BASED TRANSLATOR 165

Top-Level Function
el iza Respond to user input using pattern matching rules.

Special Variables
* e l i z a - r u l e s * A list of transformation rules.

Data Types
rule An association of a pattern with a list of responses.

Fimctions
el iza Respond to user input using pattern matching rules.
u s e - e l i z a - r u l e s Find some rule with which to transform the input.
swi tch-v iewpoint Change I to you and vice versa, and so on.
f l a t t e n Append together elements of a list.

Selected Common Lisp Functions
s u b l i s Substitute elements into a tree.

Previously Defined Functions
random-elt Pick a random element from a list. (p. 36)
pat-match Match a pattern against an input, (p. 160)
mappend Append together the results of a mapcar.

Figure 5.1: Glossary for the ELIZA Program

(defun switch-viewpoint (words)
"Change I to you and vice versa , and so on . "
(sub l i s ' ((I . you) (you . I) (me . you) (am

words))
are))

Note the use of wri te with the : pret ty keyword true. This will give better formatted
output in some cases. The program makes use of the previously defined random- el t ,
and f 1 a t ten, which is defined here using mappend and mkl i s t , a function that is
defined in the InterLisp dialect but not in Common Lisp.

(defun f lat ten (t he - l i s t)
"Append together elements (or l i s t s) in the l i s t . "
(mappend # 'mk l is t t h e - l i s t))

(defun mkl ist (χ)
"Return χ i f i t i s a l i s t , otherwise (x) . "
(i f d i s t p X)

X

(l i s t X)))

(defun mappend (fn t h e - l i s t)
"Apply fn to each element of l i s t and append the r e s u l t s . '
(apply #*append (mapcar fn t h e - l i s t)))

166 ELIZA- DIALOG WITH A MACHINE

(defun random-elt (choices)
"Choose an element from a l i s t at random."
(e l t choices (random (length cho ices))))

The actual ELIZA program had a few complications that don't show up in this version.
First, there was an alias method for associating several words with the same pattern;
both "mother" and "father" could be associated with the "family" pattern. There was
also a synonym mechanism that would treat "don't" and "do not" or "everybody" and
"everyone" the same. In the case of input with several comma-separated phrases,
each phrase was processed separately, and the response with the highest priority
was selected. In addition, the original ELIZA had a "memory" mechanism. When
no pattern matched the input, it said something like "Tell me more about X," where
X is some input given earlier. Finally, our version has fewer rules. Despite the
shortcomings of our version, it can occasionally hold up its end of a conversation, as
shown below:

> (e l i za)
ELIZA> (hel lo there)
(HOW DO YOU DO. PLEASE STATE YOUR PROBLEM.)
ELIZA> (i want to test t h i s program)
(WHAT WOULD IT MEAN IF YOU GOT TO TEST THIS PROGRAM)
ELIZA> (i could see i f i t works)
(DO YOU REALLY THINK ITS LIKELY THAT IT WORKS)
ELIZA> (no not rea l l y)
(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?)
ELIZA> (no)
(ARE YOU SAYING "NO" JUST TO BE NEGATIVE?)
ELIZA> (forget i t - - i was wondering how general the program i s)
(WHY DO YOU TELL ME YOU WERE WONDERING HOW GENERAL THE PROGRAM I S NOW?)
ELIZA> (i fe l t l i ke i t)
(WHAT OTHER FEELINGS DO YOU HAVE?)
ELIZA> (i feel t h i s i s enough)
(DO YOU OFTEN FEEL THIS I S ENOUGH ?)
ELIZA> [Abort]

In the end, it is the technique that is important—not the program. ELIZA has been
"explained away" and should rightfully be moved to the curio shelf. Pattern matching
in general remains important technique, and we will see it again in subsequent
chapters. The notion of a rule-based translator is also important. The problem
of understanding English (and other languages) remains an important part of AI.
Clearly, the problem of understanding English is not solved by ELIZA. In part V, we
will address the problem again, using more sophisticated techniques.

5 . 5 HISTORY AND REFERENCES 167

5.5 History and References

As mentioned above, the original article describing ELIZA is Weizenbaum 1 9 6 6 . An
other dialog system using similar pattern-matching techniques is Kenneth Colby's
(1 9 7 5) PARRY. This program simulated the conversation of a paranoid person well
enough to fool several professional psychologists. Although the pattern matching
techniques were simple, the model of belief maintained by the system was much
more sophisticated than ELIZA. Colby has suggested that dialog programs like ELIZA,
augmented with some sort of belief model like PARRY, could be useful tools in treat
ing mentally disturbed people. According to Colby, it would be inexpensive and
effective to have patients converse with a specially designed program, one that could
handle simple cases and alert doctors to patients that needed more help. Weizen
baum's book Computer Power and Human Reason (1 9 7 6) discusses ELIZA and PARRY

and takes a very critical view toward Colby's suggestion. Other interesting early
work on dialog systems that model belief is reported by Allan Collins (1 9 7 8) and
Jamie Carbonell (1 9 8 1) .

5.6 Exercises

t¿3 Exercise 5.2 [m] Experiment with this version of ELIZA. Show some exchanges
where it performs well, and some where it fails. Try to characterize the differ
ence. Which failures could be fixed by changing the rule set, which by changing the
pa t - ma tch function (and the pattern language it defines), and which require a change
to the el i za program itself?

@ Exercise 5.3 [h] Define a new set of rules that make ELIZA give stereotypical re
sponses to some situation other than the doctor-patient relationship. Or, write a set
of rules in a language other than English. Test and debug your new rule set.

@ Exercise 5.4 [s] We mentioned that our version of ELIZA cannot handle commas
or double quote marks in the input. However, it seems to handle the apostrophe in
both input and patterns. Explain.

[¿3 Exercise 5.5 [h] Alter the input mechanism to handle commas and other punctu
ation characters. Also arrange so that the user doesn't have to type parentheses
around the whole input expression. (Hint: this can only be done using some Lisp
functions we have not seen yet. Look at read - l ineand read-from-s t r ing .)

168 ELIZA: DIALOG WITH A MACHINE

@ Exercise 5.11 [m] Weigh the advantages of changing no-b i ndi ngs to ni 1 , and f a i 1
to something else.

@ Exercise 5.6 [m] Modify ELIZA to have an explicit exit. Also arrange so that the
output is not printed in parentheses either.

@ Exercise 5.7 [m] Add the "memory mechanism" discussed previously to ELIZA.
Also add some way of definining synonyms like "everyone" and "everybody."

51 Exercise 5.8 [h] It turns out that none of the rules in the given script uses a variable
more than once-there is no rule of the form (?x. . . ?x) . Write a pattern matcher that
only adds bindings, never checks variables against previous bindings. Use the time
special form to compare your function against the current version.

@ Exercise 5.9 [h] Winston and Horn's book Lisp presents a good pattern-matching
program. Compare their implementation with this one. One difference is that they
handle the case where the first element of the pattern is a segment variable with the
following code (translated into our notation):

(or (pat-match (rest pattern) (rest input) b indings)
(pat-match pattern (rest input) b ind ings))

This says that a segment variable matches either by matching the first element of
the input, or by matching more than the first element. It is much simpler than our
approach using posi t i on, partly because they don't update the binding list. Can
you change their code to handle bindings, and incorporate it into our version of
pat-match? Is it still simpler? Is it more or less efficient?

@ Exercise 5.10 What is wrong with the following definition of s i mpl e - equa 1 ?

(defun simple-equal (x y)
"Test i f two l i s t s or atoms are equal . "

Warning - incorrect
(or (eql χ y)

(and (l i s t p x) (l i s t p y)
(simple-equal (f i r s t x) (f i r s t y))
(simple-equal (rest x) (rest y)))))

5.6 EXERCISES 169

@ Exercise 5.12 [m] Weigh the advantages of making pat-match return multiple val
ues: the first would be true for a match and false for failure, and the second would
be the binding list.

@ Exercise 5.13 [m] Suppose that there is a call to segment-match where the variable
already has a binding. The current definition will keep making recursive calls to
segment-match, one for each possible matching position. But this is silly—if the
variable is already bound, there is only one sequence that it can possibly match
against. Change the definition so that it looks only for this one sequence.

S Exercise 5.14 [m] Define a version of ma ppend that, like ma pea r, accepts any number
of argument lists.

@ Exercise 5.15 [m] Give an informal proof that segment-match always terminates.

S Exercise 5.16 [s] Trick question: There is an object in Lisp which, when passed to
va r i abl e- p, results in an error. What is that object?

0 Exercise 5.17 [m] The current version of ELIZA takes an input, transforms it ac
cording to the first applicable rule, and outputs the result. One can also imagine a
system where the input might be transformed several times before the final output
is printed. Would such a system be more powerful? If so, in what way?

S Exercise 5.18 [h] Read Weizenbaum's original article on ELIZA and transpose his
list of rules into the notation used in this chapter.

170 ELIZA; DIALOG WITH A MACHINE

5.7 Answers

Answer 5.1 No. If either the pattern or the input were shorter, but matched every
existing element, the every expression would incorrectly return true.

(every #'pat-match *(a b c) ' (a)) Τ

Furthermore, if either the pattern or the input were a dotted list, then the result of the
every would be undefined—some implementations might signal an error, and others
might just ignore the expression after the dot.

(every #'pat-match ' (a b . c) ' (a b . d)) => T, NIL.orerror.

Answer 5.4 The expression don't may look like a single word, but to the Lisp reader
it is composed of the two elements don and ' t, or (quote t) . If these elements are
used consistently, they will match correctly, but they won't print quite right—there
will be a space before the quote mark. In fact the :pretty t argument to write is
specified primarily to make (quote t) print as ' t (See page 559 of Steele's Common
Lisp the Language, 2d edition.)

Answer 5.5 One way to do this is to read a whole line of text with read - l i ne rather
than read. Then, substitute spaces for any punctuation character in that string.
Finally, wrap the string in parentheses, and read it back in as a list:

(defun read-l ine-no-punct ()
"Read an input l i ne , ignor ing punctuat ion."
(read-from-str ing

(concatenate ' s t r i ng " (" (subs t i t u te - i f #\space#'punctuat ion-p
(read- l ine))

") ")))

(defun punctuation-p (char) (f ind char " . , ; : * l ? # - () \ \ \ " "))

This could also be done by altering the readtable, as in section 23.5, page 821.

5.7 ANSWERS 171

Answer 5.6

(defun e l iza ()
"Respond to user input using pattern matching r u l e s . "
(loop

(pr int *e l iza>)
(le t * ((input (read- l ine-no-punct))

(response (f la t ten (use -e l i za - ru les input))))
(pr int-wi th-spaces response)
(i f (equal response '(good bye)) (RETURN)))))

(defun pr int-wi th-spaces (l i s t)
(mapc #'(lambda (x) (pr in l x) (pr inc " ")) l i s t))

or

(defun pr int-wi th-spaces (l i s t)
(format t "~{~a ~}" l i s t))

Answer 5.10 Hint: consider (s i mpl e-equal ' () ' (n i l . n i l)) .

Answer 5.14

(defun mappend (fn &rest l i s t)
"Apply fn to each element of l i s t s and append the r e s u l t s . "
(apply #'append (apply #'mapcar fn l i s t s)))

Answer 5.16 It must be a symbol, because for nonsymbols, v a r i a b l e - p just returns
nil. Getting the symbol - name of a symbol is just accessing a slot, so that can't cause
an error. The only thing left is el t; if the symbol name is the empty string, then
accessing element zero of the empty string is an error. Indeed, there is a symbol
whose name is the empty string: the symbol.

Answer 5.17 Among other things, a recursive transformation system could be used
to handle abbreviations. That is, a form like "don't" could be transformed into "do
not" and then processed again. That way, the other rules need only work on inputs
matching "do not."

172 ELIZA; DIALOG WITH A MACHINE

Answer 5.19 The following includes most of Weizenbaum's rules:

(defparameter * e l i z a - r u l e s *
' ((((? * ?x) hel lo (? * ? y))

(How do you do. Please state your problem.))
(((? * ?x) computer (? * ? y))

(Do computers worry you?) (What do you think about machines?)
(Why do you mention computers?)
(What do you think machines have to do with your problem?))

(((? * ?x) name (? * ? y))

(I am not interested in names))
(((? * ?x) sorry (? * ? y))

(Please don' t apologize) (Apologies are not necessary)
(What fee l ings do you have when you apologize))

(((? * ?x) I remember (? * ? y))
(Do you often think of ?y)
(Does th inking of ?y br ing anything e lse to mind?)
(What e lse do you remember) (Why do you recal l ?y r ight now?)
(What in the present s i tua t ion reminds you of ?y)
(What i s the connection between me and ? y))

(((? * ?x) do you remember (? * ? y))
(Did you think I would forget ?y ?)
(Why do you think I should recal l ?y now)
(What about ?y) (You mentioned ? y))

(((? * ?x) i f (? * ? y))
(Do you rea l ly think i t s l i ke l y that ?y) (Do you wish that ?y)
(What do you think about ?y) (Rea l l y - - i f ? y))

(((? * ?x) I dreamt (? * ? y))
(Rea l l y - - ?y) (Have you ever fantasized ?y while you were awake?)
(Have you dreamt ?y before?))

(((? * ?x) dream about (? * ? y))
(How do you feel about ?y in r e a l i t y ?))

(((? * ?x) dream (? * ? y))
(What does th i s dream suggest to you?) (Do you dream of ten?)
(What persons appear in your dreams?)
(Don't you believe that dream has to do with your problem?))

(((? * ?x) my mother (? * ? y))
(Who else in your family ?y) (Tell me more about your fami ly))

(((? * ?x) my father (? * ? y))
(Your father) (Does he inf luence you s t rong ly?)
(What e lse comes to mind when you think of your fa ther?))

5.7 ANSWERS 173

(((? * ?x) I want (? * ? y))

(What would i t mean i f you got ?y)

(Why do you want ?y) (Suppose you got ?y soon))

(((? * ?x) I am glad (? * ? y))

(How have I helped you to be ?y) (What makes you happy jus t now)

(Can you explain why you are suddenly ? y))

(((? * ?x) I am sad (? * ?y))

(I am sorry to hear you are depressed)

(I 'm sure i t ' s not pleasant to be sad))

(((? * ?x) are l i ke (? * ? y))

(What resemblance do you see between ?x and ?y))

(((? * ?x) i s l i ke (? * ? y))

(In what way i s i t that ?x i s l i ke ?y)

(What resemblance do you see?)

(Could there rea l ly be some connection?) (How?))

(((? * ?x) a l ike (? * ? y))

(In what way?) (What s im i l a r i t i e s are there?))

(((? * ?x) same (? * ? y))

(What other connections do you see?))

(((? * ?x) I was (? * ? y))

(Were you rea l l y?) (Perhaps I already knew you were ?y)

(Why do you tel l me you were ?y now?))

(((? * ?x) was I (? * ? y))

(What i f you were ?y ?) (Do you think you were ?y)

(What would i t mean i f you were ? y))

(((? * ?x) I am (? * ? y))

(In what way are you ?y) (Do you want to be ?y ?))

(((? * ?x) am I (? * ? y))

(Do you believe you are ?y) (Would you want to be ?y)

(You wish I would te l l you you are ?y)

(What would i t mean i f you were ? y))

(((? * ?x) am (? * ? y))

(Why do you say "AM?") (I don' t understand that))

(((? * ?x) are you (? * ? y))

(Why are you interested in whether I am ?y or not?)

(Would you prefer i f I weren't ?y)

(Perhaps I am ?y in your fan tas ies))

(((? * ?x) you are (? * ? y))

(What makes you think I am ?y ?))

174 ELIZA; DIALOG WITH A MACHINE

(((? * ?x) because (? * ? y))
(I s that the real reason?) (What other reasons might there be?)
(Does that reason seem to explain anything e l s e ?))

(((? * ?x) were you (? * ? y))
(Perhaps I was ?y) (What do you th ink?) (What i f I had been ? y))

(((? * ?x) I can ' t (? * ?y))
(Maybe you could ?y now) (What i f you could ?y ?))

(((? * ?x) I feel (? * ? y))
(Do you often feel ?y ?))

(((? * ?x) I fe l t (? * ? y))
(What other fee l ings do you have?))

(((? * ?x) I (? * ?y) you (? * ? z))
(Perhaps in your fantasy we ?y each other))

(((? * ?x) why don' t you (? * ? y))
(Should you ?y you rse l f ?)
(Do you believe I don' t ?y) (Perhaps I wi l l ?y in good time))

(((? * ?x) yes (? * ? y))
(You seem quite pos i t i ve) (You are sure) (I understand))

(((? * ?x) no (? * ? y))
(Why not?) (You are being a b i t negative)
(Are you saying "NO" just to be negat ive?))

(((? * ?x) someone (? * ? y))
(Can you be more s p e c i f i c ?))

(((? * ?x) everyone (? * ? y))
(surely not everyone) (Can you think of anyone in par t i cu la r?)
(Who for example?) (You are th inking of a special person))

(((? * ?x) always (? * ? y))
(Can you think of a spec i f i c example) (When?)
(What incident are you thinking o f?) (Rea l l y - - always))

(((? * ?x) what (? * ? y))
(Why do you ask?) (Does that question in terest you?)
(What i s i t you rea l ly want to know?) (What do you th ink?)
(What comes to your mind when you ask tha t?))

(((? * ?x) perhaps (? * ? y))
(You do not seem quite cer ta in))

(((? * ?x) are (? * ? y))
(Did you think they might not be ?y)
(Poss ib ly they are ? y))

(((? * ?x))
(Very in terest ing) (I am not sure I understand you fu l l y)
(What does that suggest to you?) (Please continue) (Go on)
(Do you feel st rongly about d iscuss ing such t h i n g s ?))))

CHAPTER 6

Building Software Tools

Man is a tool-using animal
Without tools he is nothing

with tools he is all
-Thomas Carlyle (1795-Ί 881)

I n chapters 4 and 5 we were concerned with building two particular programs, GPS and ELIZA.
In this chapter, we will reexamine those two programs to discover some common patterns.
Those patterns will be abstracted out to form reusable software tools that will prove helpful

in subsequent chapters.

6.1 An Interactive Interpreter Tool
The structure of the function el i za is a common one. It is repeated below:

(defun e l iza ()
"Respond to user input using pattern matching r u l e s . "
(loop

(pr int ' e l i za>)
(pr int (f lat ten (use-e l i za - ru les (read))))))

176 BUILDING SOFTWARE TOOLS

Many other appHcations use this pattern, including Lisp itself. The top level of Lisp
could be defined as:

(defun l i s p ()
(loop

(pr int ' >)
(pr int (eval (read)))))

The top level of a Lisp system has historically been called the "read-eval-print loop."
Most modern Lisps print a prompt before reading input, so it should really be called
the "prompt-read-eval-print loop," but there was no prompt in some early systems
like MacLisp, so the shorter name stuck. If we left out the prompt, we could write a
complete Lisp interpreter using just four symbols:

(loop (pr int (eval (read))))

It may seem facetious to say those four symbols and eight parentheses constitute a
Lisp interpreter. When we write that line, have we really accomplished anything?
One answer to that question is to consider what we would have to do to write a Lisp
(or Pascal) interpreter in Pascal. We would need a lexical analyzer and a symbol table
manager. This is a considerable amount of work, but it is all handled by read. We
would need a syntactic parser to assemble the lexical tokens into statements, read
also handles this, but only because Lisp statements have trivial syntax: the syntax
of lists and atoms. Thus read serves fine as a syntactic parser for Lisp, but would
fail for Pascal. Next, we need the evaluation or interpretation part of the interpreter;
eval does this nicely, and could handle Pascal just as well if we parsed Pascal syntax
into Lisp expressions, p r i n t does much less work than read or e v a l , but is still
quite handy.

The important point is not whether one line of code can be considered an imple
mentation of Lisp; it is to recognize common patterns of computation. Both el i z a
and l i s p can be seen as interactive interpreters that read some input, transform or
evaluate the input in some way, print the result, and then go back for more input. We
can extract the following common pattern:

(defun program ()
(loop

(pr int prompt)
(pr int (transform (read)))))

There are two ways to make use of recurring patterns like this: formally and infor
mally. The informal alternative is to treat the pattern as a cliche or idiom that will
occur frequently in our writing of programs but will vary from use to use. When we

6.1 AN INTERACTIVE INTERPRETER TOOL 177

want to write a new program, we remember writing or reading a similar one, go back
and look at the first program, copy the relevant sections, and then modify them for
the new program. If the borrowing is extensive, it would be good practice to insert
a comment in the new program citing the original, but there would be no "official"
connection between the original and the derived program.

The formal alternative is to create an abstraction, in the form of functions and per
haps data structures, and refer explicitly to that abstraction in each new application—
in other words, to capture the abstraction in the form of a useable software tool. The
interpreter pattern could be abstracted into a function as follows:

(defun interact ive- interpreter (prompt transformer)
"Read an express ion, transform i t , and pr int the resu l t . "
(loop

(pr int prompt)

(pr int (funcall transformer (read)))))

This function could then be used in writing each new interpreter:
(defun l i s p ()

(in teract ive- interpreter *> # 'eva l))

(defun e l iza ()
(in teract ive- interpreter ' e l i z a >

#'(lambda (x) (f lat ten (use-e l i za - ru les x)))))

Or, with the help of the higher-order function compose:

(defun compose (f g)
"Return the function that computes (f (g x)) . "
#'(lambda (x) (funcal l f (funcal l g x))))

(defun e l iza ()
(i nteracti ve- i nterpreter 'el iza>

(compose # ' f la t ten # ' u s e - e l i z a - r u l e s)))

There are two differences between the formal and informal approaches. First, they
look different. If the abstraction is a simple one, as this one is, then it is probably
easier to read an expression that has the loop explicitly written out than to read one
that calls in te rac t ! ve-i nterpreter, since that requires finding the definition of
i n teract i ve - i nterpreter and understanding it as well.

The other difference shows up in what's called maintenance. Suppose we find a
missing feature in the definition of the interactive interpreter. One such omission is
that the 1 oop has no exit. I have been assuming that the user can terminate the loop by
hitting some interrupt (or break, or abort) key. A cleaner implementation would allow

178 BUILDING SOFTWARE TOOLS

the user to give the interpreter an explicit termination command. Another useful
feature would be to handle errors within the interpreter. If we use the irrformal
approach, then adding such a feature to one program would have no effect on the
others. Butif we use the formal approach, then improving i nteracti ve- i nterpreter
would automatically bring the new features to all the programs that use it.

The following version of i nteracti ve- i nterpreter adds two new features. First,
it uses the macro handler-case^ to handle errors. This macro evaluates its first
argument, and normally just returns that value. However, if an error occurs, the
subsequent arguments are checked for an error condition that matches the error that
occurred. In this use, the case error matches all errors, and the action taken is to
print the error condition and continue.

This version also allows the prompt to be either a string or a function of no
arguments that will be called to print the prompt. The function prompt-generator,
for example, returns a function that will print prompts of the form [1] , C2], and
so forth.

(defun interact ive- interpreter (prompt transformer)
"Read an express ion, transform i t , and pr int the resu l t . "
(loop

(handler-case
(progn

(i f (s t r ingp prompt)
(pr int prompt)
(funcal l prompt))

(pr int (funcal l transformer (read))))
In case of er ror , do t h i s :

(error (condit ion)
(format t "'^&;; Error ~a ignored, back to top l e v e l . "

cond i t ion)))))

(defun prompt-generator (&optional (num 0) (c t l - s t r i ng "C^d] "))
"Return a function that pr in ts prompts l i ke [1] . C2] . e tc . "
#*(lambda () (format t c t l - s t r i n g (inc f num))))

6.2 A Pattern-Matching Tool

The pat-match function was a pattern matcher defined specifically for the ELIZA
program. Subsequent programs will need pattern matchers too, and rather than
write specialized matchers for each new program, it is easier to define one general

^The macro hand! er-case is only in ANSI Common Lisp.

6.2 A PAnERN-MATCHING TOOL 179

pattern matcher that can serve most needs, and is extensible in case novel needs
come up.

The problem in designing a "general" tool is deciding what features to provide.
We can try to define features that might be useful, but it is also a good idea to make
the list of features open-ended, so that new ones can be easily added when needed.

Features can be added by generalizing or specializing existing ones. For example,
we provide segment variables that match zero or more input elements. We can
specialize this by providing for a kind of segment variable that matches one or more
elements, or for an optional variable that matches zero or one element. Another
possibility is to generalize segment variables to specify a match of m to η elements, for
any specified m and n. These ideas come from experience with notations for writing
regular expressions, as well as from very general heuristics for generalization, such
as "consider important special cases" and "zero and one are likely to be important
special cases."

Another useful feature is to allow the user to specify an arbitrary predicate that
a match must satisfy. The notation (? i s ?n numberp) could be used to match any
expression that is a number and bind it to the variable ?n. This would look like:

> (pat-match ' (x = (? i s ?n numberp)) ' (x = 34)) => ((?n . 34))

> (pat-match ' (x = (? i s ?n numberp)) ' (x = x)) => NIL

Since patterns are like boolean expressions, it makes sense to allow boolean operators
on them. Following the question-mark convention, we will use ?and, ?or and ?not
for the operators.^ Here is a pattern to match a relational expression with one of three
relations. It succeeds because the < matches one of the three possibiUties specified
by(?or < = >) .

> (pat-match ' (? x (?or < = >) ?y) *(3 < 4)) =^ ((?Y . 4) (?X . 3))

Here is an example of an ?and pattern that checks if an expression is both a number
and odd:

> (pat-match *(x = (?and (? i s ?n numberp) (? i s ?n oddp)))
•(x = 3))

((?N . 3))

^An alternative would be to reserve the question mark for variables only and use another
notation for these match operators. Keywords would be a good choice, such as : and, : or,: i s,
etc.

180 BUILDING SOFTWARE TOOLS

The next pattern uses ?not to insure that two parts are not equal:

> (pat-match ' (? x / = (?not ? x)) ' (3 / = 4)) =^ ((?X . 3))

The segment matching notation we have seen before. It is augmented to allow for
three possibilities: zero or more expressions; one or more expressions; and zero or
one expressions. Finally, the notation (? i f exp) can be used to test a relationship
between several variables. It has to be Usted as a segment pattern rather than a single
pattern because it does not consume any of the input at all:

> (pat-match ' (? x > ?y (? i f (> ?x ? y))) ' (4 > 3)) =>
((?Y . 3) (?X . 4))

When the description of a problem gets this complicated, it is a good idea to
attempt a more formal specification. The following table describes a grammar of
patterns, using the same grammar rule format described in chapter 2.

pat =^ var
constant
segment-pat
single-pat
(pat. pat)

single-pat =4̂

segment-pat -

var-
constant -

(lis var predicate)
(lor pat...)
(?andpai. . .)
(?not pat...)

((l*var) ...)
(d+var) ...)
((V.var) ...)
((? i f exp)...)

Ί chars
atom

match any one expression
match just this atom
match something against a sequence
match something against one expression
match the first and the rest

test predicate on one expression
match any pattern on one expression
match every pattern on one expression
succeed if pattern(s) do not match

match zero or more expressions
match one or more expressions
match zero or one expression
test if exp (which may contain
variables) is true

a symbol starting with ?
any nonvariable atom

Despite the added complexity, all patterns can still be classified into five cases.
The pattern must be either a variable, constant, a (generalized) segment pattern,
a (generalized) single-element pattern, or a cons of two patterns. The following
definition of pat -match reflects the five cases (along with two checks for failure):

6.2 A PAnERN'MATCHING TOOL 181

(defun pat-match (pattern input Äoptional (bindings no-b ind ings))
"Match pattern against input in the context of the b indings"
(cond ((eq bindings f a i l) f a i l)

((var iab le-p pattern)
(match-variable pattern input b ind ings))

((eql pattern input) b indings)
((segment-pattern-p pattern)
(segment-matcher pattern input b ind ings))

((s ing le-pat tern-p pattern) ; * * *
(single-matcher pattern input b ind ings)) ; * * *

((and (consp pattern) (consp input))
(pat-match (rest pattern) (rest input)

(pat-match (f i r s t pattern) (f i r s t input)
b ind ings)))

(t f a i l)))

For completeness, we repeat here the necessary constants and low-level functions
from ELIZA:

(defconstant fa i l ni l " Indicates pat-match fa i l u re ")

(defconstant no-bindings ' ((t . t))
" Indicates pat-match success, with no va r i ab les . ")

(defun var iable-p (x)
" I s χ a var iable (a symbol beginning with ' ? *) ? "
(and (symbolp x) (equal (char (symbol-name x) 0) # \ ?)))

(defun get-binding (var b indings)
"Find a (var iable . value) pair in a binding l i s t . "
(assoc var b ind ings))

(defun binding-var (binding)
"Get the var iable part of a s ing le b ind ing. "
(car b inding))

(defun binding-val (binding)
"Get the value part of a s ing le b ind ing. "
(cdr b inding))

(defun make-binding (var va l) (cons var va l))

(defun lookup (var b indings)
"Get the value part (for var) from a binding l i s t . "
(binding-val (get-binding var b ind ings)))

182 BUILDING SOFTWARE TOOLS

(defun extend-bindings (var val b indings)
"Add a (var . value) pair to a binding l i s t . "
(cons (make-binding var va l)

Once we add a " rea l " b ind ing,
we can get r id of the dummy no-bindings

(i f (eq bindings no-bindings)
ni l
b indings)

(defun match-variable (var input b indings)
"Does VAR match input? Uses (or updates) and returns b ind ings . "
(le t ((binding (get-binding var b ind ings)))

(cond ((not binding) (extend-bindings var input b ind ings))
((equal input (binding-val b inding)) b indings)
(t f a i l))))

The next step is to define the predicates that recognize generalized segment and
single-element patterns, and the matching functions that operate on them. We could
implementsegment-matcherandsingle-matcherwithcasestatementsthatconsider
all possible cases. However, that would make it difficult to extend the matcher. A
programmer who wanted to add a new kind of segment pattern would have to edit
the definitions of both segment-pattern-p and segment-matcher to install the new
feature. This by itself may not be too bad, but consider what happens when two
programmers each add independent features. If you want to use both, then neither
version of segment-matcher (or segment-pattern-p) will do. You'll have to edit the
functions again, just to merge the two extensions.

The solution to this dilemma is to write one version of segment-pattern-p and
segment-matcher, once and for all, but to have these functions refer to a table of
pattern/action pairs. The table would say "if you see ?* in the pattern, then use
the function segment-match," and so on. Then programmers who want to extend
the matcher just add entries to the table, and it is trivial to merge different exten
sions (unless of course two programmers have chosen the same symbol to mark
different actions).

This style of programming, where pattern/action pairs are stored in a table, is
called data-driven programming. It is a very flexible style that is appropriate for writing
extensible systems.

There are many ways to implement tables in Conunon Lisp, as discussed in
section 3.6, page 73. In this case, the keys to the table will be symbols (like ?*),
and it is fine if the representation of the table is distributed across memory. Thus,
property lists are an appropriate choice. We will have two tables, represented by
the segment-match property and the si ngl e-match property of symbols like ?*. The
value of each property will be the name of a function that implements the match.
Here are the table entries to implement the granunar listed previously:

6.2 A PAnERN-MATCHING TOOL 183

(set f (get ' ? i s 's ingle-match) 'match- is)
(set f (get ' ? o r 's ingle-match) 'match-or)
(set f (get '?and 's ingle-match) 'match-and)
(set f (get '?no t 's ingle-match) 'match-not)

(set f (get ' ? * 'segment-match) 'segment-match)
(set f (get ' ? + 'segment-match) 'segment-match+)
(set f (get ' ? ? 'segment-match) 'segment-match?)
(set f (get ' ? i f 'segment-match) 'match- i f)

With the table defined, we need to do two things. First, define the "glue" that holds
the table together: the predicates and action-taking functions. A function that looks
upadata-driven function and calls it (such as segment-matcher and single-matcher)
is called a dispatch function.

(defun segment-pattern-p (pattern)
" I s th i s a segment-matching pattern l i ke ((? * var) . pa t)? "
(and (consp pattern) (consp (f i r s t pattern))

(symbolp (f i r s t (f i r s t pattern)))
(segment-match-fn (f i r s t (f i r s t pat tern)))))

(defun s ing le-pat tern-p (pattern)
" I s th is a single-matching pattern?
E .g . (? i s X predicate) (?and . patterns) (?or . pa t te rns) . "
(and (consp pattern)

(single-match-fn (f i r s t pat tern))))

(defun segment-matcher (pattern input b indings)
"Call the r ight function for th i s kind of segment pat tern."
(funcall (segment-match-fn (f i r s t (f i r s t pattern)))

pattern input b ind ings))

(defun single-matcher (pattern input b indings)
"Call the r ight function for th i s kind of s ing le pat tern."
(funcall (s ingle-match-fn (f i r s t pattern))

(rest pattern) input b ind ings))

(defun segment-match-fn (x)
"Get the segment-match function for x.
i f i t i s a symbol that has one."
(when (symbolp x) (get χ 'segment-match)))

(defun single-match-fn (x)
"Get the single-match function for x ,
i f i t i s a symbol that has one."
(when (symbolp x) (get χ 's ing le-match)))

184 BUILDING SOFTWARE TOOLS

The last thing to do is define the individual matching functions. First, the single-
pattern matching functions:

(defun match-is (var-and-pred input b indings)
"Succeed and bind var i f the input s a t i s f i e s pred,
where var-and-pred i s the l i s t (var pred) . "
(le t * ((var (f i r s t var-and-pred))

(pred (second var-and-pred))
(new-bindings (pat-match var input b ind ings)))

(i f (or (eq new-bindings f a i l)
(not (funcal l pred input)))

fa i l
new-bindings)))

(defun match-and (patterns input b indings)
"Succeed i f a l l the patterns match the input . "
(cond ((eq bindings f a i l) f a i l)

((nul l patterns) b indings)
(t (match-and (rest patterns) input

(pat-match (f i r s t patterns) input
b ind ings)))))

(defun match-or (patterns input b indings)
"Succeed i f any one of the patterns match the input ."
(i f (null patterns)

fa i l
(le t ((new-bindings (pat-match (f i r s t patterns)

input b ind ings)))
(i f (eq new-bindings f a i l)

(match-or (rest patterns) input b indings)
new-bindings))))

(defun match-not (patterns input b indings)
"Succeed i f none of the patterns match the input.
This wi l l never bind any va r i ab les . "
(i f (match-or patterns input b indings)

fa i l
b ind ings))

Now the segment-pattern matching functions, segment-match is similar to the ver
sion presented as part of ELIZA. The difference is in how we determine pos, the
position of the first element of the input that could match the next element of the
pattern after the segment variable. In ELIZA, we assumed that the segment variable
was either the last element of the pattern or was followed by a constant. In the
following version, we allow nonconstant patterns to follow segment variables. The
function f i r s t -match - pos is added to handle this. If the following element is in fact
a constant, the same calculation is done using posi t i on. If it is not a constant, then

6.2 A PAnERN-MATCHING TOOL 185

we just return the first possible starting position—unless that would put us past the
end of the input, in which case we return nil to indicate failure:

(defun segment-match (pattern input bindings Äoptional (s ta r t 0))
"Match the segment pattern ((? * var) . pat) against input . "
(let ((var (second (f i r s t pat tern)))

(pat (rest pat tern)))
(i f (nul l pat)

(match-variable var input b indings)
(le t ((pos (f i rst -match-pos (f i r s t pat) input s t a r t)))

(i f (nul l pos)
fa i l
(le t ((b2 (pat-match

pat (subseq input pos)
(match-variable var (subseq input 0 pos)

b ind ings))))
I f t h i s match f a i l e d , t ry another longer one

(i f (eq b2 f a i l)
(segment-match pattern input bindings (+ pos 1))
b 2)))))))

(defun f i rst-match-pos (patl input s ta r t)
"Find the f i r s t pos i t ion that patl could poss ib ly match input ,
s tar t ing at pos i t ion s ta r t . I f patl i s non-constant, then jus t
return s t a r t . "
(cond ((and (atom pat l) (not (var iable-p pa t l)))

(pos i t ion patl input :s ta r t s ta r t : test #*equal))
((< s ta r t (length input)) s ta r t)
(t n i l)))

In the first example below, the segment variable ?x matches the sequence (b c) . In
the second example, there are two segment variables in a row. The first successful
match is achieved with the first variable, ?x, matching the empty sequence, and the
second one, ?y, matching (b e) .

> (pat-match ' (a (? * ?x) d) ' (a b c d)) =^ ((?X Β Ο)

> (pat-match ' (a (? * ?x) (? * ?y) d) ' (a b c d)) =^ ((?Y Β C) (?X))

In the next example, ?x is first matched against nil and ?y against (b e d), but that
fails, so we try matching ?x against a segment of length one. That fails too, but
finally the match succeeds with ?x matching the two-element segment (b e) , and ?y
matching (d).

186 BUILDING SOFTWARE TOOLS

> (pat-match ' (a (? * ?x) (? * ?y) ?x ?y)
' (a b c d (b c) (d))) ((?Y D) (?X Β Ο)

Given segment - match, it is easy to define the function to match one-or-more elements
and the function to match zero-or-one element:

(defun segment-match+ (pattern input b indings)
"Match one or more elements of input . "
(segment-match pattern input bindings D)

(defun segment-match? (pattern input b indings)
"Match zero or one element of input . "
(le t ((var (second (f i r s t pat tern)))

(pat (rest pat tern)))
(or (pat-match (cons var pat) input b indings)

(pat-match pat input b ind ings))))

Finally, we supply the function to test an arbitrary piece of Lisp code. It does this
by evaluating the code with the bindings implied by the binding list. This is one of
the few cases where it is appropriate to call eval: when we want to give the user
unrestricted access to the Lisp interpreter.

(defun match-if (pattern input b indings)
"Test an arb i t rary expression involv ing va r iab les .
The pattern looks l i ke ((? i f code) . r e s t) . "
(and (progv (mapcar #*car b indings)

(mapcar # 'cdr b indings)
(eval (second (f i r s t pat tern))))

(pat-match (rest pattern) input b ind ings)))

Here are two examples using ?i f. The first succeeds because (+ 3 4) is indeed 7,
and the second fails because (> 3 4) is false.

> (pat-match ' (? x ?op ?y i s ?z (? i f (eql (?op ?x ?y) ? z)))
•(3 + 4 i s 7))

((?Z . 7) (?Y . 4) (?0P . +) (?X . 3))

> (pat-match • (? x ?op ?y (? i f (?op ?x ? y)))
' (3 > 4))

NIL

The syntax we have defined for patterns has two virtues: first, the syntax is very
general, so it is easy to extend. Second, the syntax can be easily manipulated by
pat-match. However, there is one drawback: the syntax is a little verbose, and some
may find it ugly. Compare the following two patterns:

6.2 A PAnERN-MATCHING TOOL 187

(a (? * ?x) (? * ?y) d)
(a ? x * ? y * d)

Many readers find the second pattern easier to understand at a glance. We could
change pat-match to allow for patterns of the form ?x*, but that would mean
pat-match would have a lot more work to do on every match. An alternative is
to leave pat-match as is, but define another level of syntax for use by human readers
only. That is, a programmer could type the second expression above, and have it
translated into the first, which would then be processed by pat-match.

In other words, we will define a facility to define a kind of pattern-matching
macro that will be expanded the first time the pattern is seen. It is better to do this
expansion once than to complicate pat-match and in effect do the expansion every
time a pattern is used. (Of course, if a pattern is only used once, then there is no
advantage. But in most programs, each pattern will be used again and again.)

We need to define two functions: one to define pattern-matching macros, and
another to expand patterns that may contain these macros. We will only allow
symbols to be macros, so it is reasonable to store the expansions on each symbol's
property list:

(defun pat-match-abbrev (symbol expansion)
"Define symbol as a macro standing for a pat-match pat tern."
(set f (get symbol *expand-pat-match-abbrev)

(expand-pat-match-abbrev expansion))

(defun expand-pat-match-abbrev (pat)
"Expand out a l l pattern matching abbreviat ions in pat . "
(cond ((and (symbolp pat) (get pat 'expand-pat-match-abbrev)))

((atom pat) pat)
(t (cons (expand-pat-match-abbrev (f i r s t pat))

(expand-pat-match-abbrev (rest pa t))))))

We would use this facility as follows:

> (pat-match-abbrev ' ? x * ' (? * ? x)) => (? * ?X)

> (pat-match-abbrev ' ? y * ' (? * ? y)) (? * ?Y)

> (set f axyd (expand-pat-match-abbrev ' (a ? x * ? y * d)))
(A (? * ?X) (? * ?Y) D)

> (pat-match axyd ' (a b c d)) ((?Y Β C) (?X))

@ Exercise 6.1 [m] Go back and change the ELIZA rules to use the abbreviation facility.
Does this make the rules easier to read?

188 BUILDING SOFTWARE TOOLS

@ Exercise 6.2 [h] In the few prior examples, every time there was a binding of
pattern variables that satisfied the input, that binding was found. Informally, show
that pat-match will always find such a binding, or show a counterexample where it
fails to find one.

6.3 A Rule-Based Translator Tool
As we have defined it, the pattern matcher matches one input against one pattern. In
el i ζ a, we need to match each input against a number of patterns, and then return a
result based on the rule that contains the first pattern that matches. To refresh your
memory, here is the function use-el i za - rul es:

(defun use-e l i za - ru les (input)
"Find some rule with which to transform the input . "
(some #*(lambda (ru le)

(let ((resu l t (pat-match (rule-pattern rule) input)))
(i f (not (eq resul t f a i l))

(sub l i s (switch-viewpoint resu l t)
(random-elt (ru le-responses r u l e))))))

* e l i z a - r u l e s *))

It turns out that this will be a quite common thing to do: search through a list of rules
for one that matches, and take action according to that rule. To turn the structure of
use-el iza - rules into a software tool, we will allow the user to specify each of the
following:

• What kind of rule to use. Every rule will be characterized by an if-part and a
then-part, but the ways of getting at those two parts may vary.

• What list of rules to use. In general, each appHcation will have its own list of
rules.

• How to see if a rule matches. By default, we will use pat-match, but it should
be possible to use other matchers.

• What to do when a rule matches. Once we have determined which rule to use,
we have to determine what it means to use it. The default is just to substitute
the bindings of the match into the then-part of the rule.

6.4 A SET OF SEARCHING TOOLS 189

The rule-based translator tool now looks like this:

(defun ru le-based-t ranslator
(input rules &key (matcher #'pat-match)
(ru le - i f # * f i r s t) (rule-then #*rest) (act ion # * s u b l i s))

"Find the f i r s t rule in rules that matches input,
and apply the action to that ru le . "
(some

#'(lambda (ru le)
(le t ((resu l t (funcal l matcher (funcal l r u l e - i f ru le)

input)))
(i f (not (eq resul t f a i l))

(funcal l action resul t (funcal l rule-then ru l e)))))
ru les))

(defun use-e l i za - ru les (input)
"Find some rule with which to transform the input . '
(ru le-based-t ranslator input * e l i z a - r u l e s *

lact ion #·(lambda (bindings responses)
(sub l i s (switch-viewpoint b indings)

(random-elt responses)))))

6.4 A Set of Searching Tools
The GPS program can be seen as a problem in search. In general, a search problem
involves exploring from some starting state and investigating neighboring states
until a solution is reached. As in GPS, state means a description of any situation or
state of affairs. Each state may have several neighbors, so there will be a choice of
how to search. We can travel down one path until we see it is a dead end, or we can
consider lots of different paths at the same time, expanding each path step by step.
Search problems are called nondeterministic because there is no way to determine
what is the best step to take next. AI problems, by their very nature, tend to be
nondeterministic. This can be a source of confusion for programmers who are used
to deterministic problems. In this section we will try to clear up that confusion.
This section also serves as an example of how higher-order functions can be used to
implement general tools that can be specified by passing in specific functions.

Abstractly, a search problem can be characterized by four features:

• The siarf state.

• The^Oiz/state (or states).

190 BUILDING SOFTWARE TOOLS

• The successors, or states that can be reached from any other state.

• The strategy that determines the order in which we search.

The first three features are part of the problem, while the fourth is part of the
solution. In GPS, the starting state was given, along with a description of the goal
states. The successors of a state were determined by consulting the operators. The
search strategy was means-ends analysis. This was never spelled out explicitly but
was impUcit in the structure of the whole program. In this section we will formulate
a general searching tool, show how it can be used to implement several different
search strategies, and then show how GPS could be implemented with this tool.

The first notion we have to define is the state space, or set of all possible states.
We can view the states as nodes and the successor relation as links in a graph. Some
state space graphs will have a small number of states, while others have an infinite
number, but they can still be solved if we search cleverly. Some graphs will have
a regular structure, while others will appear random. We will start by considering
only trees—that is, graphs where a state can be reached by only one unique sequence
of successor links. Here is a tree:

Searching Trees

We will call our first searching tool t ree-search, because it is designed to search
state spaces that are in the form of trees. It takes four arguments: (1) a list of valid
starting states, (2) a predicate to decide if we have reached a goal state, (3) a function
to generate the successors of a state, and (4) a function that decides in what order

6.4 A SET OF SEARCHING TOOLS 191

to search. The first argument is a hst rather than a single state so that t ree-search
can recursively call itself after it has explored several paths through the state space.
Think of the first argument not as a starting state but as a list of possible states from
which the goal may be reached. This lists represents the fringe of the tree that has
been explored so far. t ree-search has three cases: If there are no more states to
consider, then give up and return f a i 1. If the first possible state is a goal state,
then return the succesful state. Otherwise, generate the successors of the first state
and combine them with the other states. Order this combined list according to the
particular search strategy and continue searching. Note that t ree - search itself does
not specify any particular searching strategy.

(defun tree-search (states goal-p successors combiner)
"Find a state that s a t i s f i e s goa l -p . Star t with s ta tes ,
and search according to successors and combiner."
(dbg :search " "& ; ; Search: ~a" s ta tes)
(cond ((nul l s ta tes) f a i l)

((funcal l goal-p (f i r s t s ta tes)) (f i r s t s ta tes))
(t (t ree-search

(funcal l combiner
(funcall successors (f i r s t s ta tes))
(rest s ta tes))

goal-p successors combiner))))

The first strategy we will consider is called depth-first search. In depth-first search,
the longest paths are considered first. In other words, we generate the successors
of a state, and then work on the first successor first. We only return to one of the
subsequent successors if we arrive at a state that has no successors at all. This
strategy can be implemented by simply appending the previous states to the end
of the Ust of new successors on each iteration. The function d e p t h - f i rs t -search
takes a single starting state, a goal predicate, and a successor function. It packages
the starting state into a Hst as expected by tree-search, and specifies append as the
combining function:

(defun depth- f i rs t -search (s tar t goal-p successors)
"Search new states f i r s t unt i l goal i s reached."
(tree-search (l i s t s ta r t) goal-p successors #'append))

Let's see how we can search through the binary tree defined previously. First, we
define the successor function binary-tree. It returns a list of two states, the two
numbers that are twice the input state and one more than twice the input state. So the
successors of 1 will be 2 and 3, and the successors of 2 will be 4 and 5. The bi na ry - t ree
function generates an infinite tree of which the first 15 nodes are diagrammed in our
example.

192 BUILDING SOFTWARE TOOLS

(defun binary-tree (χ) (l i s t (* 2 χ) (+ 1 (* 2 χ))))

Το make it easier to specify a goal, we define the function i s as a function that returns
a predicate that tests for a particular value. Note that 1 s does not do the test itself.
Rather, it returns a function that can be called to perform tests:

(defun i s (value) #*(lambda (x) (eql χ va lue)))

Now we can turn on the debugging output and search through the binary tree, starting
at 1, and looking for, say, 1 2 , as the goal state. Each line of debugging output shows
the list of states that have been generated as successors but not yet examined:

> (debug :search) => (SEARCH)

> (depth- f i rs t -search 1 (i s 12) #*binary- t ree)
; ; Search; (1)
; : Search: (2 3)
; ; Search: (4 5 3)
; ; Search: (8 9 5 3)

Search: (16 17 9 5 3)
: ; Search: (32 33 17 9 5 3)
; ; Search: (64 65 33 17 9 5 3)

Search: (128 129 65 33 17 9 5 3)
Search: (256 257 129 65 33 17 9 5 3)

; : Search: (512 513 257 129 65 33 17 9 5 3)
; ; Search: (1024 1025 513 257 129 65 33 17 9 5 3)

Search: (2048 2049 1025 513 257 129 65 33 17 9 5 3)
[Abort]

The problem is that we are searching an infinite tree, and the depth-first search
strategy just dives down the left-hand branch at every step. The orüy way to stop the
doomed search is to type an interrupt character.

An alternative strategy is breadth-first search, where the shortest path is extended
first at each step. It can be implemented simply by appending the new successor
states to the end of the existing states:

(defun prepend (x y) "Prepend y to s tar t of x" (append y χ))

(defun breadth- f i rs t -search (s ta r t goal -p successors)
"Search old states f i r s t unt i l goal i s reached."
(tree-search (l i s t s ta r t) goal-p successors #'prepend))

The orüy difference between depth-first and breadth-first search is the difference
between append and prepend. Here we see b readth- f i r s t - s e a r c h inaction:

6,4 A SET OF SEARCHING TOOLS 193

> (breadth- f i rs t -search 1 (i s 12) *binary-tree)
Search: (1)
Search: (2 3)
Search: (3 4 5)
Search: (4 5 6 7)
Search: (5 6 7 8 9)
Search: (6 7 8 9 10 11)
Search: (7 8 9 10 11 12 13)
Search: (8 9 10 11 12 13 14 15)
Search: (9 10 11 12 13 14 15 16 17)
Search: (10 11 12 13 14 15 16 17 18 19)
Search: (11 12 13 14 15 16 17 18 19 20 21)
Search: (12 13 14 15 16 17 18 19 20 21 22 23)

12

Breadth-first search ends up searching each node in numerical order, and so it will
eventually find any goal. It is methodical, but therefore plodding. Depth-first search
will be much faster—if it happens to find the goal at all. For example, if we were
looking for 2048, depth-first search would find it in 12 steps, while breadth-first
would take 2048 steps. Breadth-first search also requires more storage, because it
saves more intermediate states.

If the search tree is finite, then either breadth-first or depth-first will eventually
find the goal. Both methods search the entire state space, but in a different order. We
will now show a depth-first search of the 15-node binary tree diagrammed previously.
It takes about the same amount of time to find the goal (12) as it did with breadth-first
search. It would have taken more time to find 15; less to find 8. The big difference is
in the number of states considered at one time. At most, depth-first search considers
four at a time; in general it will need to store only log2 η states to search a n-node tree,
while breadth-first search needs to store n /2 states.

(defun f in i te -b inary- t ree (n)
"Return a successor function that generates a binary tree
with η nodes."
#'(lambda (x)

(remove-if #*(lambda (ch i ld) (> ch i ld n))
(binary-tree x))))

> (depth- f i rs t -search 1 (i s 12) (f in i te -b inary- t ree 15))
; ; Search: (1)

Search: (2 3)
Search: (4 5 3)
Search: (8 9 5 3)
Search: (9 5 3)

: : Search: (5 3)
: : Search: (10 11 3)
; : Search: (11 3)

194 BUILDING SOFTWARE TOOLS

Search: (3)
Search: (6 7)
Search: (12 13 7)

12

Guiding the Search

While breadth-first search is more methodical, neither strategy is able to take advan
tage of any knowledge about the state space. They both search blindly. In most real
applications we will have some estimate of how far a state is from the solution. In
such cases, we can implement a best-first search. The name is not quite accurate; if
we could really search best first, that would not be a search at all. The name refers to
the fact that the state that appears to be best is searched first.

To implement best-first search we need to add one more piece of information: a
cost function that gives an estimate of how far a given state is from the goal.

For the binary tree example, we will use as a cost estimate the numeric difference
from the goal. So if we are looking for 12, then 12 has cost 0, 8 has cost 4 and 2048
has cost 2036. The higher-order function d i f f , shown in the following, returns a cost
function that computes the difference from a goal. The higher-order function sor ter
takes a cost function as an argument and returns a combiner function that takes the
lists of old and new states, appends them together, and sorts the result based on the
cost function, lowest cost first. (The built-in function sor t sorts a list according to
a comparison function. In this case the smaller numbers come first, sor t takes an
optional : key argument that says how to compute the score for each element. Be
careful—sort is a destructive function.)

(defun d i f f (num)
"Return the function that f inds the difference from num."
#'(lambda (x) (abs (- χ num))))

(defun sorter (cost - fn)
"Return a combiner function that sor ts according to c o s t - f n . "
#'(lambda (new old)

(sor t (append new old) # ' < :key cos t - fn)))

(defun bes t - f i r s t - search (s tar t goal-p successors cos t - fn)
"Search lowest cost s tates f i r s t unt i l goal i s reached."
(tree-search (l i s t s ta r t) goal-p successors (sor ter cos t - fn)))

Now, using the difference from the goal as the cost function, we can search using
best-first search:

6.4 A SET OF SEARCHING TOOLS 195

> (bes t - f i r s t -search 1 (i s 12) # 'b inary- t ree (d i f f 12))
Search: (1)

; ; Search: (3 2)
Search: (7 6 2)
Search: (14 15 6 2)
Search: (15 6 2 28 29)

; ; Search: (6 2 28 29 30 31)
Search: (12 13 2 28 29 30 31)

12

The more we know about the state space, the better we can search. For example, if we
know that all successors are greater than the states they come from, then we can use
a cost function that gives a very high cost for numbers above the goal. The function
p r i c e - i s - r i g h t is like d i f f , except that it gives a high penalty for going over the
goal."̂ Using this cost function leads to a near-optimal search on this example. It
makes the "mistake" of searching 7 before 6 (because 7 is closer to 12), but does not
waste time searching 14 and 15:

(defun p r i c e - i s - r i g h t (pr ice)
"Return a function that measures the dif ference from pr ice ,
but g ives a big penalty for going over p r i ce . "
#'(lambda (x) (i f (> χ pr ice)

most-posit ive-f ixnum
(- price x))))

> (bes t - f i r s t -search 1 (i s 12) # 'b inary- t ree (p r i ce - i s - r i gh t 12))
Search: (1)
Search: (3 2)
Search: (7 6 2)
Search: (6 2 14 15)
Search: (12 2 13 14 15)

12

All the searching methods we have seen so far consider ever-increasing lists of states
as they search. For problems where there is only one solution, or a small number of
solutions, this is unavoidable. To find a needle in a haystack, you need to look at a
lot of hay. But for problems with many solutions, it may be worthwhile to discard
unpromising paths. This runs the risk of failing to find a solution at all, but it can
save enough space and time to offset the risk. A best-first search that keeps only a
fixed number of alternative states at any one time is known as a beam search. Think
of searching as shining a light through the dark of the state space. In other search

^The built-in constant most-positive-fixnum is a large integer, the largest that can be
expressed without using bignums. Its value depends on the implementation, but in most
Lisps it is over 16 million.

196 BUILDING SOFTWARE TOOLS

strategies the light spreads out as we search deeper, but in beam search the light
remains tightly focused. Beam search is a variant of best-first search, but it is also
similar to depth-first search. The difference is that beam search looks down several
paths at once, instead of just one, and chooses the best one to look at next. But
it gives up the ability to backtrack indefinitely. The function beam-search is just
like b e s t - f i r s t - s e a r c h , except that after we sort the states, we then take only the
first beam-width states. This is done with subseq; (subseq list start end) returns the
sublist that starts at position start and ends just before position end.

(defun beam-search (s tar t goal-p successors cost - fn beam-width)
"Search highest scor ing states f i r s t unt i l goal i s reached,
but never consider more than beam-width states at a t ime."
(tree-search (l i s t s ta r t) goal-p successors

#'(lambda (old new)
(let ((sorted (funcal l (sor ter cost - fn) oldnew)))

(i f (> beam-width (length sorted))
sorted

(subseq sorted0 beam-width))))))

We can successfully search for 12 in the binary tree using a beam width of only 2:
> (beam-search 1 (i s 12) #*binary-tree (p r i c e - i s - r i g h t 12) 2)

Search; (1)
Search; (3 2)

; ; Search; (7 6)
Search; (6 14)
Search; (12 13)

12

However, if we go back to the scoring function that just takes the difference from 12,
then beam search fails. When it generates 14 and 15, it throws away 6, and thus loses
its only chance to find the goal:

> (beam-search 1 (i s 12) # 'b inary- t ree (d i f f 12) 2)
Search; (1)
Search; (3 2)
Search; (7 6)
Search; (14 15)
Search; (15 28)
Search; (28 30)
Search; (30 56)
Search; (56 60)
Search; (60 112)
Search; (112 120)
Search; (120 224)

6,4 A SET OF SEARCHING TOOLS 197

[Abort]

This search would succeed if we gave a beam width of 3. This illustrates a general
principle: we can find a goal either by looking at more states, or by being smarter
about the states we look at. That means having a better ordering function.

Notice that with a beam width of infinity we get best-first search. With a beam
width of 1, we get depth-first search with no backup. This could be called "depth-only
search," but it is more commonly known as hill-climbing. Think of a mountaineer
trying to reach a peak in a heavy fog. One strategy would be for the moimtaineer to
look at adjacent locations, climb to the highest one, and look again. This strategy
may eventually hit the peak, but it may also get stuck at the top of a foothill, or local
manmum. Another strategy would be for the mountaineer to turn back and try again
when the fog lifts, but in AI, unfortunately, the fog rarely lifts.^

As a concrete example of a problem that can be solved by search, consider the
task of planning a flight across the North American continent in a small airplane, one
whose range is limited to 1000 kilometers. Suppose we have a list of selected cities
with airports, along with their position in longitude and latitude:

(defstruct (c i ty (:type l i s t)) name long la t)

(defparameter * c i t i e s *
' ((At lanta 84.23 33.45) (Los-Angeles 118.15 34.03)

(Boston 71.05 42.21) (Memphis 90.03 35.09)
(Chicago 87.37 41.50) (New-York 73.58 40.47)
(Denver 105.00 39.45) (Oklahoma-City 97.28 35.26)
(Eugene 123.05 44.03) (Pi t tsburgh 79.57 40.27)
(F lagsta f f 111.41 35.13) (Quebec 71.11 46.49)
(Grand-Jet 108.37 39.05) (Reno 119.49 39.30)
(Houston 105.00 34.00) (San-Francisco 122.26 37.47)
(Ind ianapol is 86.10 39.46) (Tampa 82.27 27.57)
(Jacksonvi l le 81.40 30.22) (V ic tor ia 123.21 48.25)
(Kansas-Ci ty 94.35 39.06) (Wilmington 77.57 34 .14)))

This example introduces a new option to defstruct . Instead of just giving the name
of the structure, it is also possible to use:

(defstruct {structure-name {option value),,,) 'Optionaldoc'' slot,,,)

For city, the option : type is specified as 1 i s t . This means that cities will be imple
mented as lists of three elements, as they are in the initial value for *ci t i es*.

^In chapter 8 we will see an example where the fog did lift: symbolic integration was once
handled as a problem in search, but new mathematical results now make it possible to solve
the same class of integration problems without search.

198 BUILDING SOFTWARE TOOLS

Figure 6.1: A Map of Some Cities

The cities are shown on the map in figure 6.1, which has cormections between
all cities within the 1000 kilometer range of each other.^ This map was drawn with
the help of ai r-di stance, a function that retiutis the distance in kilometers between
two cities "as the crow flies." It will be defined later. Two other useful fimctions are
nei ghbors, which finds all the cities within 1000 kilometers, and c i ty, which maps
from a name to a city. The former uses f i nd - a 11 - i f, which was defined on page 101
as a synonym for remove- i f-not.

(defun neighbors (c i t y)
"Find a l l c i t i e s within 1000 k i lometers."
(f i n d - a l l - i f #'(lambda (c)

(and (not (eq c c i t y))
« (a i r -d is tance c c i t y) 1000.0)))

* c i t i e s *))

(defun c i ty (name)
"Find the c i ty with th i s name."
(assoc name * c i t i e s *))

We are now ready to plan a trip. The fimction t r i p takes the name of a starting and
destination city and does a beam search of width one, considering all neighbors as

^The astute reader will recognize that this graph is not a tree. The difference between trees
and graphs and the implications for searching will be covered later.

6.4 A SET OF SEARCHING TOOLS 199

successors to a state. The cost for a state is the air distance to the destination city:

(defun t r i p (s ta r t dest)

"Search for a way from the s tar t to des t . "

(beam-search s ta r t (i s dest) # 'neighbors

#'(1ambda (c) (a i r -d is tance c dest))

D)

Here we plan a trip from San Francisco to Boston. The result seems to be the best
possible path:

> (t r ip (c i ty ' san- f ranc isco) (c i ty 'boston))

Search: ((SAN-FRANCISCO 122.26 37.47))
Search: ((RENO 119.49 39 .3))
Search: ((GRAND-JCT 108.37 39.05))

Search: ((DENVER 105.0 39.45))
Search: ((KANSAS-CITY 94.35 39.06))

Search: ((INDIANAPOLIS 86 .1 39.46))

Search: ((PITTSBURGH 79.57 40.27))

: ; Search: ((BOSTON 71.05 42.21))

(BOSTON 71.05 42.21)

But look what happens when we plan the return trip. There are two detours, to
Chicago and Flagstaff:

> (t r ip (c i ty 'boston) (c i ty ' san - f ranc isco))
Search: ((BOSTON 71.05 42.21))
Search: ((PITTSBURGH 79.57 40.27))
Search: ((CHICAGO 87.37 41 .5))
Search: ((KANSAS-CITY 94.35 39.06))
Search: ((DENVER 105.0 39.45))
Search: ((FLAGSTAFF 111.41 35.13))
Search: ((RENO 119.49 39 .3))
Search: ((SAN-FRANCISCO 122.26 37.47))

(SAN-FRANCISCO 122.26 37.47)

Why did t r i ρ go from Denver to San Francisco via Flagstaff? Because Flagstaff is
closer to the destination than Grand Junction. The problem is that we are minimizing
the distance to the destination at each step, when we should be minimizing the sum
of the distance to the destination plus the distance already traveled.

200 BUILDING SOFTWARE TOOLS

Search Paths

To minimize the total distance, we need some way to talk about the path that leads
to the goal. But the functions we have defined so far only deal with individual states
along the way. Representing paths would lead to another advantage: we could
return the path as the solution, rather than just return the goal state. As it is, t r i ρ
only returns the goal state, not the path to it. So there is no way to determine what
t r i p has done, except by reading the debugging output.

The data structure path is designed to solve both these problems. A path has
four fields: the current state, the previous partial path that this path is extending,
the cost of the path so far, and an estimate of the total cost to reach the goal. Here is
the structure definition for path. It uses the : pri nt- f uncti on option to say that all
paths are to be printed with the function pr i nt - pa th, which will be defined below.

(defstruct (path (:pr in t - funct ion pr in t -path))
state (previous n i l) (cos t -so - fa r 0) (to ta l -cos t 0))

The next question is how to integrate paths into the searching routines with the
least amount of disruption. Clearly, it would be better to make one change to
t ree-search rather than to change depth-f irs t-search, breadth-f i rs t -search,
and beam-search. However, looking back at the definition of t ree-search, we see
that it makes no assumptions about the structure of states, other than the fact that
they can be manipulated by the goal predicate, successor, and combiner fimctions.
This suggests that we can use t ree-search unchanged if we pass it paths instead of
states, and give it functions that can process paths.

In the following redefinition of t r i ρ, the beam- sea rch function is called with five
arguments. Instead of passing it a city as the start state, we pass a path that has
the city as its state field. The goal predicate should test whether its argument is a
path whose state is the destination; we assume (and later define) a version of i s that
accommodates this. The successor function is the most difficult. Instead of just
generating a Ust of neighbors, we want to first generate the neighbors, then make
each one into a path that extends the current path, but with an updated cost so far
and total estimated cost. The function path - saver returns a function that will do just
that. Finally, the cost function we are trying to minimize is path-total - cost , and
we provide a beam width, which is now an optional argument to t r i ρ that defaults
to one:

(defun t r i p (s ta r t dest Äoptional (beam-width 1))
"Search for the best path from the s tar t to des t . "
(beam-search

(make-path :state s ta r t)
(i s dest :key #*path-state)
(path-saver # 'neighbors # 'a i r -d i s tance

6.4 Λ SET or SEARCHING TOOLS 201

#'(lambda (c) (a i r -d is tance c des t)))
#*path- tota l -cost
beam-width))

The calculation of ai r-di stance involves some complicated conversion of longitude
and latitude to x-y-z coordinates. Since this is a problem in solid geometry, not AI,
the code is presented without further comment:

(defconstant earth-diameter 12765.0
"Diameter of planet earth in k i lometers.")

(defun a i r -d is tance (c i t y l c i ty2)
"The great c i r c le distance between two c i t i e s . "
(let ((d (distance (xyz-coords c i t y l) (xyz-coords c i t y2))))

d i s the s t ra igh t -1 ine chord between the two c i t i e s .
; ; The length of the subtending arc i s given by:
(* earth-diameter (as in (/ d 2)))))

(defun xyz-coords (c i ty)
"Returns the x . y . z coordinates of a point on a sphere.
The center i s (0 0 0) and the north pole i s (0 0 D . "
(le t ((ps i (deg->radians (c i t y - la t c i t y)))

(phi (deg->radians (c i ty - long c i t y))))
(l i s t (* (cos ps i) (cos phi))

(* (cos ps i) (s in ph i))
(s i n p s i))))

(defun distance (point l point2)
"The Euclidean distance between two po in ts .
The points are coordinates in n-dimensional space."
(sqr t (reduce #*+ (mapcar #'(lambda (a b) (expt (- a b) 2))

point l po in t2))))

(defun deg->radians (deg)
"Convert degrees and minutes to rad ians . "
(* (+ (truncate deg) (* (rem deg 1) 100/60)) pi 1/180))

Before showing the auxiliary functions that implement this, here are some examples
that show what it can do. With a beam width of 1, the detour to Flagstaff is elinünated,
but the one to Chicago remains. With a beam width of 3, the correct optimal path is
found. In the following examples, each call to the new version of t r i ρ returns a path,
which is printed by s how- ci ty - pa th:

> (show-city-path (t r i p (c i ty ' san- f ranc isco) (c i ty 'boston) 1))
#<Path 4514.8 km: San-Francisco - Reno - Grand-Jet - Denver -

Kansas-City - Indianapol is - Pi t tsburgh - Boston>

202 BUILDING SOFTWARE TOOLS

> (show-city-path (t r ip (c i ty 'boston) (c i ty ' san- f ranc isco) 1))
#<Path 4577.3 km: Boston - Pi t tsburgh - Chicago - Kansas-Ci ty -

Denver - Grand-Jet - Reno - San-Francisco>

> (show-city-path (t r ip (c i ty 'boston) (c i ty ' san- f ranc isco) 3))
#<Path 4514.8 km: Boston - Pi t tsburgh - Ind ianapol is -

Kansas-City - Denver - Grand-Jet - Reno - San-Francisco>

This example shows how search is susceptible to irregularities in the search space. It
was easy to find the correct path from west to east, but the return trip required more
search, because Flagstaff is a falsely promising step. In general, there may be even
worse dead ends lurking in the search space. Look what happens when we limit the
airplane's range to 700 kilometers. The map is shown in figure 6.2.

Figure 6.2: A Map of Cities within 700km

If we try to plan a trip from Tampa to Quebec, we can run into problems with
the dead end at Wilmington, North Carolina. With a beam width of 1, the path to
Jacksonville and then Wilmington will be tried first. From there, each step of the path
alternates between Atlanta and Wilmington. The search never gets any closer to the
goal. But with a beam width of 2, the path from Tampa to Atlanta is not discarded,
and it is eventually continued on to Indianapolis and eventually to Quebec. So the
capability to back up is essential in avoiding dead ends.

Now for the implementation details. The function i s still returns a predicate that
tests for a value, but now it accepts : key and : t e s t keywords:

6.4 Λ SET OF SEARCHING TOOLS 203

(defun i s (value &key (key # ' i den t i t y) (test # ' eq l))
"Returns a predicate that tes ts for a given va lue. "
#'(lambda (path) (funcal l test value (funcal l key path))))

The path - saver function returns a function that will take a path as an argument and
generate successors paths, path-saver takes as an argument a successor function
that operates on bare states. It calls this function and, for each state returned, builds
up a path that extends the existing path and stores the cost of the path so far as well
as the estimated total cost:

(defun path-saver (successors cost - fn cos t - le f t - fn)
#*(lambda (old-path)

(le t ((o ld -s ta te (path-state o ld-path)))
(mapcar

#*(lambda (new-state)
(le t ((o ld-cost

(+ (path-cost -so- far old-path)
(funcal l cost - fn o ld-state new-state))))

(make-path
:state new-state
rprevious old-path
: cos t - so - fa r o ld-cost
: to ta l -cos t (+ o ld-cost (funcal l cos t - le f t - fn

new-state)))))
(funcal l successors o l d - s ta te)))))

By default a path structure would be printed as #S (PATH . . .) . But because each path
has a previ ous field that is filled by another path, this output would get quite verbose.
That is why we installed pr i nt - pa t h as the print function for paths when we defined
the structure. It uses the notation # < . . . > , which is a Common Lisp convention for
printing output that can not be reconstructed by read. The function show- ci ty - pa th
prints a more complete representation of a path. We also define map-path to iterate
over a path, collecting values:

(defun pr int-path (path Äoptional (stream t) depth)
(declare (ignore depth))
(format stream "#<Path to '"a cost ~ . l f > "

(path-state path) (path- tota l -cost path)))

(defun show-city-path (path Äoptional (stream t))
"Show the length of a path, and the c i t i e s along i t . "
(format stream "#<Path ~,l f km: "{^ιΓ^Τ^ - ~}>"

(path- tota l -cost path)
(reverse (map-path #'city-name path)))

(va lues))

204 BUILDING SOFTWARE TOOLS

(defun map-path (fn path)
" C a n fn on each state in the path, co l lec t ing r esu l t s . "
(i f (nul l path)

ni l
(cons (funcal l fn (path-state path))

(map-path fn (path-previous path)))))

Guessing versus Guaranteeing a Good Solution

Elementary AI textbooks place a great emphasis on search algorithms that are gusir-
anteed to find the best solution. However, in practice these algorithms are hardly
ever used. The problem is that guaranteeing the best solution requires looking at a lot
of other solutions in order to rule them out. For problems with large search spaces,
this usually takes too much time. The alternative is to use an algorithm that will
probably return a solution that is close to the best solution, but gives no guarantee.
Such algorithms, traditionally known as non-admissible heuristic search algorithms,
can be much faster.

Of the algorithms we have seen so far, best-first search almost, but not quite,
guarantees the best solution. The problem is that it terminates a little too early.
Suppose it has calculated three paths, of cost 90, 95 and 110. It will expand the 90
path next. Suppose this leads to a solution of total cost 100. Best-first search will
then retimi that solution. But it is possible that the 95 path could lead to a solution
with a total cost less than 100. Perhaps the 95 path is only one unit away from the
goal, so it could result in a complete path of length 96. This means that an optimal
search should examine the 95 path (but not the 110 path) before exiting.

Depth-first seeu-ch and beam search, on the other hand, are defirútely heuristic
algorithms. Depth-first search finds a solution without any regard to its cost. With
beam search, picking a good value for the beam width can lead to a good, quick
solution, while picking the wrong value can lead to failure, or to a poor solution.
One way out of this dilemma is to start with a narrow beam width, and if that does
not lead to an acceptable solution, widen the beam and try again. We will call this
iterative widening, although that is not a standard term. There are many variations on
this theme, but here is a simple one:

(defun i ter-wide-search (s ta r t goal-p successors cost - fn
&key (width 1) (max 100))

"Search, increasing beam width from width to max.
Return the f i r s t so lu t ion found at any width."
(dbg .-search " ; Width: ~d" width)
(unless (> width max)

(or (beam-search s ta r t goal-p successors cost - fn width)
(i ter-wide-search s ta r t goal-p successors cost - fn

6.4 A SET OF SEARCHING TOOLS 205

:width (+ width 1) :max max))))

Here i ter-wide-search is used to search through a binary tree, failing with beam
width 1 and 2, and eventually succeeding with beam width 3:

> (i ter-wide-search 1 (i s 12) (f in i te -b inary- t ree 15) (d i f f 12))

Width: 1

; Search: (1)
; Search: (3)

; Search: (7)

: Search: (14)

; Search: NIL

Width: 2

; Search: (1)
; Search: (3 2)

: Search: (7 6)

: Search: (14 15)

; Search: (15)

: Search: NIL

Width: 3

; Search: (1)

; Search: (3 2)

; Search: (7 6 2)

; Search: (14 15 6)

; Search: (15 6)

; Search: (6)

; Search: (12 13)

12

The name iterative widening is derived from the established term iterative deepening.
Iterative deepening is used to control depth-first search when we don't know the
depth of the desired solution. The idea is first to limit the search to a depth of 1,
then 2, and so on. That way we are guaranteed to find a solution at the minimum
depth, just as in breadth-first search, but without wasting as much storage space. Of
course, iterative deepening does waste some time because at each increasing depth
it repeats all the work it did at the previous depth. But suppose that the average
state has ten successors. That means that increasing the depth by one results in ten
times more search, so only 10% of the time is wasted on repeated work. So iterative
deepening uses only slightly more time and much less space. We will see it again in
chapters 11 and 18.

206 BUILDING SOFTWARE TOOLS

Searching Graphs

So far, t ree-search has been the workhorse behind all the searching routines. This
is curious, when we consider that the city problem involves a graph that is not a tree
at all. The reason t ree - sea rch works is that any graph can be treated as a tree, if we
ignore the fact that certain nodes are identical. For example, the graph in figure 6.3
can be rendered as a tree. Figure 6.4 shows only the top four levels of the tree; each
of the bottom nodes (except the 6s) needs to be expanded further.

J L

Figure 6.3: A Graph with Six Nodes

In searching for paths through the graph of cities, we were implicitly turning the
graph into a tree. That is, if t r ee - sea rch found two paths from Pittsburgh to Kansas
City (via Chicago or Indianapolis), then it would treat them as two independent
paths, just as if there were two distinct Kansas Cities. This made the algorithms
simpler, but it also doubles the number of paths left to examine. If the destination is
San Francisco, we will have to search for a path from Kansas City to San Francisco
twice instead of once. In fact, even though the graph has only 22 cities, the tree is
infinite, because we can go back and forth between adjacent cities any number of
times. So, while it is possible to treat the graph as a tree, there are potential savings
in treating it as a true graph.

The function g raph - sea rch does just that. It is similar to t r ee - sea rch, but accepts
two additional cirguments: a comparison function that tests if two states are equal,
and a list of states that are no longer being considered, but were examined in the past.
The difference between g raph-search and t r e e - search is in the call to new-s ta tes ,
which generates successors but eliminates states that £ire in either the list of states
currently being considered or the list of old states considered in the past.

(defun graph-search (states goal-p successors combiner
Äoptional (state= # 'eq l) o ld -s ta tes)

"Find a state that s a t i s f i e s goa l -p . Star t with s ta tes .

6.4 A SET OF SEARCHING TOOLS 207

Figure 6.4: The Corresponding Tree

and search according to successors and combiner.
Don't t ry the same state twice."
(dbg :search " " & ; ; Search: '"a" s ta tes)
(cond ((nul l s ta tes) f a i l)

((funcal l goal-p (f i r s t s ta tes)) (f i r s t s ta tes))
(t (graph-search

(funcal l
combiner
(new-states states successors state= o ld -s ta tes)
(rest s ta tes))

goal-p successors combiner state=
(adjoin (f i r s t s ta tes) o ld-s ta tes

: test s ta te=)))))

(defun new-states (s tates successors state= o ld -s ta tes)
"Generate successor states that have not been seen before."
(remove-if

#'(lambda (state)
(or (member state states : test state=)

(member state o ld-s ta tes : test state=^)))
(funcall successors (f i r s t s ta tes))))

Using the successor function next2, we can search the graph shown here either as a
tree or as a graph. If we search it as a graph, it takes fewer iterations and less storage
space to find the goal. Of course, there is additional overhead to test for identical

208 BUILDING SOFTWARE TOOLS

States, but on graphs Uke this one we get an exponential speed-up for a constant
amount of overhead.

(defun next2 (x) (l i s t (+ χ 1) (+ χ 2)))

> (tree-search ' (1) (i s 6) #'next2 #*prepend)
Search: (1)

(2 3) Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:

4)
4
5
4
5
5
6
5
6

5)
4
5
5
6
5
6
6

5)
5
6
5
6
6
7

6)
5 6)
6 6 7)
6 7 5 6)
7 5 6 6 7)
5 6 6 7 6 7)

> (graph-search ' (1) (i s 6) #'next2 #*prepend)
Search: (1)
Search: (2 3)
Search: (3 4)
Search: (4 5)
Search: (5 6)
Search: (6 7)

The next step is to extend the graph-sea rch algorithm to handle paths. The compli
cation is in deciding which path to keep when two paths reach the same state. If we
have a cost function, then the answer is easy: keep the path with the cheaper cost.
Best-first search of a graph removing duplicate states is called A * search.

A* search is more complicated than graph-search because of the need both to
add and to delete paths to the lists of current and old paths. For each new successor
state, there are three possibilities. The new state may be in the list of current paths, in
the Ust of old paths, or in neither. Within the first two cases, there are two subcases.
If the new path is more expensive than the old one, then ignore the new path—it can
not lead to a better solution. If the new path is cheaper than a corresponding path
in the list of current paths, then replace it with the new path. If it is cheaper than a
corresponding path in the list of the old paths, then remove that old path, and put
the new path in the list of current paths.

Also, rather than sort the paths by total cost on each iteration, they are kept sorted,
and new paths are inserted into the proper place one at a time using i nsert-path.
Two more functions, better-path and find-path, are used to compare paths and
see if a state has already appeared.

6.4 A SET OF SEARCHING TOOLS 209

(defun a*-search (paths goal-p successors cost - fn cos t - le f t - fn

Äoptional (state= # 'eq l) o ld-paths)

"Find a path whose state s a t i s f i e s goa l -p . Star t with paths,

and expand successors , explor ing least cost f i r s t .

When there are dupl icate s ta tes , keep the one with the

lower cost and discard the other."

(dbg :search " ; ; Search: ~a" paths)

(cond

((nul l paths) f a i l)

((funcal l goal-p (path-state (f i r s t paths)))

(values (f i r s t paths) paths))

(t (le t * ((path (pop paths))

(state (path-state path)))

; ; Update PATHS and OLD-PATHS to ref lect

the new successors of STATE:

(set f old-paths (inser t -path path o ld-paths))

(do l i s t (state2 (funcal l successors s ta te))

(le t * ((cost (+ (path-cost -so- far path)

(funcal l cost - fn state s ta te2)))

(cost2 (funcal l cos t - le f t - fn state2))

(path2 (make-path

:state state2 :previous path

: cos t - so - fa r cost

: to ta l -cos t (+ cost cost2)))

(old n i l)

Place the new path, path2, in the r ight l i s t :

(cond

((se t f old (f ind-path state2 paths s tate=))

(when (better-path path2 old)

(set f paths (inser t -path

path2 (delete old pa ths)))))

((se t f old (f ind-path state2 old-paths state=))

(when (better-path path2 old)

(set f paths (inser t -path path2 paths))

(set f old-paths (delete old o ld -pa ths))))

(t (set f paths (inser t -path path2 pa ths))))))

F i na l l y , cal l A* again with the updated path l i s t s :

(a*-search paths goal-p successors cost - fn cos t - le f t - fn

state= o ld -pa ths)))))

210 BUILDING SOFTWARE TOOLS

Here are the three auxiliary functions:

(defun f ind-path (state paths state=)
"Find the path with th i s state among a l i s t of paths . "
(f ind state paths :key # 'path-state : test s tate=))

(defun better-path (pathl path2)
" I s pathl cheaper than path2?"
« (path- tota l -cost pathl) (path- tota l -cost path2)))

(defun insert-path (path paths)
"Put path into the r ight pos i t i on , sorted by total cos t . "

MERGE i s a bu i l t - i n function
(merge ' l i s t (l i s t path) paths # ' < :key # 'pa th - to ta l -cos t))

(defun path-states (path)
"Col lect the states along th i s path."
(i f (null path)

n i l
(cons (path-state path)

(path-states (path-previous path)))))

Below we use a*-search to search for 6 in the graph previously shown in figure 6.3.
The cost function is a constant 1 for each step. In other words, the total cost is the
length of the path. The heuristic evaluation function is just the difference from the
goal. The A* algorithm needs just three search steps to come up with the optimal
solution. Contrast that to the graph search algorithm, which needed five steps, and
the tree search algorithm, which needed ten steps—and neither of them found the
optimal solution.

> (path-states
(a*-search (l i s t (make-path :state D) (i s 6)

#'next2 #'(lambda (x y) 1) (d i f f 6)))
Search: (#<Path to 1 cost 0.0>)
Search: (#<Path to 3 cost 4 . 0> #<Path to 2 cost 5.0>)
Search: (#<Path to 5 cost 3 .0> #<Path to 4 cost 4 . 0 >

#<Path to 2 cost 5.0>)
Search: (#<Path to 6 cost 3 .0> #<Path to 7 cost 4 . 0 >

#<Path to 4 cost 4 .0> #<Path to 2 cost 5.0>)
(6 5 3 1)

It may seem limiting that these search functions all return a single answer. In some
applications, we may want to look at several solutions, or at all possible solutions.
Other applications are more naturally seen as optimization problems, where we
don't know ahead of time what counts as achieving the goal but are just trying to find
some action with a low cost.

6.5 GPS AS SEARCH 211

It turns out that the functions we have defined are not Umiting at all in this respect.
They can be used to serve both these new purposes—provided we carefully specify
the goal predicate. To find all solutions to a problem, all we have to do is pass in a
goal predicate that always fails, but saves all the solutions in a list. The goal predicate
will see all possible solutions and save away just the ones that are real solutions.
Of course, if the search space is infinite this will never terminate, so the user has
to be careful in applying this technique. It would also be possible to write a goal
predicate that stopped the search after finding a certain number of solutions, or after
looking at a certain number of states. Here is a function that finds all solutions, using
beam search:

(defun search-al l (s tar t goal-p successors cost - fn beam-width)

"Find al l so lu t ions to a search problem, using beam search . "

Be care fu l : th is can lead to an in f i n i t e loop,

(let ((so lu t ions n i l))

(beam-search

s tar t #'(lambda (x)

(when (funcal l goal-p x) (push χ so lu t ions))

n i l)

successors cost - fn beam-width)

so lu t ions))

6.5 GPS as Search

The GPS program can be seen as a problem in search. For example, in the three-block
blocks world, there are only 13 different states. They could be arranged in a graph and
searched just as we searched for a route between cities. Figure 6.5 shows this graph.

The function search-gps does just that. Like the gps function on page 135, it
computes a final state and then picks out the actions that lead to that state. But
it computes the state with a beam search. The goal predicate tests if the current
state satisfies every condition in the goal, the successor function finds all applicable
operators and applies them, and the cost function simply sums the number of actions
taken so far, plus the number of conditions that are not yet satisfied:

212 BUILDING SOFTWARE TOOLS

Β

Χι
Β

Β

I ί

Β

Β

C

Α

Figure 6.5: The Blocks World as a Graph

(defun search-gps (s tar t goal Äoptional (beam-width 10))
"Search for a sequence of operators leading to g o a l . "
(f i n d - a l l - i f

#*act ion-p
(beam-search

(cons ' (s t a r t) s ta r t)
#'(lambda (state) (subsetp goal state : tes t #*equal))
'gps-successors
#'(lambda (state)

(+ (count- i f # 'ac t ion-p state)
(count- i f #'(lambda (con)

(not (member-equal con s ta te)))
goa l)))

beam-width)))

He re is the successor funct ion:

(defun gps-successors (state)
"Return a l i s t of states reachable from th i s one using o p s . "
(mapcar

#·(lambda (op)

6.6 HISTORY AND REFERENCES 213

(append
(remove-if #'(lambda (x)

(member-equal χ (op -de l - l i s t op)))
state)

(op-add- l i s t op)))
(appl icable-ops s ta te)))

(defun appl icable-ops (state)
"Return a l i s t of a l l ops that are appl icable now."
(f i n d - a l l - i f

#'(lambda (op)
(subsetp (op-preconds op) state : test # 'equal))

ops))

The search technique finds good solutions quickly for a variety of problems. Here
we see the solution to the Sussman anomaly in the three-block blocks world:

(set f s tar t ' ((c on a) (a on table) (b on table) (space on c)
(space on b) (space on tab le)))

> (search-gps s tar t ' ((a on b) (b on c)))
((START)

(EXECUTING (MOVE C FROM A TO TABLE))
(EXECUTING (MOVE Β FROM TABLE TO O)
(EXECUTING (MOVE A FROM TABLE TO B)))

> (search-gps s tar t ' ((b on c) (a on b)))
((START)

(EXECUTING (MOVE C FROM A TO TABLE))
(EXECUTING (MOVE Β FROM TABLE TO O)
(EXECUTING (MOVE A FROM TABLE TO B)))

In these solutions we search forward from the start to the goal; this is quite different
from the means-ends approach of searching backward from the goal for an appropri
ate operator. But we could formulate means-ends analysis as forward search simply
by reversing start and goal: GPS's goal state is the search's start state, and the search's
goal predicate tests to see if a state matches GPS's start state. This is left as an exercise.

6.6 History and References
Pattern matching is one of the most important tools for AI. As such, it is cov
ered in most textbooks on Lisp. Good treatments include Abelson and Sussman
(1984), Wilensky (1986), Winston and Horn (1988), and Kreutzer and McKenzie
(1990). An overview is presented in the "pattern-matching" entry in Encyclopedia of
ΛΙ (Shapiro 1990).

214 BUILDING SOFTWARE TOOLS

Nilsson's Problem-Solving Methods in Artificial Intelligence (1971) was an early text
book that emphasized search as the most important defining characteristic of AI.
More recent texts give less importance to search; Winston's Artificial Intelligence
(1984) gives a balanced overview, and his Lisp (1988) provides implementations of
some of the algorithms. They are at a lower level of abstraction than the ones in
this chapter. Iterative deepening was first presented by Korf (1985), and iterative
broadening by Ginsberg and Harvey (1990).

6.7 Exercises

@ Exercise 6.3 [m] Write a version of i η te ra et i ve - i nterpreter that is more general
than the one defined in this chapter. Decide what features can be specified, and
provide defaults for them.

@ Exercise 6.4 [m] Define a version of compose that allows any number of arguments,
not just two. Hint: You may want to use the function reduce.

@ Exercise 6.5 [m] Define a version of compose that allows any number of arguments
but is more efficient than the answer to the previous exercise. Hint: try to make
decisions when compose is called to build the resulting function, rather than making
the same decisions over and over each time the resulting function is called.

@ Exercise 6.6 [m] One problem with pat-match is that it gives special significance
to symbols starting with ?, which means that they can not be used to match a literal
pattern. Define a pattern that matches the input literally, so that such symbols can
be matched.

@ Exercise 6.7 [m] Discuss the pros and cons of data-driven programming compared
to the conventional approach.

[¿3 Exercise 6.8 [m] Write a version of t ree-search using an explicit loop rather than
recursion.

Exercise 6.9 [m] The sor ter function is inefficient for two reasons: it calls append,
which has to make a copy of the first argument, and it sorts the entire result, rather
than just inserting the new states into the already sorted oíd states. Write a more
efficient sorter .

6.8 ANSWERS 215

0 Exercise 6.10 [m] Write versions of graph-search and a*-search that use hash
tables rather than lists to test whether a state has been seen before.

S Exercise 6.11 [m] Writeafunctionthatcallsbeam-searchtofindthefirstnsolutions
to a problem and returns them in a list.

0 Exercise 6.12 [m] On personal computers without floating-point hardware, the
ai r-di stance calculation will be rather slow. If this is a problem for you, arrange
to compute the xyz-coords of each city only once and then store them, or store
a complete table of air distances between cities. Also precompute and store the
neighbors of each city.

@ Exercise 6.13 [d] Write a version of G P S that uses A* search instead of beam search.
Compare the two versions in a variety of domains.

S Exercise 6.14 [d] Write a version of G P S that allows costs for each operator. For
example, driving the child to school might have a cost of 2, but calling a limousine
to transport the child nüght have a cost of 100. Use these costs instead of a constant
cost of 1 for each operation.

@ Exercise 6.15 [d] Write a version of G P S that uses the searching tools but does
means-ends analysis.

6.8 Answers

Answer 6.2 Unfortunately, pat -match does not always find the answer. The prob
lem is that it will only rebind a segment variable based on a failure to match the
rest of the pattern after the segment variable. In all the examples above, the "rest of
the pattern after the segment variable" was the whole pattern, so pat-match always
worked properly. But if a segment variable appears nested inside a list, then the rest
of the segment variable's sublist is only a part of the rest of the whole pattern, as the
following example shows:

> (pat-match ' (((? * ?x) (?* ?y)) ?x ?y)
' ((a b c d) (a b) (c d))) ^ NIL

The correct answer with ?x bound to (a b) and ?y bound to (c d) is not found
because the inner segment match succeeds with ?x bound to () and ?y bound to (a

216 BUILDING SOFTWARE TOOLS

b e d) , and once we leave the inner match and return to the top level, there is no
going back for alternative bindings.

Answer 6.3 The following version lets the user specify all four components of the
prompt-read-eval-print loop, as well as the streams to use for input and output.
Defaults are set up as for a Lisp interpreter.

(defun interact ive- interpreter
(&key (read # ' read) (eval # 'eva l) (pr int #*pr int)
(prompt " > ") (input t) (output t))

"Read an express ion, evaluate i t , and pr int the resu l t . "
(loop

(f resh- l ine output)
(princ prompt output)
(funcall pr int (funcal l eval (funcall read input))

output)))

Here is another version that does all of the above and also handles multiple values
and binds the various "history variables" that the Lisp top-level binds.

(defun interact ive- interpreter
(&key (read # ' read) (eval # 'eva l) (pr int # 'p r i n t)
(prompt " > ") (input t) (output t))

"Read an express ion, evaluate i t , and pr int the r e s u l t (s) .
Does mult iple values and b inds: * * * • • • - + + + + + + / / / / / / "
(let (• * * • * • - + + + + + + / / / / / / va ls)

The above var iables are al l spec ia l , except VALS
The var iable - holds the current input
• ape the 3 most recent values
+ ++ +++ are the 3 most recent inputs
/ / / / / / are the 3 most recent l i s t s of mult ip le-values

(loop
(f resh- l ine output)
(princ prompt output)

F i r s t read and evaluate an expression
(set f - (funcal l read input)

va ls (mu l t ip le -va lue- l i s t (funcal l eval -)))
Now update the h is tory var iab les

(set f +++ ++ / / / / / * * * (f i r s t / / /)
++ + / / / (f i r s t / /)
+ - / va ls * (f i r s t /))

F ina l ly pr int the computed va lue(s)
(do l i s t (value va ls)

(funcall pr int value output)))))

6.8 ANSWERS 217

Answer 6.4

(defun compose (Ärest funct ions)
"Return the function that i s the composition of al l the a rgs .
i . e . (compose f g h) = (lambda (x) (f (g (h x)))) . "
#*(lambda (x)

(reduce # ' f u n c a n functions :from-end t . - in i t ia l -value x)))

Answer 6.5

(defun compose (&rest funct ions)
"Return the function that i s the composition of al l the a rgs .
i .e . (compose f g h) = (lambda (x) (f (g (h x)))) . "
(case (length funct ions)

(0 # ' iden t i t y)
(1 (f i r s t funct ions))
(2 (let ((f (f i r s t funct ions))

(g (second funct ions)))
#'(lambda (x) (funcal l f (funcal l g x)))))

(t #*(lambda (x)
(reduce # ' funcal l funct ions :from-end t

: i n i t i a l - va lue x)))))

Answer 6.8

(defun tree-search (states goal-p successors combiner)
"Find a state that s a t i s f i e s goa l -p . Star t with s ta tes ,
and search according to successors and combiner."
(loop

(cond ((nul l s ta tes) (RETURN f a i l))
((funcal l goal-p (f i r s t s ta tes))

(RETURN (f i r s t s ta tes))
(t (set f states

(funcal l combiner
(funcal l successors (f i r s t s ta tes))
(rest s t a t e s))))))))

Answer 6.9

(defun sorter (cost - fn)
"Return a combiner function that sor ts according to c o s t - f n . "
#'(lambda (new old)

(merge ' l i s t (sor t new # ' > :key cost - fn)
old # ' > :key cos t - fn)))

218 BUILDING SOFTWARE TOOLS

Answer 6.11

(defun search-n (s tar t η goal-p successors cost - fn beam-width)
"Find η so lu t ions to a search problem, using beam search . "
(let ((so lu t ions n i l))

(beam-search
s tar t #*(lambda (x)

(cond ((not (funcal l goal-p x)) n i l)
((= η 0) X)

(t (decf n)
(push X so lu t ions)
n i l)))

successors cost - fn beam-width)
so lu t ions))

CHAPTER 7

STUDENT: Solving Algebra
Word Problems

[This] is an example par excellence of the power of
using meaning to solve linguistic problems.

-Marvin Minsky (1968)
MIT computer scientist

S TUDENT was another early language understanding program, written by Daniel Bobrow
as his Ph.D. research project in 1964. It was designed to read and solve the kind of word
problems found in high school algebra books. An example is:

If the number of customers Tom gets is twice the square of 20% of the number of advertise
ments he runs, and the number of advertisements is 45, then what is the number of customers
Tom gets?

STUDENT could correctly reply that the number of customers is 162. To do this, STUDENT must be
far more sophisticated than ELIZA; it must process and "understand" a great deal of the input,
rather than just concentrate on a few key words. And it must compute a response, rather than
just fill in blanks. However, we shall see that the STUDENT program uses little more than the
pattern-matching techniques of ELIZA to translate the input into a set of algebraic equations.
From there, it must know enough algebra to solve the equations, but that is not very difficult.

220 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

The version of STUDENT we develop here is nearly a full implementation of the
original. However, remember that while the original was state-of-the-art as of 1964,
AI has made some progress in a quarter century, as subsequent chapters will attempt
to show.

7.1 Translating English into Equations
The description of STUDENT is:

1. Break the input into phrases that will represent equations.

2. Break each phrase into a pair of phrases on either side of the = sign.

3. Break these phrases down further into sums and products, and so on, until
finally we bottom out with numbers and variables. (By "variable" here, I mean
"mathematical variable," which is distinct from the idea of a "pattern-matching
variable" as used in pat-match in chapter 6).

4. Translate each English phrase into a mathematical expression. We use the idea
of a rule-based translator as developed for ELIZA.

5. Solve the resulting mathematical equations, coming up with a value for each
unknown variable.

6. Print the values of all the variables.

For example, we might have a pattern of the form (I f ?x then ?y), with an asso
ciated response that says that ?x and ?y will each be equations or lists of equations.
Applying the pattern to the input above, ?y would have the value (what i s the
number of customers Tom ge t s) . Another pattern of the form (?x i s ?y) could have
a response corresponding to an equation where ?x and ?y are the two sides of the
equation. We could then make up a mathematical variable for (what) and another
for (the number of customers Tom ge ts) . We would recognize this later phrase as
a variable because there are no patterns to break it down further. In contrast, the
phrase (twice the square of 20 per cent of the number of advertisements
he r uns) could match a pattern of the form (twi ce ?x) and transform to (* 2 (the
square of 20 per cent of the number of advertisements he runs)), and by
furtherapplyingpatternsof the form (the square of ?x) and (?x per cent of
?y) we could arrive at a final response of (* 2 (expt (* (/ 20 100) n) 2)) , where
η is the variable generated by (the number of advertisements he runs).

Thus, we need to represent variables, expressions, equations, and sets of equa
tions. The easiest thing to do is to use something we know: represent them just as
Lisp itself does. Variables will be symbols, expressions and equations will be nested

7.1 TRANSLATING ENGLISH INTO EQUATIONS 221

lists with prefix operators, and sets of equations will be lists of equations. With that
in mind, we can define a list of pattern-response rules corresponding to the type of
statements found in algebra word problems. The structure definition for a rule is
repeated here, and the structure exp, an expression, is added. 1 hs and rhs stand for
left- and right-hand side, respectively. Note that the constructor mkexp is defined as a
constructor that builds expressions without taking keyword arguments. In general,
the notation (: constructor fn args) creates a constructor function with the given
name and argument Ust.̂

(defstruct (rule (:type l i s t)) pattern response)

(defstruct (exp (:type l i s t)
(¡constructor mkexp (Ihs op rhs)))

op Ihs rhs)

(defun exp-p (x) (consp x))
(defun exp-args (x) (rest x))

We ignored commas and periods in ELIZA, but they are crucial for STUDENT, SO we
must make allowances for them. The problem is that a " ," in Lisp normally can be
used only within a backquote construction, and a " . " normally can be used only as a
decimal point or in a dotted pair. The special meaning of these characters to the Lisp
reader can be escaped either by preceding the character with a backslash (\ ,) or by
surrounding the character by vertical bars (I J) .

(pat-match-abbrev ' ? x * ' (? * ?x))
(pat-match-abbrev ' ? y * * (? * ? y))

(defparameter *s tudent - ru les* (mapcar #'expand-pat-match-abbrev
' (((? x * I .I) ?x)

((? x * I.I ? y *) (?x ? y))
((i f ? x * I J then ? y *) (?x ? y))
((i f ? x * then ? y *) (?x ? y))
((i f ? x * I J ? y *) (?x ? y))
((? x * Μ and ? y *) (?x ? y))
((f ind ? x * and ? y *) ((= to - f ind -1 ?x) (= to- f ind-2 ? y)))
((f ind ? x *) (= to- f ind ?x))
((? x * equals ? y *) (= ?x ? y))
((? x * same as ? y *) (= ?x ? y))
((? x * = ? y *) (= ?x ? y))
((? x * i s equal to ? y *) (= ?x ? y))
((? x * i s ? y *) (= ?x ? y))
((? x * - ? y *) (- ?x ? y))
((? x * minus ? y *) (- ?x ? y))

^Page 316 of Common Lisp the Language says, "Because a constructor of this type operates
By Order of Arguments, it is sometimes known as a BOA constructor."

222 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

((di f ference between ? x * and ? y *) (- ?y ?x))
((di f ference ? x * and ? y *) (- ?y ?x))
((? x * + ? y *) (+ ?x ? y))
((? x * plus ? y *) (+ ?x ? y))
((sum ? x * and ? y *) (+ ?x ? y))
((product ? x * and ? y *) (* ?x ? y))
((? x * * ? y *) (* ?x ? y))
((? x * times ? y *) (* ?x ? y))
((? x * / ? y *) (/ ?x ? y))
((? x * per ? y *) (/ ?x ? y))
((? x * divided by ? y *) (/ ?x ?y))
((ha l f ? x *) (/ ?x 2))
((one half ? x *) (/ ?x 2))
((twice ? x *) (* 2 ?x))
((square ? x *) (* ?x ?x))
((? x * % less than ? y *) (* ?y (/ (- 100 ?x) 100)))
((? x * % more than ? y *) (* ?y (/ (+ 100 ?x) 100)))
((? x * % ? y *) (* (/ ?x 100) ? y)))))

The main section of STUDENT will search through the list of rules for a response, just
as ELIZA did. The first point of deviation is that before we substitute the values of the
pat-match variables into the response, we must first recursively translate the value
of each variable, using the same list of pattern-response rules. The other difference
is that once we're done, we don't just print the response; instead we have to solve the
set of equations and print the answers. The program is summarized in figure 7 .1 .

Before looking carefully at the program, let's try a sample problem: "If ζ is 3, what
is twice z?" Applying the rules to the input gives the following trace:

Input: (I f ζ i s 3 . what i s twice z)
Rule: ((i f ?x I J ?y) (?x ? y))
Binding: ((?x . (z i s 3)) (?y . (what i s twice z)))
Input: (z i s 3)
Rule: ((?x i s ?y) (= ?x ? y))
Result: (= ζ 3)

Input: (what i s twice ζ ?)
Rule: ((?x i s ?y) (= ?x ? y))
Binding: ((?x . what) (?y . (twice z)))
Input: (twice z)
Rule: ((twice ?x) (* 2 ?x))
Result: (* 2 z)

Result: (= what (* 2 z))
Result: ((= ζ 3) (= what (* 2 z)))

There are two minor complications. First, we agreed to implement sets of equations
as lists of equations. For this example, everything worked out, and the response

7.1 TRANSLATING ENGLISH INTO EQUATIONS 223

Top-Level Function
Student Solve certain algebra word problems.

Special Variables
s tudent - ru les A list of pattern/response pairs.

Data Types
exp An operator and its arguments.
rule A pattern and response.

Major Functions
t ransíate - to -expression Translate an English phrase into an equation or expression.
t rans la te-pa i r Translate the value part of the pair into an equation or expression.
create- l is t -o f -equat ions Separate out equations embedded in nested parens.
solve-equations Print the equations and their solution.
solve Solve a system of equations by constraint propagation.

Auxiliary Fimctions
i so la te Isolate the lone variable on the left-hand side of an expression.
noise-word-p Is this a low-content word that can be safely ignored?
make-variable Create a variable name based on the given list of words.
print-equat ions Print a list of equations.
inverse-op I.e., the inverse of + is - .
unknown-p Is the argument an unknown (variable)?
in-exp True if X appears anywhere in exp.
no-unknown Returns true if there are no unknowns in exp.
one-unknown Returns the single unknown in exp, if there is exactly one.
commutative-p Is the operator commutative?
solve-ar i thmetic Perform arithmetic on rhs of an equation.
binary-exp-p Is this a binary expression?
pre f i x -> in f i x Translate prefix to infix expressions.
mkexp Make an expression.

Previously Defined Functions
pat-match Match pattern against an input, (p. 180)
ru le-based-t ranslator Apply a set of rules, (p. 189)

Figure 7.1: Glossary for the STUDENT Program

was a list of two equations. But if nested patterns are used, the response could be
something like ((= a 5) ((= b (+ a 1)) (= c (-»- a b)))) , which is not a list of
equations. The function create -1 i s t -of-equati ons transforms a response like this
into a proper list of equations. The other complication is choosing variable names.
Givenalistof words like (the number of customers Tom ge ts) , we want to choose
a symbol to represent it. We will see below that the symbol customers is chosen, but
that there are other possibilities.

Here is the main function for STUDENT. It first removes words that have no con
tent, then translates the input to one big expression with transí a te- to-express i on,
and breaks that into separate equations with create-1 is t -of-equat ions . Finally,
the function sol ve-equati ons does the mathematics and prints the solution.

224 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

(defun Student (words)
"Solve certain Algebra Word Problems."
(solve-equat ions

(c reate- l is t -o f -equat ions
(t rans la te- to-express ion (remove-if #*noise-word-p words)))))

The function t r a n s í a t e - t o - e x p r e s s i o n is a rule-based translator. It either finds
some rule in *s tudent - r u l e s * to transform the input, or it assumes that the entire in
put represents a single variable. The function t r a n s í a te-pa i r takes a variable/value
binding pair and translates the value by a recursive call to t r a n s l a t e - t o - express ion.

(defun t rans la te- to-express ion (words)
"Translate an Engl ish phrase into an equation or express ion . "
(or (ru le-based- t ranslator

words *s tudent - ru les*
: r u l e - i f # ' ru le-pat tern :rule-then #*rule-response
:act ion #'(lambda (bindings response)

(sub l i s (mapcar # ' t rans la te -pa i r b indings)
response)))

(make-variable words)))

(defun t rans la te-pa i r (pa i r)
"Translate the value part of the pair into an equation or express ion . "
(cons (binding-var pai r)

(t rans la te- to-express ion (binding-val pa i r))))

The function create-1 i s t - o f - e q u a t i o n s takes a single expression containing em
bedded equations and separates them into a list of equations:

(defun create-1 is t -of -equat ions (exp)
"Separate out equations embedded in nested parens."
(cond ((nul l exp) n i l)

((atom (f i r s t exp)) (l i s t exp))
(t (append (create-1 is t -o f -equat ions (f i r s t exp))

(create-1 is t -of -equat ions (rest exp))))))

Finally, the function make-vari abl e creates a variable to represent a Ust of v^ords.
We do that by first removing all "noise words" from the input, and then taking the
first symbol that remains. So, for example, "the distance John traveled" and "the
distance traveled by John" will both be represented by the same variable, di s tance,
which is certainly the right thing to do. However, "the distance Mary traveled" will
also be represented by the same variable, which is certainly a mistake. For (the
number of customers Tom ge t s) , the variable will be customers, since the, of and
number are all noise words. This will match (the customers mentioned above) and

7.2 SOLVING ALGEBRAIC EQUATIONS 225

(the number of customers), but not (Tom's customers). For now, we will accept
the first-non-noise-word solution, but note that exercise 7.3 asks for a correction.

(defun make-variable (words)
"Create a var iable name based on the given l i s t of words"

The l i s t of words wi l l already have noise words removed
(f i r s t words))

(defun noise-word-p (word)
" I s th is a low-content word that can be safe ly ignored?"
(member word ' (a an the th i s number of $)))

7.2 Solving Algebraic Equations
The next step is to write the equation-solving section of STUDENT. This is more an
exercise in elementary algebra than in AI, but it is a good example of a symbol-
manipulation task, and thus an interesting programming problem.

The STUDENT program mentioned the function sol ve-equati ons, passing it one
argument, a Hst of equations to be solved, sol ve-equati ons prints the Hst of equa
tions, attempts to solve them using sol ve, and prints the result.

(defun solve-equat ions (equations)
"Pr int the equations and their so lu t ion"
(pr int-equat ions "The equations to be solved a re : " equations)
(pr int-equat ions "The so lut ion i s : " (solve equations n i l)))

The real work is done by sol ve, which has the following specification: (1) Find
an equation with exactly one occurrence of an unknown in it. (2) Transform that
equation so that the unknown is isolated on the left-hand side. This can be done if
we limit the operators to +, -, *, and / . (3) Evaluate the arithmetic on the right-hand
side, yielding a numeric value for the unknown. (4) Substitute the numeric value
for the unknown in all the other equations, and remember the known value. Then
try to solve the resulting set of equations. (5) If step (1) fails—if there is no equation
with exactly one unknown—then just return the known values and don't try to solve
anything else.

The function sol ve is passed a system of equations, along with a list of known
variable/value pairs. Initially no variables are known, so this list will be empty,
sol ve goes through the list of equations searching for an equation with exactly one
unknown. If it can find such an equation, it caHs i s o l a t e to solve the equation
in terms of that one unknown, solve then substitutes the value for the variable
throughout the list of equations and calls itself recursively on the resulting list. Each

226 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

time solve calls itself, it removes one equation from the Ust of equations to be solved,
and adds one to the Ust of known variable/value pairs. Since the list of equations is
always growing shorter, sol ve must eventually terminate.

(defun solve (equations known)
"Solve a system of equations by constra int propagat ion."

Try to solve for one equation, and subst i tu te i t s value into
the others. I f that doesn' t work, return what i s known,

(or (some #*(lambda (equation)
(le t ((x (one-unknown equat ion)))

(when X
(le t ((answer (solve-ar i thmet ic

(i so la te equation x))))
(solve (subst (exp-rhs answer) (exp- lhs answer)

(remove equation equations))
(cons answer known))))))

equations)
known))

i so l a t e is passed an equation guaranteed to have one unknown. It returns an
equivalent equation with the unknown isolated on the left-hand side. There are
five cases to consider: when the unknown is alone on the left, we're done. The
second case is when the unknown is anywhere on the right-hand side. Because
is commutative, we can reduce the problem to solving the equivalent equation with
left- and right-hand sides reversed.

Next we have to deal with the case where the unknown is in a complex expression
on the left-hand side. Because we are allowing four operators and the unknown can
be either on the right or the left, there are eight possibilities. Letting X stand for
an expression containing the unknown and A and Β stand for expressions with no
unknowns, the possibilities and their solutions are as follows:

(1)X*A=B X=B/A (5)A*X=B X=B/A
(2)X+A=B ^ X=B-A (6)A+X=B ^ X=B-A
(3)X/A=B => X=B*A (7)A/X=B X=A/B
(4)X-A=B X=B+A (8)A-X=B => X=A-B

Possibilities (1) through (4) are handled by case III, (5) and (6) by case IV, and (7)
and (8) by case V. In each case, the transformation does not give us the final answer,
since X need not be the unknown; it might be a complex expression involving the
unknown. So we have to caU i sol ate again on the resulting equation. The reader
should try to verify that transformations (1) to (8) are valid, and that cases III to V
implement them properly.

7.2 SOLVING ALGEBRAIC EQUATIONS 227

(defun iso la te (e x)
" I so la te the lone χ in e on the left-hand side of e . "

This assumes there i s exactly one χ in e,
and that e i s an equation,

(cond ((eq (exp-lhs e) x)
Case I : X = A - > X = η

e)
((in-exp X (exp-rhs e))

; ; Case I I : A = f (X) - > f (X) = A
(i so la te (mkexp (exp-rhs e) ' = (exp- lhs e)) x))

((in-exp X (exp- lhs (exp- lhs e)))
Case I I I : f (X)*A = Β - > f (X) = B/A

(i so la te (mkexp (exp- lhs (exp- lhs e)) *=
(mkexp (exp-rhs e)

(inverse-op (exp-op (exp- lhs e)))
(exp-rhs (exp- lhs e)))) x))

((commutative-p (exp-op (exp- lhs e)))
: ; Case IV : A* f (X) = Β - > f (X) = B/A
(i so la te (mkexp (exp-rhs (exp- lhs e)) ' =

(mkexp (exp-rhs e)
(inverse-op (exp-op (exp- lhs e)))
(exp- lhs (exp- lhs e)))) x))

(t : ; Case V: A / f (X) = Β - > f (X) = A/B
(i so la te (mkexp (exp-rhs (exp- lhs e)) ' =

(mkexp (exp- lhs (exp- lhs e))
(exp-op (exp- lhs e))
(exp-rhs e))) x))))

Recall that to prove a function is correct, we have to prove both that it gives the correct
answer when it terminates and that it will eventually terminate. For a recursive
function with several alternative cases, we must show that each alternative is valid,
and also that each alternative gets closer to the end in some way (that any recursive
calls involve 'simpler' arguments). For i sol ate, elementary algebra will show that
each step is valid—or at least nearly valid. Dividing both sides of an equation by
0 does not yield an equivalent equation, and we never checked for that. It's also
possible that similar errors could sneak in during the call to eval. However, if we
assume the equation does have a single valid solution, then i sol ate performs only
legal transformations.

The hard part is to prove that 1 so l ate terminates. Case I clearly terminates, and
the others all contribute towards isolating the unknown on the left-hand side. For
any equation, the sequence will be first a possible use of case II, followed by a number
of recursive calls using cases III to V. The number of calls is bounded by the number
of subexpressions in the equation, since each successive call effectively removes an
expression from the left and places it on the right. Therefore, assuming the input is

228 STUDENT: SOLVING ALGEBRA WORD PROBLEMS

of finite size, we must eventually reach a recursive call to i sol ate that will use case I
and terminate.

When i sol ate returns, the right-hand side must consist only of numbers and
operators. We could easily write a function to evaluate such an expression. However,
we don't have to go to that effort, since the function already exists. The data structure
exp was carefully selected to be the same structure (lists with prefix functions) used
by Lisp itself for its own expressions. So Lisp will find the right-hand side to be an
acceptable expression, one that could be evaluated if typed in to the top level. Lisp
evaluates expressions by calling the function eva l , so we can call eval directly and
have it return a number. The function sol ve - a ri t hmet i c returns an equation of the
form (=var number).

Auxiliary functions for so l ve are shown below. Most are straightforward, but
I will remark on a few of them. The function pref i x - > i n f ix takes an expression
in prefix notation and converts it to a fully parenthesized infix expression. Unlike
i sol ate, it assumes the expressions will be implemented as lists, pref i x->i nf i χ is
used by pr i n t -equat i ons to produce more readable output.

(defun pr int-equat ions (header equations)
"Pr int a l i s t of equat ions."
(format t "~%~a"'{~% ~{ ~a~}~}~%" header

(mapcar #*pre f i x -> in f i x equat ions)))

(defconstant operators-and- inverses
' ((+ -) (- +) (* /) (/ *) (= =)))

(defun inverse-op (op)
(second (assoc op operators-and- inverses)))

(defun unknown-p (exp)
(symbolp exp))

(defun in-exp (x exp)
"True i f X appears anywhere in exp"
(or (eq χ exp)

(and (exp-p exp)
(or (in-exp χ (exp- lhs exp)) (in-exp χ (exp-rhs exp))))))

(defun no-unknown (exp)
"Returns true i f there are no unknowns in exp."
(cond ((unknown-p exp) n i l)

((atom exp) t)
((no-unknown (exp- lhs exp)) (no-unknown (exp-rhs exp)))
(t n i l)))

7.2 SOLVING ALGEBRAIC EQUATIONS 229

(defun one-unknown (exp)
"Returns the s ing le unknown in exp, i f there i s exactly one."
(cond ((unknown-p exp) exp)

((atom exp) n i l)
((no-unknown (exp- lhs exp)) (one-unknown (exp-rhs exp)))
((no-unknown (exp-rhs exp)) (one-unknown (exp-lhs exp)))
(t n i l)))

(defun commutative-p (op)
" I s operator commutative?"
(member op ' (+ * =)))

(defun solve-ar i thmet ic (equation)
"Do the arithmetic for the r ight-hand s i d e . "

This assumes that the r ight-hand side i s in the r ight form,
(mkexp (exp-lhs equation) *= (eval (exp-rhs equat ion))))

(defun binary-exp-p (x)
(and (exp-p x) (= (length (exp-args x)) 2)))

(defun p re f i x -> in f i x (exp)
"Translate pref ix to i n f i x express ions . "
(i f (atom exp) exp

(mapcar # ' p re f i x -> in f i x
(i f (binary-exp-p exp)

(l i s t (exp- lhs exp) (exp-op exp) (exp-rhs exp))
exp))))

Here's an example of sol ve-equati ons in action, with a system of two equations.
The reader should go through the trace, discovering which case was used at each call
to i sol ate, and verifying that each step is accurate.

> (trace iso la te solve)
(i so la te solve)

> (solve-equat ions ' ((= (+ 3 4) (* (- 5 (+ 2 x)) 7))
(= (+ (* 3 X) y) 12)))

The equations to be solved are:
(3 + 4) = ((5 - (2 + X)) * 7)
((3 * X) + Y) = 12

(1 ENTER SOLVE: ((= (+ 3 4) (* (- 5 (+ 2 X)) 7))
(= (+ (* 3 X) Y) 12)) NIL)

(1 ENTER ISOLATE: (= (+ 3 4) (* (- 5 (+ 2 X)) 7)) X)
(2 ENTER ISOLATE: (= (* (- 5 (+ 2 X)) 7) (+ 3 4)) X)

(3 ENTER ISOLATE: (= (- 5 (+ 2 X)) (/ (+ 3 4) 7)) X)
(4 ENTER ISOLATE: (= (+ 2 X) (- 5 (/ (+ 3 4) 7))) X)

(5 ENTER ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)) X)
(5 EXIT ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)))

(4 EXIT ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)))

230 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

(3 EXIT ISOLATE: (= Χ (- (- 5 (/ (+ 3 4) 7)) 2)))
(2 EXIT ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)))

(1 EXIT ISOLATE: (= X (- (- 5 (/ (+ 3 4) 7)) 2)))
(2 ENTER SOLVE: ((= (+ (* 3 2) Y) 12)) ((= X 2)))

(1 ENTER ISOLATE: (= (+ (* 3 2) Y) 12) Y)
(2 ENTER ISOLATE: (= Y (- 12 (* 3 2))) Y)
(2 EXIT ISOLATE: (= Y (- 12 (* 3 2))))

(1 EXIT ISOLATE: (= Y (- 12 (* 3 2))))
(3 ENTER SOLVE: NIL ((= Y 6) (= X 2)))
(3 EXIT SOLVE: ((= Y 6) (= X 2)))

(2 EXIT SOLVE: ((= Y 6) (= X 2)))
(1 EXIT SOLVE: ((= Y 6) (= X 2)))
The solut ion i s :

Y = 6
X = 2

NIL

Now let's tackle the format string "'^%~a~{~% "{ ~a''}~}~%" in p r i n t - e q u a t i o n s .
This may look like random gibberish, but there is actually sense behind it. format
processes the string by printing each character, except that""" indicates some special
formatting action, depending on the following character. The combination "~%"
prints a newline, and "~a" prints the next argument to format that has not been
used yet. Thus the first four characters of the format string, " ", print a newline
followed by the argument header. The combination " ~ { " treats the corresponding
argument as a list, and processes each element according to the specification between
the " ~ { " and the next" ~ } " . In this case, equati ons is a list of equations, so each one
gets printed with a newline (" ") followed by two spaces, followed by the processing
of the equation itself as a list, where each element is printed in the "~a" format and
preceded by a blank. The t given as the first argument to format means to print to
the standard output; another output stream may be specified there.

One of the annoying minor holes in Lisp is that there is no standard convention on
where to print newlines! In C, for example, the very first line of code in the reference
manual is

pr in t fC 'he l l o , wor ldXn") ;

This makes it clear that newlines are printed after each line. This convention is so
ingrained in the UNIX world that some UNIX programs will go into an infinite loop
if the last line in a file is not terminated by a newline. In Lisp, however, the function
pr i nt puts in a newline before the object to be printed, and a space after. Some Lisp
programs carry the newline-before policy over to format, and others use the newline-
af ter policy. This only becomes a problem when you want to combine two programs
written under different policies. How did the two competing policies arise? In UNIX
there was only one reasonable policy, because all input to the UNIX interpreter (the

7.3 EXAMPLES 231

shell) is terminated by newlines, so there is no need for a newline-before. In some
Lisp interpreters, however, input can be terminated by a matching right parenthesis.
In that case, a newline-before is needed, lest the output appear on the same line as
the input.

[¿3 Exercise 7.1 [m] Implement p r i n t - equa t i ons using only primitive printing func
tions such as t e r p r i and p r i nc, along with explicit loops.

7.3 Examples

Now we move on to examples, taken from Bobrow's thesis. In the first example, it is
necessary to insert a "then" before the word "what" to get the right answer:

> (student ' (I f the number of customers Tom gets i s twice the square of

20 % of the number of advertisements he runs I.I

and the number of advertisements i s 45 I J

then what i s the number of customers Tom gets ?))

The equations to be solved are:

CUSTOMERS = (2 * (((20 / 100) * ADVERTISEMENTS) *

((20 / 100) * ADVERTISEMENTS)))

ADVERTISEMENTS = 45

WHAT = CUSTOMERS

The so lut ion i s :

WHAT = 162

CUSTOMERS = 162

ADVERTISEMENTS = 45

NIL

Notice that our program prints the values for all variables it can solve for, while
Bobrow's program only printed the values that were explicitly asked for in the text.
This is an example of "more is less"—it may look impressive to print all the answers,
but it is actually easier to do so than to decide just what answers should be printed.
The following example is not solved correctly:

232 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

> (student '(The da i ly cost of l i v i ng for a group i s the overhead cost plus
the running cost for each person times the number of people in
the group I.I This cost for one group equals $ 100 I,I
and the number of people in the group i s 40 I.I
I f the overhead cost i s 10 times the running cost I,I
f ind the overhead and running cost for each person I . I))

The equations to be solved are:
DAILY = (OVERHEAD + (RUNNING * PEOPLE))
COST = 100
PEOPLE = 40
OVERHEAD = (10 * RUNNING)
TO-FIND-1 = OVERHEAD
TO-FIND-2 = RUNNING

The so lu t ion i s :
PEOPLE = 40
COST = 100

NIL

This example points out two important limitations of our version of student as
compared to Bobrow's. The first problem is in naming of variables. The phrases "the
daily cost of living for a group" and "this cost" are meant to refer to the same quantity,
but our program gives them the names d a i l y and cost respectively. Bobrow's
program handled naming by first considering phrases to be the same only if they
matched perfectly. If the resulting set of equations could not be solved, he would try
again, this time considering phrases with words in common to be identical. (See the
following exercises.)

The other problem is in our so l ve function. Assuming we got the variables
equated properly, sol ve would be able to boil the set of equations down to two:

100 = (OVERHEAD + (RUNNING * 40))
OVERHEAD = (10 * RUNNING)

This is a set of two linear equations in two unknowns and has a unique solution at
RUNNING = 2, OVERHEAD = 20. But our version of sol ve couldn't find this solution,
since it looks for equations with one unknown. Here is another example that student
handles well:

> (student ' (F r a n ' s age divided by Robin 's height i s one hal f K e l l y ' s 10 I.I
K e l l y ' s IQ minus 80 i s Robin 's height I.I
I f Robin i s 4 feet ta l l 1,1 how old i s Fran ?))

The equations to be solved are:
(FRAN / ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN
ROBIN = 4

7.3 EXAMPLES 233

HOW = FRAN

The so lut ion i s :
HOW = 168
FRAN = 168
KELLY = 84
ROBIN = 4

NIL

But a slight variation leads to a problem:

> (student ' (F r a n ' s age divided by Robin 's height i s one hal f K e l l y ' s IQ I.I
K e l l y ' s IQ minus 80 i s Robin 's height I.I
I f Robin i s 0 feet ta l l Μ how old i s Fran ?))

The equations to be solved are:
(FRAN / ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN
ROBIN = 0
HOW = FRAN

The so lut ion i s :
HOW = 0
FRAN = 0
KELLY = 80
ROBIN = 0

NIL

There is no valid solution to this problem, because it involves dividing by zero (Robin's
height). But s tuden t is willing to transform the first equation into:

FRAN = ROBIN * (KELLY / 2)

and then substitutes to get 0 for FRAN. Worse, dividing by zero could also come up
inside e v a l :

> (student ' (F r a n ' s age times Robin 's height i s one hal f K e l l y ' s IQ I.I
K e l l y ' s IQ minus 80 i s Robin 's height I.I
I f Robin i s 0 feet ta l l I J how old i s Fran ?))

The equations to be solved are:
(FRAN * ROBIN) = (KELLY / 2)
(KELLY - 80) = ROBIN
ROBIN = 0
HOW = FRAN

234 STUDENT; SOLVING ALGEBRA WORD PROBLEMS

» E r r o r : There was an attempt to div ide a number by zero

However, one could claim that nasty examples with division by zero don't show up
in algebra texts.

In summary, STUDENT behaves reasonably well, doing far more than the toy
program ELIZA. STUDENT is also quite efficient; on my machine it takes less than
one second for each of the prior examples. However, it could still be extended to
have more powerful equation-solving capabilities. Its linguistic coverage is another
matter. While one could add new patterns, such patterns are really just tricks, and
don't capture the underlying structure of English sentences. That is why the STUDENT
approach was abandoned as a research topic.

7.4 History and References
Bobrow's Ph.D. thesis contains a complete description of STUDENT. It is reprinted
in Minsky 1968. Since then, there have been several systems that address the same
task, with increased sophistication in both their mathematical and linguistic ability.
Wong (1981) describes a system that uses its understanding of the problem to get
a better linguistic analysis. Sterling et al. (1982) present a much more powerful
equation solver, but it does not accept natural language input. Certainly Bobrow's
language analysis techniques were not very sophisticated by today's measures. But
that was largely the point: if you know that the language is describing an algebraic
problem of a certain type, then you don't need to know very much linguistics to get
the right answer most of the time.

7.5 Exercises

@ Exercise 7.2 [h] We said earlier that our program was unable to solve pairs of linear
equations, such as:

100 = (OVERHEAD + (RUNNING * 40))
OVERHEAD = (10 * RUNNING)

The original STUDENT could solve these equations. Write a routine to do so. You may
assume there will be only two equations in two unknowns if you wish, or if you are
more ambitious, you could solve a system of η linear equations with η unknowns.

@ Exercise 7.3 [h] Implement a version of Bobrow's variable-naming algorithm. In
stead of taking the first word of each equation, create a unique symbol, and associate

7.5 EXERCISES 235

with it the entire list of words. In the first pass, each nonequal list of words will be
considered a distinct variable. If no solution is reached, word lists that share words
in common are considered to be the same variable, and the solution is attempted
again. For example, an input that contains the phrases "the rectangle's width" and
"the width of the rectangle" might assign these two phrases the variables ν 1 and ν2. If
an attempt to solve the problem yields no solutions, the program should realize that
vl and ν 2 have the words "rectangle" and "width" in common, and add the equation
(= vl v2) and try again. Since the variables are arbitrary symbols, the printing
routine should probably print the phrases associated with each variable rather than
the variable itself.

@ Exercise 7.4 [h] The original STUDENT also had a set of "common knowledge" equa
tions that it could use when necessary. These were mostly facts about conversion
factors, such as (1 inch = 2.54 cm). Also included wereequations like (distance
equals rate times time), which could be used to solve problems like "If the dis
tance from Anabru to Champaign is 10 miles and the time it takes Sandy to travel
this distance is 2 hours, what is Sandy's rate of speed?" Make changes to incorporate
this facility. It probably only helps in conjunction with a solution to the previous
exercise.

[¿3 Exercise 7.5 [h] Change student so that it prints values only for those variables
that are being asked for in the problem. That is, given the problem "X is 3. Y is 4.
How much is X + Y?" it should not print values for X and Y.

C¿3 Exercise 7.6 [m] Try STUDENT on the following examples. Make sure you handle
special characters properly:

(a) The price of a radio is 69.70 dollars. If this price is 15% less than the marked
price, find the marked price.

(b) The number of soldiers the Russians have is one half of the number of guns
they have. The number of guns they have is 7000. What is the number of soldiers
they have?

(c) If the number of customers Tom gets is twice the square of 20 % of the number
of advertisements he runs, and the number of advertisements is 45, and the profit
Tom receives is 10 times the number of customers he gets, then what is the profit?

(d) The average score is 73, The maximum score is 97. What is the square of the
difference between the average and the maximum?

(e) Tom is twice Mary's age, and Jane's age is half the difference between Mary
and Tom. If Mary is 18 years old, how old is Jane?

(f)Whatis4 + 5 * 1 4 / 7 ?
{g)xxb = c-\-d.bxc = x.x = b-\-b.b = 5.

236 S T U D E N T ; SOLVING ALGEBRA WORD PROBLEMS

@ Exercise 7.7 [h] Student's infix-to-prefix rules account for the priority of operators
properly, but they don't handle associativity in the standard fashion. For example,
(12 - 6 - 3) translates to (- 12 (- 6 3)) or 9, when the usual convention is to
interpret this as (- (- 12 6) 3) or 3. Fix student to handle this convention.

@ Exercise 7.8 [d] Find a mathematically oriented domain that is sufficiently limited
so that STUDENT can solve problems in it. The chemistry of solutions (calculating pH
concentrations) might be an example. Write the necessary *student-rules*, and
test the resulting program.

@ Exercise 7.9 [m] Analyze the complexity of one-unknown and implement a more
efficient version.

@ Exercise 7.10 [h] Bobrow's paper on STUDENT (1968) includes an appendix that
abstractly characterizes all the problems that his system can solve. Generate a
similar characterization for this version of the program.

7.6 Answers

Answer 7.1

(defun pr int-equat ions (header equations)
(te rpr i)
(princ header)
(do l i s t (equation equations)

(terpr i)
(pr inc " ")
(do l i s t (x (p re f i x -> in f i x equation))

(pr inc " ")
(princ x))))

7.6 ANSWERS 237

Answer 7.9 one-unknown is very inefficient because it searches each subcompo
nent of an expression twice. For example, consider the equation:

(= (+ (+ χ 2) (+ 3 4)) (+ (+ 5 6) (+ 7 8)))

To decide if this has one unknown, one - unknown will call no - unknown on the left-hand
side, and since it fails, call it again on the right-hand side. Although there are only
eight atoms to consider, it ends up calling no-unknown 17 times and one-unknown 4
times. In general, for a tree of depth n, approximately 2^ calls to no-unknown are
made. This is clearly wasteful; there should be no need to look at each component
more than once.

The following version uses an auxiliary function, f i nd - one - un known, that has an
accumulator parameter, unknown. This parameter can take on three possible values:
nil, indicating that no unknown has been found; or the single unknown that has
been found so far; or the number 2 indicating that two unknowns have been found
and therefore the final result should be nil. The function f i nd - one - unknown has four
cases: (1) If we have already found two unknowns, then return 2 to indicate this. (2) If
the input expression is a nonatomic expression, then first look at its left-hand side
for unknowns, and pass the result found in that side as the accumulator to a search
of the right-hand side. (3) If the expression is an unknown, and if it is the second one
found, return 2; otherwise return the unknown itself. (4) If the expression is an atom
that is not an unknown, then just return the accumulated result.

(defun one-unknown (exp)
"Returns the s ing le unknown in exp, i f there i s exactly one."
(let ((answer (find-one-unknown exp n i l)))

; ; I f there were two unknowns, return n i l ;
otherwise return the unknown (i f there was one)

(i f (eql answer 2)
ni l
answer)))

(defun find-one-unknown (exp unknown)
"Assuming UNKNOWN i s the unknown(s) found so fa r , decide
i f there i s exactly one unknown in the ent ire express ion . "
(cond ((eql unknown 2) 2)

((exp-p exp)
(find-one-unknown

(exp-rhs exp)
(find-one-unknown (exp- lhs exp) unknown)))

((unknown-p exp)
(i f unknown

2
exp))

(t unknown)))

CHAPTER 8
Symbolic Mathematics:
A Simplification Program

Our life is frittered away by detail—
Simplify, simplify.

-Henry David Thoreau, Waiden (1854)

íi^^ ymbolic mathematics" is to numerical mathematics as algebra is to arithmetic: it deals
with variables and expressions rather than just numbers. Computers were first developed

L..^primarily to solve arithmetic problems: to add up large columns of numbers, to multiply
many-digit numbers, to solve systems of linear equations, and to calculate the trajectories of
ballistics. Encouraged by success in these areas, people hoped that computers could also be used
on more complex problems; to differentiate or integrate a mathematical expression and come
up with another expression as the answer, rather than just a number. Several programs were
developed along these lines in the 1960s and 1970s. They were used primarily by professional
mathematicians and physicists with access to large mainframe computers. Recently, programs
like MATHLAB, DERIVE, and ΜΑΤΗΕΜΑΉΟΑ have given these capabilities to the average personal
computer user.

INTRODUCTION 239

It is interesting to look at some of the history of symbolic algebra, beginning
in 1963 with SAINT, James Slagle's program to do symbolic integration. Originally,
SAINT was heralded as a triumph of AI. It used general problem-solving techniques,
similar in kind to GPS, to search for solutions to difficult problems. The program
worked its way through an integration problem by choosing among the techniques
known to it and backing up when an approach failed to pan out. SAINT'S behavior
on such problems was originally similar to (and eventually much better than) the
performance of undergraduate calculus students.

Over time, the AI component of symbolic integration began to disappear. Joel
Moses implemented a successor to SAINT called SiN. It used many of the same tech
niques, but instead of relying on search to find the right combination of techniques,
it had additional mathematical knowledge that led it to pick the right technique at
each step, without any provision for backing up and trying an alternative. SiN solved
more problems and was much faster than SAINT, although it was not perfect: it still
occasionally made the wrong choice and failed to solve a problem it could have.

By 1970, the mathematician R. Risch and others developed algorithms for indef
inite integration of any expression involving algebraic, logarithmic, or exponential
extensions of rational functions. In other words, given a "normal" function, the Risch
algorithm will return either the indefinite integral of the function or an indication
that no closed-form integral is possible in terms of elementary functions. Such work
effectively ended the era of considering integration as a problem in search.

SIN was further refined, merged with parts of the Risch algorithm, and put into the
evolving MACSYMA^ program. For the most part, refinement of MACSYMA consisted
of the incorporation of new algorithms. Few heuristics of any sort survive. Today
MACSYMA is no longer considered an AI program. It is used daily by scientists and
mathematicians, while ELIZA and STUDENT are now but historical footnotes.

With ELIZA and STUDENT we were able to develop miniature programs that dupli
cated most of the features of the original. We won't even try to develop a program
worthy of the name MACSYMA; instead we will settle for a modest program to do sym
bolic simplification, which we will call (simply) s impl i f i er. Then, we will extend
simpl i f i er to do differentiation, and some integration problems. The idea is that
given an expression like (2 - 1) a : + 0, we want the program to compute the simplified
form X.

According to the Mathematics Dictionary Qames and James 1949), the word "sim
plified" is "probably the most indefinite term used seriously in mathematics." The
problem is that "simplified" is relative to what you want to use the expression for
next. Which is simpler, x^ 3x + 2 or (x -\- l){x -\- 2)? The first makes it easier to

^MACSYMA is the Project MAC SYMbolic MAthematics program. Project MAC is the MIT
research organization that was the precursor of MIT's Laboratory for Computer Science.
MAC stood either for Machine-Aided Cognition or Multiple-Access Computer, according to
one of their annual reports. The cynical have claimed that MAC really stood for Man Against
Computer.

240 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

integrate or differentiate, the second easier to find roots. We will be content to limit
ourselves to "obvious" simplifications. For example, χ is almost always preferable
to Ix + 0.

8.1 Converting Infix to Prefix Notation

We will represent simplifications as a list of rules, much like the rules for STUDENT
and ELIZA. But since each simplification rule is an algebraic equation, we will store
each one as an exp rather than as a rul e. To make things more legible, we will write
each expression in infix form, but store them in the prefix form expected by exp. This
requires an i nf i x->pref i χ function to convert infix expressions into prefix notation.
We have a choice as to how general we want our infix notation to be. Consider:

(((a * (X ^ 2)) + (b * X)) + c)
(a * x ^ 2 + b * x + c)
(a χ ^ 2 + b χ + c)
a x^2 + b*x+c

The first is fully parenthesized infix, the second makes use of operator precedence
(multiplication binds tighter than addition and is thus performed first), and the third
makes use of implicit multiplication as well as operator precedence. The fourth
requires a lexical analyzer to break Lisp symbols into pieces.

Suppose we only wanted to handle the fully parenthesized case. To write
i nf i x->pref i χ, one might first look at pref i x->i nf i χ (on page 228) trying to adapt
it to our new purposes. In doing so, the careful reader might discover a surprise:
in f ix->pref ix and pref i x - > i n f ix are in fact the exact same function! Both leave
atoms unchanged, and both transform three-element lists by swapping the exp-op
and exp -1 hs. Both apply themselves recursively to the (possibly rearranged) input
list. Once we discover this fact, it would be tempting to avoid writing i η f i χ - >p r e f i x,
and just call pref i x->i nf i χ instead. Avoid this temptation at all costs. Instead, de
fine i nf i x->pref i χ as shown below. The intent of your code will be clearer:

(defun in f i x ->pre f i x (in f ix -exp)
"Convert f u l l y parenthesized in f ix -exp to a pref ix expression"
; ; Don't use th i s version for non- fu l ly parenthesized exps!
(p re f i x -> in f i x in f i x -exp))

As we saw above, fully parenthesized infix can be quite ugly, with all those extra
parentheses, so instead we will use operator precedence. There are a number of
ways of doing this, but the easiest way for us to proceed is to use our previously
defined tool rul e-based-transí ator and its subtool, pat-match. Note that the third

8.1 CONVERTING INFIX TO PREFIX NOTATION 241

clause of inf ix->pref ix , the one that calls rule-based-translator is unusual in
that it consists of a single expression. Most cond-clauses have two expressions: a test
and a result, but ones like this mean, "Evaluate the test, and if it is non-nil, return it.
Otherwise go on to the next clause."

(defun in f i x ->pre f i x (exp)

"Translate an in f i x expression into pref ix notat ion."

Note we cannot do impl ic i t mul t ip l icat ion in th is system

(cond ((atom exp) exp)

((= (length exp) 1) (in f i x ->pre f i x (f i r s t exp)))

((ru le-based- t rans la tor exp * i n f i x ->p re f i x - r u l es *

: r u l e - i f # ' ru le-pat tern :rule-then #*rule-response

:act ion

#*(lambda (bindings response)

(sub l i s (mapcar

#*(lambda (pa i r)

(cons (f i r s t pa i r)

(i n f i x ->pre f i x (rest pa i r))))

b indings)

response))))

((symbolp (f i r s t exp))

(l i s t (f i r s t exp) (in f i x ->pre f i x (rest exp))))

(t (error " I l l ega l exp"))))

Because we are doing mathematics in this chapter, we adopt the mathematical con
vention of using certain one-letter variables, and redefine vari abl e-p so that vari
ables are only the symbols m through z.

(defun var iable-p (exp)

"Variables are the symbols Μ through Z . "

put x . y . z f i r s t to f ind them a l i t t l e faster

(member exp ' (x y z m n o p q r s t u v w)))

(pat-match-abbrev ' x+ * (? + x))

(pat-match-abbrev ' y+ ' (? + y))

(defun rule-pattern (ru le) (f i r s t ru le))

(defun rule-response (ru le) (second ru le))

242 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

(defpa rameter *i nf i x->pref i x - r u l e s *
(mapcar #'expand-pat-match-abbrev

' (((x + = y+) (= X y))
((- x+) (- X))

((+ X +) (+ x))

((x+ + y+) (+ X y))
((x+ - y+) (- X y))
((x+ * y+) (* X y))
((x+ / y+) (/ X y))
((x+ ^ y+) r X y))))

"A l i s t of ru les , ordered by precedence.")

8.2 Simplification Rules

Now we are ready to define the simplification rules. We use the definition of the data
types rule and exp (page 221) and p re f ix -> in f ix (page 228) from STUDENT. They
are repeated here:

(defstruct (rule (:type l i s t)) pattern response)

(defstruct (exp (:type l i s t)
(.•constructor mkexp (Ihs op rhs)))

op Ihs rhs)

(defun exp-p (x) (consp x))
(defun exp-args (x) (rest x))

(defun p re f i x -> in f i x (exp)
"Translate pref ix to i n f i x express ions . "
(i f (atom exp) exp

(mapcar # ' p re f i x -> i n f i x
(i f (binary-exp-p exp)

(l i s t (exp- lhs exp) (exp-op exp) (exp-rhs exp))
exp))))

(defun binary-exp-p (x)
(and (exp-p x) (= (length (exp-args x)) 2)))

We also use rule-based-translator (page 188) once again, this time on a list of
simplification rules. A reasonable list of simplification rules is shown below. This
list covers the four arithmetic operators, addition, subtraction, multipHcation, and
division, as well as exponentiation (raising to a power), denoted by the symbol

Again, it is important to note that the rules are ordered, and that later rules will
be applied only when earlier rules do not match. So, for example, 0 / 0 simplifies to

8.2 SIMPLIFICATION RULES 243

undef i ned, and not to 1 or 0, because the rule for 0 / 0 comes before the other rules.
See exercise 8.8 for a more complete treatment of this.

(defparameter * s imp l i f i ca t i on - ru les * (mapcar # ' i n f i x ->p re f i x *(
(x + 0 = X)

(0 + X = X)

(x + X = 2 * X)

(X - 0 = X)

(0 - X = - X)

(X - X = 0)
(- - X = X)

(X * 1 = X)

(1 * X = X)

(X * 0 = 0)
(0 * X = 0)
(X * X = X ^ 2)
(X / 0 = undefined)
(0 / X = 0)
(X / 1 = X)

(X / X = 1)
(0 ^ 0 = undefined)

(X ^ 0 = 1)
(0 X = 0)
(1 X = 1)
(X ^ 1 = X)

(X ^ - 1 = 1 / X)

(X * (y / X) = y)
((y / X) * X = y)
((y * X) / X = y)
((X * y) / X = y)
(x + - X = 0)
((- X) + X = 0)
(x + y - X = y)
)))

(defun " (x y) "Exponentiation" (expt χ y))

We are now ready to go ahead and write the simplif ier. The main function, s i mp 11 f i e r
will repeatedly print a prompt, read an input, and print it in simplified form. Input
and output is in infix and the computation is in prefix, so we need to convert accord
ingly; the function simp does this, and the function s impl 1 fy takes care of a single
prefix expression. It is summarized in figure 8.1.

244 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

Top-Level Functions
s impl i f ie r A read-simplify-print loop.
simp Simplify an infix expression.
simpl i fy Simplify a prefix expression.

Special Variables
* i n f i x ->p re f i x - r u l es * Rules to translate from infix to prefix.
* s i mpli f i cati on- ru les* Rules to simplify an expression.

Data Types
exp A prefix expression.

Atixiliary Functions
simpl i fy-exp Simplify a non-atomic prefix expression.
i n f i x ->pre f ix Convert infix to prefix notation.
var iable-p The symbols m through ζ are variables.

An alias for expt, exponentiation.
evaluable Decide if an expression can be numerically evaluated.
simp-rule Transform a rule into proper format.
length=l Is the argument a list of length 1?

Previous Functions
pat-match Match pattern against an input, (p. 180)
ru le-based-t ranslator Apply a set of rules, (p. 189)
pat-match-abbrev Define an abbreviation for use in pat-match.

Figure 8.1: Glossary for the Simplifier

Here is the program:

(defun s imp l i f ie r ()
"Read a mathematical express ion, s impl i fy i t , and pr int the resu l t . "
(loop

(pr int ' s imp l i f i e r>)
(pr int (simp (read)))))

(defun simp (in f) (p re f i x -> in f i x (s impl i fy (i n f i x ->pre f i x i n f))))

(defun s impl i fy (exp)
"Simpl i fy an expression by f i r s t s impl i fy ing i t s components."
(i f (atom exp) exp

(simpl i fy-exp (mapcar # 's imp l i f y exp))))

(defun simpl i fy-exp (exp)
"Simpl i fy using a ru le , or by doing ar i thmet ic."
(cond ((ru le-based- t rans lator exp *s imp l i f i ca t i on - ru les *

: r u l e - i f # 'exp- lhs :rule-then # 'exp- rhs
.•action #'(lambda (bindings response)

(s impl i fy (sub l i s bindings response)))))
((evaluable exp) (eval exp))
(t exp)))

82 SIMPLIFICATION RULES 245

(defun evaluable (exp)
" I s th i s an arithmetic expression that can be evaluated?"
(and (every #'numberp (exp-args exp))

(or (member (exp-op exp) ' (+ - * /))
(and (eq (exp-op exp) ' ")

(integerp (second (exp-args exp)))))))

The function si mpl i fy assures that any compound expression will be simplified by
first simplifying the arguments and then calling simpl ify-exp. This latter func
tion searches through the simplification rules, much like use-e l iza- ru les and
transí a te- to-expressi on. When it finds a match, simpl i fy-exp substitutes in the
proper variable values and calls simpl i fy on the result, simpl i fy-exp also has the
ability to call eval to simplify an arithmetic expression to a number. As in STUDENT,
it is for the sake of this eval that we require expressions to be represented as lists in
prefix notation. Numeric evaluation is done after checking the rules so that the rules
can intercept expressions like (/ 1 0) and simplify them to undef i ned. If we did the
numeric evaluation first, these expressions would yield an error when passed to e va 1.
Because Common Lisp supports arbitrary precision rational numbers (fractions), we
are guaranteed there will be no round-off error, unless the input explicitly includes
inexact (floating-point) numbers. Notice that we allow computations involving the
four arithmetic operators, but exponentiation is only allowed if the exponent is an
integer. That is because expressions like (" 4 1/2) are not guaranteed to return 2
(the exact square root of 4); the answer might be 2 .0 (an inexact number). Another
problem is that - 2 is also a square root of 4, and in some contexts it is the correct
one to use.

The following trace shows some examples of the simplifier in action. First we
show that it can be used as a calculator; then we show more advanced problems.

> (s imp l i f i e r)
SIMPLIFIER> (2 + 2)
4
SIMPLIFIER> (5 * 20 + 30 + 7)
137
SIMPLIFIER> (5 * χ - (4 + 1) * x)
0
SIMPLIFIER> (y / ζ * (5 * χ - (4 + 1) * χ))
O
SIMPLIFIER> ((4 - 3) * χ + (y / y - 1) * ζ)
X
SIMPLIFIER> (1 * f (x) + 0)
(F X)
SIMPLIFIER> (3 * 2 * X)
(3 * (2 * X))
SIMPLIFIER> [Abort]
>

246 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

Here we have terminated the loop by hitting the abort key on the terminal. (The details
of this mechanism varies from one implementation of Common Lisp to another.) The
simplifier seems to workfairlywell, although it errs on the last example: (3 * (2 *
X)) should simplify to (6 * X). In the next section, we will correct that problem.

8.3 Associativity and Commutativity

We could easily add a rule to rewrite (3 * (2 * X)) a s ((3 * 2) * X) and hence
(6 * X). The problem is that this rule would also rewrite (X * (2 * 3)) a s ((X *
2) * 3) , unless we had a way to limit the rule to apply only when it would group
numbers together. Fortunately, pat-match does provide just this capability, with the
?i s pattern. We could write this rule:

(((? i s η numberp) * ((? i s m numberp) * x)) = ((n * m) * x))

This transforms (3 * (2 * x)) into ((3 * 2) * χ), and hence into (6 * x) .
Unfortunately, the problem is not as simple as that. We also want to simplify ((2 *
x) * (y* 3)) to (6 * (x * y)) . We can do a better job of gathering numbers together
by adopting three conventions. First, make numbers first in products: change χ *
3 to 3 * X . Second, combine numbers in an outer expression with a number in an
inner expression: change 3 * (5 * x) t o (3 * 5) * x . Third, move numbers out
of inner expressions whenever possible: change (3 * x) * y t o 3 * (x * y) . We
adopt similar conventions for addition, except that we prefer numbers last there: χ
+ 1 instead of 1 + x.

Define η and m as numbers; s as a non-number:

(pat-match-abbrev *n '(lis η numberp))

(pat-match-abbrev 'm ' (? i s m numberp))

(pat-match-abbrev *s ' (? i s s not-numberp))

(defun not-numberp (x) (not (numberp x)))

(defun simp-rule (ru le)
"Transform a rule into proper format."
(le t ((exp (in f i x ->pre f i x ru le)))

(mkexp (expand-pat-match-abbrev (exp- lhs exp))
(exp-op exp) (exp-rhs exp))))

8.3 Α550ΟΑΤΐνΐπAND COMMUTATIVITY 247

(set f * s imp l i f i ca t i on - ru les *
(append *s imp l i f i ca t i on - ru les * (mapcar # 's imp-ru le

' ((s * η = η * s)
(η * (m * X) = (η * m) * χ)

(χ * (η * y) = η * (χ * y))
((η * χ) * y = η * (χ * y))
(η + s = s + η)
((χ + m) + η = χ + η -»- m)
(χ + (y + η) = (χ + y) + η)
((χ + η) + y = (χ + y) + η)))))

With the new rules in place, we are ready to try again. For some problems we get just
the right answers:

> (s imp l i f i e r)
SIMPLIFIER> (3 * 2 * x)
(6 * X)
SIMPLIFIER> (2 * χ * χ * 3)
(6 * (Χ 2))
SIMPLIFIER> (2 * x * 3 * y * 4 * z * 5 * 6)
(720 * (X * (Y * Ζ)))
SIMPLIFIER> (3 + χ + 4 + χ)
((2 * Χ) + 7)
$IMPLIFIER> (2 * χ * 3 * χ * 4 * (1 / χ) * 5 * 6)
(720 * Χ)

Unfortunately, there are other problems that aren't simplified properly:

SIMPLIFIER> (3 + χ + 4 - x)
((X + (4 - X)) + 3)
SIMPLIFIER> (x + y + y + x)
(X + (Y + (Y + Χ)))
SIMPLIFIER> (3 * χ + 4 * χ)
((3 * Χ) + (4 * Χ))

We will return to these problems in section 8.5.

@ Exercise 8.1 Verify that the set of rules just prior does indeed implement the desired
conventions, and that the conventions have the proper effect, and always terminate.
As an example of a potential problem, what would happen if we used the rule (χ *
η = η * χ) instead of the rule (s * η = η * s)?

248 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

8.4 Logs, Trig, and Differentiation

In the previous section, we restricted ourselves to the simple arithmetic functions,
so as not to intimidate those who are a little leery of complex mathematics. In this
section, we add a little to the mathematical complexity, without having to alter the
program itself one bit. Thus, the mathematically shy can safely skip to the next
section without feeling they are missing any of the fun.

We start off by representing some elementary properties of the logarithmic and
trigonometric functions. The new rules are similar to the "zero and one" rules we
needed for the arithmetic operators, except here the constants e and ρ i (e = 2.71828...
and π = 3.14159...) are important in addition to 0 and 1. We also throw in some rules
relating logs and exponents, and for sums and differences of logs. The rules assume
that complex numbers are not allowed. If they were, log (and even x^) would have
multiple values, and it would be wrong to arbitrarily choose one of these values.

(set f * s imp l i f i ca t i on - ru les *
(append *s imp l i f i ca t ion - ru1es* (mapcar #*simp-rule *(

(log 1 = 0)
(log 0 = undefined)
(log e = 1)
(s in 0 = 0)
(s i n pi = 0)
(cos 0 = 1)
(cos pi = -1)
(s in (p i / 2) = 1)
(cos(pi / 2) = 0)
(log (e " x) = x)
(e ^ (log x) = x)
((x ^ y) * (x ^ z) = χ M y + z))
((x ^ y) / (x M) = χ M y - z))
(log χ + log y = log(x * y))
(log X - log y = log(x / y))
((s i n X) ^ 2 + (cos X) ^ 2 = 1)
))))

Now we would like to go a step further and extend the system to handle differenti
ation. This is a favorite problem, and one which has historical significance: in the
summer of 1958 John McCarthy decided to investigate differentiation as an interest
ing symbolic computation problem, which was difficult to express in the primitive
programming languages of the day. This investigation led him to see the importance
of functional arguments and recursive functions in the field of symbolic computa
tion. For example, McCarthy invented what we now call mapcar to express the idea
that the derivative of a sum is the sum of the derivative function applied to each
argument. Further work led McCarthy to the publication in October 1958 of MIT

8.4 LOGS, TRIG, AND DIFFERENTIATION 249

AI Lab Memo No. 1: "An Algebraic Language for the Manipulation of Symbolic
Expressions/' which defined the precursor of Lisp.

In McCarthy's work and in many subsequent texts you can see symbolic differen
tiation programs with a simplification routine tacked on the end to make the output
more readable. Here, we take the opposite approach: the simplification routine is
central, and differentiation is handled as just another operator, with its own set of
simplification rules. We will require a new infix-to-prefix translation rule. While
we're at it, we'll add a rule for indefinite integration as well, although we won't write
simplification rules for integration yet. Here are the new notations:

math infix prefix
dy/dx d y / d X (d y x)
/ydx Int y d X (i n t y χ)

And here are the necessary infix-to-prefix rules:

(defparameter *infix->prefix-rules*
(mapcar #'expand-pat-match-abbrev
' (((x+ = y+) (= χ y))

((- x+) (- χ))
((+ Χ +) (+ x))

((X-H + y +) (+ X y))

((x+ - y+) (- χ y))
((d y+ / d x) (d y x)) New rule
((Int y+ d x) (int y χ)) New rule
((x+ * y+) (* χ y))
((x+ / y+) (/ χ y))
((x+ ^ y+) r χ y)))))

Since the new rule for differentiation occurs before the rule for division, there won't
be any confusion with a differential being interpreted as a quotient. On the other
hand, there is a potential problem with integrals that contain d as a variable. The
user can always avoid the problem by using (d) instead of d inside an integral.

Now we augment the simplification rules, by copying a differentiation table out
of a reference book:

(setf *simplification-rules*
(append *simplification-rules* (mapcar #*simp-rule ' (

(d χ / d χ = 1)
(d (u + V) / d χ = (d u / d X) + (d V / d X))

(d (u - V) / d χ = (d u / d X) - (d V / d x))
(d (- u) / d X = - (d u / d X))

(d (u * V) / d X = u * (d V / d X) + V * (d u / d X))

(d (u / V) / d X = (V * (d u / d X) - u * (d V / d X))

/ V ^ 2)

250 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

(d (u ^ n) / d X = η * u M n - 1) * (d u / d X))

(d (u V) / d X = V * u M v - 1) * (d u / d X)

+ u ^ V * (log u) * (d V / d x))
(d (log u) / d X = (d u / d X) / u)
(d (s in u) / d X = (cos u) * (d u / d x))
(d (cos u) / d X = - (s in u) * (d u / d x))
(d (e ^ u) / d X = (e ^ u) * (d u / d X))

(d u / d X = 0)))))

We have added a default rule, (d u / d χ = 0) ; this should only apply when the
expression u is free of the variable χ (that is, when u is not a function of x). We could
use ? 1 f to check this, but instead we rely on the fact that differentiation is closed over
the list of operators described here—as long as we don't introduce any new operators,
the answer will always be correct. Note that there are two rules for exponentiation,
one for the case when the exponent is a number, and one when it is not. This was
not strictly necessary, as the second rule covers both cases, but that was the way the
rules were written in the table of differentials I consulted, so I left both rules in.

SIMPLIFIER> (d (x + x) / d x)
2
SIMPLIFIER> (d (a * x ^ 2 + b * x + c) / d x)
((2 * (A * X)) + B)
SIMPLIFIER> (d ((a * x ^ 2 + b * x + c) / x) / d x)
((((A * (X ^ 2)) + ((B * X) + O) - (X * ((2 * (A * X)) + B)))

/ (X ^ 2))
SIMPLIFIER> (log ((d (x + χ) / d x) / 2))
0
SIMPLIFIER> (log(x + x) - log x)
(LOG 2)
SIMPLIFIER> (x cos p i)
(1 / X)
SIMPLIFIER> (d (3 * x + (cos x) / x) / d x)
((((COS X) - (X * (- (SIN X)))) / (X ^ 2)) + 3)
SIMPLIFIER> (d ((cos x) / x) / d x)
(((COS X) - (X * (- (SIN X)))) / (X ^ 2))
SIMPLIFIER> (d (3 * x ^ 2 + 2 * χ + 1) / d x)
((6 * X) + 2)
S IMPi IF IER> (s in (x + x) ^ 2 + cos(d χ ^ 2 / d x) ^ 2)
1
SIMPLIFIER> (s in (x + x) * s in (d χ " 2 / d x) +

cos(2 * X) * cos(x * d 2 * y / d y))
1

The program handles differentiation problems well and is seemingly clever in its use
of the identity sin^ χ - f cos^ χ = 1.

8.5 LIMITS OF RULE-BASED APPROACHES 251

8.5 Limits of Rule-Based Approaches

In this section we return to some examples that pose problems for the simplifier.
Here is a simple one:

SIMPLIFIER> (x + y + y + χ) =^ (X + (Y + (Y + X)))

We would prefer 2 * (x + y) . The problem is that, although we went to great trouble
to group numbers together, there was no effort to group non-numbers. We could
write rules of the form:

(y + (y + x) = (2 * y) + x)

(y + (x + y) = (2 * y) + x)

Thesewouldworkfortheexampleathand, but they would not work for (χ + y + ζ
+ y + χ). For that we would need more rules:

(y + (ζ + (y + X)) = (2 * y) + X + Ζ)

(y + (Ζ + (χ + y)) = (2 * y) + Χ + ζ)

(y + ((y + χ) + ζ) = (2 * y) + χ + ζ)

(y + ((χ + y) + ζ) = (2 * y) + χ + ζ)

Το handle all the cases, we would need an infinite number of rules. The pattern-
matching language is not powerful enough to express this succintly. It might help
if nested sums (and products) were unnested; that is, if we allowed + to take an
arbitrary number of arguments instead of just one. Once the arguments are grouped
together, we could sort them, so that, say, all the ys appear before ζ and after x. Then
like terms could be grouped together. We have to be careful, though. Consider these
examples:

SIMPLIFIER> (3 * χ + 4 * x)

((3 * X) + (4 * X))

SIMPLIFIER> (3 * x + y + x + 4 * x)

((3 * X) + (Y + (X + (4 * X))))

We would want (3 * χ) to sort to the same place as χ and (4 * χ) so that they could
all be combined to (8 * x) . In chapter 15, we develop a new version of the program
that handles this problem.

252 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

8.6 Integration
So far, the algebraic manipulations have been straightforward. There is a direct
algorithm for computing the derivative of every expression. When we consider
integrals, or antiderivatives,^ the picture is much more complicated. As you may
recall from freshman calculus, there is a fine art to computing integrals. In this
section, we try to see how far we can get by encoding just a few of the many tricks
available to the calculus student.

The first step is to recognize that entries in the simplification table will not be
enough. Instead, we will need an algorithm to evaluate or "simplify" integrals.
We will add a new case to simpl i f y - e x p to check each operator to see if it has a
simplification function associated with it. These simplification functions will be
associated with operators through the functions s e t - s i m p - f n and s imp- fn . If an
operator does have a simplification function, then that function will be called instead
of consulting the simplification rules. The simplification function can elect not to
handle the expression after all by returning nil, in which case we continue with the
other simplification methods.

(defun simp-fn (op) (get op 's imp- fn))
(defun set-s imp-fn (op fn) (set f (get op 's imp-fn) fn))

(defun simpl i fy-exp (exp)
"Simpl i fy using a ru le , or by doing ar i thmetic,
or by using the simp function supplied for th i s operator."
(cond ((s impl i fy -by- fn exp))

((ru le-based- t rans la tor exp *s imp l i f i ca t i on - ru les *
: r u l e - i f # 'exp- lhs :rule-then # 'exp-rhs
raction #*(lambda (bindings response)

(s impl i fy (sub l i s bindings response)))))
((evaluable exp) (eval exp))
(t exp)))

(defun s impl i fy -by- fn (exp)
" I f there i s a s impl i f i ca t ion fn for th i s exp,
and i f applying i t g ives a non-null resu l t ,
then s impl i fy the resul t and return that . "
(le t * ((fn (simp-fn (exp-op exp)))

(resu l t (i f fn (funcal l fn exp))))
(i f (null resu l t)

ni l
(s impl i fy r esu l t))))

Freshman calculus classes teach a variety of integration techniques. Fortunately,
one technique—the derivative-divides technique—can be adopted to solve most of the

^The term antiderivative is more correct, because of branch point problems.

8.6 INTEGRATION 253

problems that come up at the freshman calculus level, perhaps 90% of the problems
given on tests. The basic rule is:

j f{x)dx = Jm^dx.

As an example, consider / xsin{x^)dx. Using the substitution u = x^, we can
differentiate to get du/dx = 2x, Then by applying the basic rule, we get:

j xsin{x^)dx J s in (u)^ í í a : — ^ J sin(i¿) (¿i¿.

Assume we have a table of integrals that includes the rule / sin(x) dx = - cos(x).
Then we can get the final answer:

--cos{x^).

Abstracting from this example, the general algorithm for integrating an expres
sion y with respect to χ is:

1. Pick a factor of y, calling it f{u).

2. Compute the derivative du/dx.

3. Divide y by f{u) χ du/dx, calling the quotient k.

4. If /c is a constant (with respect to x), then the result is A: / f{u)du.

This algorithm is nondeterrninistic, as there may be many factors of y. In our
example, f{u) = sin(x^),w = x^, and du/dx = 2x. So k = \, and the answer is
-^COs(x2).

The first step in implementing this technique is to make sure that division is done
correctly. We need to be able to pick out the factors of y, divide expressions, and then
determine if a quotient is free of x. The function f acton* ze does this. It keeps a list
of factors and a running product of constant factors, and augments them with each
call to the local function f ac.

254 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

(defun factor ize (exp)
"Return a l i s t of the factors of exp^n,
where each factor i s of the form Γ y η) . "
(let ((factors n i l)

(constant 1))
(labels

((fac (X n)
(cond

((numberp x)
(set f constant (* constant (expt χ η))))

((s ta r ts -w i th χ **)
(fac (exp- lhs x) n)
(fac (exp-rhs x) n))

((s ta r ts -w i th χ V)
(fac (exp- lhs x) n)
(fac (exp-rhs x) (- n)))

((and (s tar ts -wi th χ * -) (length=l (exp-args x)))
(set f constant (- constant))
(fac (exp- lhs x) n))

((and (s tar ts-wi th χ ' ") (numberp (exp-rhs x)))
(fac (exp- lhs x) (* η (exp-rhs x))))

(t (le t ((factor (f ind χ factors :key # 'exp- lhs
: test # 'equa l)))

(i f factor
(incf (exp-rhs factor) n)
(push Τ ,x ,n) f a c t o r s)))))))

; ; Body of fac tor ize :
(fac exp 1)
(case constant

(0 *{r 0 1)))
(1 factors)
(t '{Γ .constant 1) . . f a c t o r s))))))

factor i ze maps from an expression to a list of factors, but we also need unf actor i ze
to turn a list back into an expression:

(defun unfactorize (factors)
"Convert a l i s t of factors back into pref ix form."
(cond ((nul l factors) 1)

((length=l factors) (f i r s t fac tors))
(t · (* . (f i r s t factors) . (unfactor ize (rest f a c t o r s))))))

The derivative-divides method requires a way of dividing two expressions. We do this
by factoring each expression and then dividing by cancelling factors. There may be
cases where, for example, two factors in the numerator could be multiplied together

8.6 INTEGRATION 255

to cancel a factor in the denominator, but this possibility is not considered. It turns
out that most problems from freshman calculus do not require such sophistication.

(defun d iv ide- fac tors (numer denom)
"Divide a l i s t of factors by another, producing a t h i r d . "
(let ((resu l t (mapcar # ' c o p y - l i s t numer)))

(do l i s t (d denom)
(le t ((factor (f ind (exp- lhs d) resul t :key #*exp- lhs

: test #*equal)))
(i f factor

(decf (exp-rhs factor) (exp-rhs d))
(push *r , (exp- lhs d) . (- (exp-rhs d))) r esu l t))))

(delete 0 resul t :key # 'exp - rhs)))

Finally, the predicate f r e e - o f returns true if an expression does not have any occur
rences of a particular variable in it.

(defun f ree-of (exp var)
"True i f expression has no occurrence of va r . "
(not (find-anywhere var exp)))

(defun find-anywhere (item tree)
"Does item occur anywhere in tree? I f s o . return i t . "
(cond ((eql item tree) tree)

((atom tree) n i l)
((find-anywhere item (f i r s t t ree)))
((find-anywhere item (rest t ree)))))

In f a c t o r i z e we made use of the auxiliary function l ength= l . The function call
(l ength= l x) is faster than (= (l ength x) 1) because the latter has to compute
the length of the whole list, while the former merely has to see if the list has a r es t
element or not.

(defun length=l (x)
" I s X a l i s t of length 1 ? "
(and (consp x) (null (rest x))))

Given these preliminaries, the function i ntegrate is fairly easy. We start with
some simple cases for integrating sums and constant expressions. Then, we factor
the expression and split the list of factors into two: a Ust of constant factors, and
a list of factors containing x. (This is done with p a r t i t i o n - i f , a combination of
remove-i f and remove- i f -not .) Finally, we call der i ν - d i v i d e s , giving it a chance
with each of the factors. If none of them work, we return an expression indicating
that the integral is unknown.

256 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

Int c dx = c*x

Int f + g =

Int f + Int g

Int - f = - Int f

Int f - g =

(defun integrate (exp x)

F i r s t t ry some t r i v i a l cases

(cond

((f ree-of exp x) * (* ,exp x))

((s tar ts -w i th exp *+)

*(+ . (integrate (exp- lhs exp) x)

. (integrate (exp-rhs exp) x)))

((s tar ts -w i th exp *-)

(ecase (length (exp-args exp))

(1 (integrate (exp-lhs exp) x))

(2 ' (- . (integrate (exp- lhs exp) x)

. (integrate (exp-rhs exp) x))))) ; Int f - Int g

Now move the constant factors to the le f t of the integral

((mult ip le-value-bind (const- factors x - fac tors)

(pa r t i t i on - i f #'(lambda (factor) (f ree-of factor x))

(factor ize exp))

(s impl i fy

· (* . (unfactor ize const - fac tors)

And try to integrate:

.(cond ((nul l x - fac tors) x)

((some #'(lambda (factor)

(der iv -d iv ides factor x - fac tors x))

x - fac to rs))

; ; <other methods here>

(t * (i n t? . (unfactor ize x - fac tors) . x)))))))))

(defun pa r t i t i on - i f (pred l i s t)

"Return 2 va lues: elements of l i s t that sa t i s f y pred.

and elements that don ' t . "

(let ((y e s - l i s t n i l)

(no - l i s t n i l))

(do l i s t (item l i s t)

(i f (funcall pred item)

(push item y e s - l i s t)

(push item n o - l i s t)))

(values (nreverse y e s - l i s t) (nreverse n o - l i s t))))

8.6 INTEGRATION 257

Note that the place in i n tegra te where other techniques could be added is
marked. We will only implement the derivative-divides method. It turns out that
the function is a little more complicated than the simple four-step algorithm outlined
before:

(defun der iv -d iv ides (factor factors x)
(assert (s tar ts -wi th factor
(le t * ((u (exp- lhs factor)) ; factor = u^n

(n (exp-rhs factor))
(k (d iv ide- factors

factors (factor ize ' (* . factor , (der iv u x))))))
(cond ((f ree-of k x)

Int k*u"n*du/dx dx = k*Int u"n du
= k*u^(n+ l) / (n+ l) for η / = - 1
= k* log(u) for η = -1

(i f (= η -1)
' (* . (unfactor ize k) (log .u))
* (/ (* , (unfactor ize k) Γ ,u . (+ η 1)))

, (+ η 1))))
((and (= η 1) (i n - i n teg ra l - tab le? u))

Int y ' * f (y) dx = Int f (y) dy
(le t ((k2 (d iv ide- factors

factors
(factor ize * (* ,u , (der iv (exp- lhs u) x))))))

(i f (f ree-of k2 x)
· (* . (integrate-from-table (exp-op u) (exp- lhs u))

. (unfactor ize k 2))))))))

There are three cases. In any case, all factors are of the form (" u η) , so we separate
the factor into a base, u, and exponent, n. li u or u"^ evenly divides the original
expression (here represented as f a c t o r s) , then we have an answer. But we need to
check the exponent, because / u'^du is u'^~^'^/{n -h 1) forn - 1 , but it is log(u) for
η = - 1 , But there is a third case to consider. The factor may be something like (
(s i n X 2)) 1) , in which case we should cons ider / (ϊχ) = sin(x^). This case is
handled with the help of an integral table. We don't need a derivative table, because
we can just use the simplifier for that.

(defun deriv (y x) (s impl i fy *(d ,y . x)))

(defun integrat ion- table (ru les)
(do l i s t (i - r u le ru les)

(let ((ru le (in f i x ->pre f i x i - r u l e)))
(set f (get (exp-op (exp- lhs (exp- lhs ru le))) ' i n t)

ru le))))

258 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

(defun in - in tegra l - tab le? (exp)
(and (exp-p exp) (get (exp-op exp) ' i n t)))

(defun integrate-from-table (op arg)
(le t ((ru le (get op ' i n t)))

(subst arg (exp- lhs (exp-lhs (exp- lhs ru le))) (exp-rhs ru le))))

(in tegrat ion- table
' ((I n t log(x) d χ = χ * log(x) - χ)

(In t exp(x) d χ = exp(x))
(In t s in (x) d X = - cos(x))
(In t cos(x) d X = s i n (x))
(In t tan(x) d χ = - l og (cos (x)))
(In t s inh(x) d χ = cosh(x))
(In t cosh(x) d X = s inh(x))
(In t tanh(x) d χ = log(cosh(x)))
))

The last step is to install integrate as the simplification function for the operator
Int. The obvious way to do this is:

(set-s imp-fn ' I n t ' in tegrate)

Unfortunately, that does not quite work. The problem is that integrate expects
two arguments, corresponding to the two arguments y and xin ilnt y x). But the
convention for simplification functions is to pass them a single argument, consisting
of the whole expression (In t y jc). We could go back and edit simpl Ify-exp to
change the convention, but instead I choose to make the conversion this way:

(set-s imp-fn ' I n t #'(lambda (exp)
(integrate (exp- lhs exp) (exp-rhs exp))))

Here are some examples, taken from chapters 8 and 9 of Calculus (Loomis 1974):

SIMPLIFIER> (In t χ * s in (x 2) d x)
(1/2 * (- (COS (X ^ 2))))
SIMPLIFIER> (In t ((3 * χ ^ 3) - 1 / (3 * χ ^ 3)) d x)
((3 * ((X ^ 4) / 4)) - (1 /3 * ((X ^ -2) / -2)))
SIMPLIFIER> (In t (3 * χ + 2) ^ - 2 / 3 d x)
(((3 * X) + 2) 1/3)
SIMPLIFIER> (In t s in (x) ^ 2 * cos(x) d x)
(((S IN X) ^ 3) / 3)
SIMPLIFIER> (In t s i n (x) / (1 + cos(x)) d x)
(-1 * (LOG ((COS X) + 1)))
SIMPLIFIER> (In t (2 * χ + 1) / (x ^ 2 + χ - 1) d x)

87 HISTORY AND REFERENCES 259

(LOG ((X ^ 2) + (X - 1)))
SIMPLIFIER> (In t 8 * χ ^ 2 / (x ^ 3 + 2) ^ 3 d x)
(8 * ((1 /3 * (((X ^ 3) + 2) -2)) / -2))

All the answers are correct, although the last one could be made simpler. One quick
way to simplify such an expression is to factor and unfactor it, and then simplify
again:

(set-s imp-fn ' I n t
#'(lambda (exp)

(unfactorize
(factor ize

(integrate (exp- lhs exp) (exp-rhs exp))))))

With this change, w e get:
SIMPLIFIER> (In t 8 * χ ^ 2 / (x 3 + 2) ^ 3 d x)
(-4 /3 * (((X ^ 3) + 2) ^ -2))

8.7 History and References
A brief history is given in the introduction to this chapter. An interesting point is that
the history of Lisp and of symbolic algebraic manipulation are deeply intertwined.
It is not too gross an exaggeration to say that Lisp was invented by John McCarthy
to express the symbolic differentiation algorithm. And the development of the first
high-quality Lisp system, MacLisp, was driven largely by the needs of MACSYMA,
one of the first large Lisp systems. See McCarthy 1958 for early Lisp history and
the differentiation algorithm, and Martin and Fateman 1971 and Moses (1975) for
more details on MACSYMA. A comprehensive book on computer algebra systems
is Davenport 1988. It covers the MACSYMA and REDUCE systems as well as the
algorithms behind those systems.

Because symbolic differentiation is historically important, it is presented in a
number of text books, from the original Lisp 1.5 Primer (Weissman 1967) and Allen's
influential Anatomy of Lisp (1978) to recent texts like Brooks 1985, Hennessey 1989,
and Tanimoto 1990. Many of these books use rules or data-driven programming,
but each treats differentiation as the main task, with simplification as a separate
problem. None of them use the approach taken here, where differentiation is just
another kind of simplification.

The symbolic integration programs SAINT and SiN are covered in Slagle 1963 and
Moses 1967, respectively. The mathematical solution to the problem of integration

260 SYMBOLIC MATHEMATICS: A SIMPLIFICATION PROGRAM

in closed term is addressed in Risch 1969, but be warned; this paper is not for the
mathematically naive, and it has no hints on programming the algorithm. A better
reference is Davenport et al. 1988.

In this book, techniques for improving the efficiency of algebraic manipulation
are covered in sections 9.6 and 10.4. Chapter 15 presents a reimplementation that
does not use pattern-matching, and is closer to the techniques used in MACSYMA.

8.8 Exercises

t¿l Exercise 8.2 [s] Some notations use the operator ** instead of " to indicate expo
nentiation. Fix i n f i x - > p r e f i χ so that either notation is allowed.

Exercise 8.3 [m] Can the system as is deal with imaginary numbers? What are
some of the difficulties?

@ Exercise 8.4 [h] There are some simple expressions involving sums that are not
handled by the i ntegrate function. The function can integrate axx^-\-bxx-\-c
but not 5 X {a X x^ b X X + c) . Similarly, it can integrate x^ + 2x x^ -\- x^ but not
(χ2 + x)^^ and it can do + + χ -h 1 but not (x^ -f 1) χ (x + 1). Modify i ntegrate
so that it expands out products (or small exponents) of sums. You will probably want
to try the usual techniques first, and do the expansion only when that fails.

[¿] Exercise 8.5 [d] Another very general integration technique is called integration
by parts. It is based on the rule:

J udv = uv — J vdu

So, for example, given

/ X cos xdx

we can take u = x,dv = cos xdx. Then we can determine υ = sin χ by integration,
and come up with the solution:

J X cos xdx = X sin ̂ ~ J ^ ̂ ~ ̂ ^ ̂ " ^
It is easy to program an integration by parts routine. The hard part is to program

the control component. Integration by parts involves a recursive call to i ntegrate,
and of all the possible ways of breaking up the original expression into a u and a dv,

δ.δ EXERCISES 261

few, if any, will lead to a successful integration. One simple control rule is to allow
integration by parts only at the top level, not at the recursive level. Implement this
approach.

@ Exercise 8.6 [d] A more complicated approach is to try to decide which ways of
breaking up the original expression are promising and which are not. Derive some
heuristics for making this division, and reimplement i ntegrate to include a search
component, using the search tools of chapter 6.

Look in a calculus textbook to see how / sin^ xdx is evaluated by two integrations
by parts and a division. Implement this technique as well.

@ Exercise 8.7 [m] Write simplification rules for predicate calculus expressions. For
example,

(true and χ = x)
(fa lse and χ = fa lse)
(true or X = true)
(fa lse or X = fa lse)

t¿3 Exercise 8.8 [m] The simplification rule (χ / 0 = undef i ned) is necessary to avoid
problems with division by zero, but the treatment of undef i ned is inadequate. For
example, the expression ((0 / 0) - (0 / 0)) will simplify to zero, when it should
simplify to undef i ned. Add rules to propagate undef i ned values and prevent them
from being simplified away.

@ Exercise 8.9 [d] Extend the method used to handle undef i ned to handle + i n f i ni ty
and - i n f i n i ty as well.

CHAPTER 9

Efficiency issues

A Lisp programmer knows the value of every thing,
but the cost of nothing.

-Alan J. Perils

Lisp is not inherently less efficient than other
high-level languages.

—Richard J. Fateman

O ne of the reasons Lisp has enjoyed a long history is because it is an ideal language for
what is now called rapid-prototyping—developing a program quickly, with little regards
for details. That is what we have done so far in this book: concentrated on getting a

working algorithm. Unfortunately, when a prototype is to be turned into a production-quality
program, details can no longer be ignored. Most "real" AI programs deal with large amounts of
data, and with large search spaces. Thus, efficiency considerations become very important.

However, this does not mean that writing an efficient program is fundamentaly different
from writing a working program. Ideally, developing an efficient program should be a three-step
process. First, develop a working program, using proper abstractions so that the program will be
easy to change if necessary. Second, instrument the program to determine where it is spending
most of the time. Third, replace the slow parts with faster versions, while maintaining the
program's correctness.

266 EFFICIENCY ISSUES

The term efficiency will be used primarily to talk about the speed or run time of a
program. To a lesser extent, efficiency is also used to refer to the space or amount of
storage consumed by a program. We will also talk about the cost of a program. This
is partly a use of the metaphor "time is money," and partly rooted in actual monetary
costs—if a critical program runs unacceptably slowly, you may need to buy a more
expensive computer.

Lisp has been saddled with a reputation as an "inefficient language." Strictly
speaking, it makes no sense to call a language efficient or inefficient. Rather, it is only
a particular implementation of the language executing a particular program that can be
measured for efficiency. So saying Lisp is inefficient is partly a historical claim: some
past implementations have been inefficient. It is also partly a prediction: there are
some reasons why future implementations are expected to suffer from inefficiencies.
These reasons mainly stem from Lisp's flexibility. Lisp allows many decisions to be
delayed until run time, and that can make the run time take longer. In the past decade,
the "efficiency gap" between Lisp and "conventional languages" Uke FORTRAN or
C has narrowed. Here are the reasons—some deserved, some not—behind Lisp's
reputation for inefficiency:

• Early implementations were interpreted rather than compiled, which made
them inherently inefficient. Common Lisp implementations have compilers,
so this is no longer a problem. While Lisp is (primarily) no longer an interpreted
language, it is still an interactive language, so it retains its flexibility.

• Lisp has often been used to write interpreters for embedded languages, thereby
compounding the problem. Consider this quote from Cooper and Wogrin's
(1988) book on the rule-based programming language OPS5:

The efficiency of implementations that compile rules into executable code
compares favorably to that of programs wntten in most sequential lan
guages such as FORTRAN or Pascal Implementations that compile rules
into data structures to be interpreted, as do many Lisp-based ones, could be
noticeably slower.

Here Lisp is guilty by association. The fallacious chain of reasoning is: Lisp has
been used to write interpreters; interpreters are slow; therefore Lisp is slow.
While it is true that Lisp makes it very easy to write interpreters, it also makes
it easy to write compilers. This book is the first that concentrates on using Lisp
as both the implementation and target language for compilers.

• Lisp encourages a style with lots of function calls, particularly recursive calls.
In some older systems, function calls were expensive. But it is now understood
that a function call can be compiled into a simple branch instruction, and that

INTRODUCTION 267

many recursive calls can be made no more expensive than an equivalent itera
tive loop (see chapter 22). It is also possible to instruct a Common Lisp compiler
to compile certain functions inline, so there is no calling overhead at all.

On the other hand, many Lisp systems require two fetches instead of one to find
the code for a function, and thus will be slower. This extra level of indirection
is the price paid for the freedom of being able to redefine functions without
reloading the whole program.

Run-time type-checking is slow. Lisp provides a repertoire of generic functions.
For example, we can write (+ x y) without bothering to declare if χ and y are in
tegers, floatingpoint, bignums, complex numbers, rationals, or some combina
tion of the above. This is very convenient, but it means that type checks must be
made at run time, so the generic+will be slower than, say, a 16-bit integer addi
tion with no check for overflow. If efficiency is important. Common Lisp allows
the programmer to include declarations that can eUminate run-time checks.

In fact, once the proper declarations are added. Lisp can be as fast or faster
than conventional languages. Fateman (1973) compared the FORTRAN cube
root routine on the PDP-10 to a MacLisp transliteration. The MacLisp version
produced almost identical numerical code, but was 18% faster overall, due to
a superior function-calling sequence.^ The epigraph at the beginning of this
chapter is from this article.

Berlin and Weise (1990) show that with a special compilation technique called
partial evaluation, speeds 7 to 90 times faster than conventionally compiled code
can be achieved. Of course, partial evaluation could be used in any language,
but it is very easy to do in Lisp.

The fact remains that Lisp objects must somehow represent their type, and
even with declarations, not all of this overhead can be eliminated. Most Lisp
implementations optimize access to lists and fixnums but pay the price for the
other, less commonly used data types.

Lisp automatically manages storage, and so it must periodically stop and collect
the unused storage, or garbage. In early systems, this was done by periodically
sweeping through all of memory, resulting in an appreciable pause. Modern
systems tend to use incremental garbage-collection techniques, so pauses are
shorter and usually unnoticed by the user (although the pauses may still be too
long for real-time applications such as controlling a laboratory instrument).
The problem with automatic garbage collection these days is not that it is
slow-in fact, the automatic systems do about as well as handcrafted storage

^One could say that the FORTRAN compiler was "broken." This underscores the problem
of defining the efficiency of a language-do we judge by the most popular compiler, by the best
compiler available, or by the best compiler imaginable?

268 EFFICIENCY ISSUES

allocation. The problem is that they make it convenient for the programmer
to generate a lot of garbage in the first place. Programmers in conventional
languages, who have to clean up their own garbage, tend to be more careful
and use static rather than dynamic storage more often. If garbage becomes a
problem, the Lisp programmer can just adopt these static techniques.

Lisp systems are big and leave little room for other programs. Most Lisp sys
tems are designed to be complete environments, within which the programmer
does all program development and execution. For this kind of operation, it
makes sense to have a large language like Common Lisp with a huge set of
tools. However, it is becoming more common to use Lisp as just one compo
nent in a computing environment that may include UNIX, X Windows, emacs,
and other interacting programs. In this kind of heterogeneous environment,
it would be useful to be able to define and run small Lisp processes that do
not include megabytes of unused tools. Some recent compilers support this
option, but it is not widely available yet.

Lisp is a complicated high-level language, and it can be difficult for the pro
grammer to anticipate the costs of various operations. In general, the problem
is not that an efficient encoding is impossible but that it is difficult to arrive at
that efficient encoding. In a language like C, the experienced programmer has
a pretty good idea how each statement will compile into assembly language
instructions. But in Lisp, very similar statements can compile into widely dif
ferent assembly-level instructions, depending on subtle interactions between
the declarations given and the capabilities of the compiler. Page 318 gives an
example where adding a declaration speeds up a trivial function by 40 times.
Nonexperts do not understand when such declarations are necessary and are
frustrated by the seeming inconsistencies. With experience, the expert Lisp
programmer eventually develops a good "efficiency model," and the need for
such declarations becomes obvious. Recent compilers such as CMU's Python
provide feedback that eases this learning process.

In summary. Lisp makes it possible to write programs in a wide variety of styles,
some efficient, some less so. The programmer who writes Lisp programs in the
same style as C programs will probably find Lisp to be of comparable speed, perhaps
slightly slower. The programmer who uses some of the more dynamic features of
Lisp typically finds that it is much easier to develop a working program. Then, if
the resulting program is not efficient enough, there will be more time to go back
and improve critical sections. Deciding which parts of the program use the most
resources is called instrumentation. It is foolhardy to try to improve the efficiency of
a program without first checking if the improvement will make a real difference.

One route to efficiency is to use the Lisp prototype as a specification and reimple
ment that specification in a lower-level language, such as C or C++. Some commercial

9,1 CACHING RESULTS OF PREVIOUS COMPUTATIONS: MEMOIZATION 269

AI vendors are taking this route. An alternative is to use Lisp as the language for both
the prototype and the final implementation. By adding declarations and making
minor changes to the original program, it is possible to end up with a Lisp program
that is similar in efficiency to a C program.

There are four very general and language-independent techniques for speeding
up an algorithm:

• Caching the results of computations for later reuse.

• Compiling so that less work is done at run time.

• Delaying the computation of partial results that may never be needed.

• Indexing a data structure for quicker retrieval.

This chapter covers each of the four techniques in order. It then addresses the
important problem of instrumentation. The chapter concludes with a case study of
the s i mpl i f y program. The techniques outlined here result in a 130-fold speed-up in
this program.

Chapter 10 concentrates on lower-level "tricks" for improving efficiency further.

9.1 Caching Results of Previous Computations:
Memoization

We start with a simple mathematical function to demonstrate the advantages of
caching techniques. Later we will demonstrate more complex examples.

The Fibonacci sequence is defined as the numbers 1 , 1 , 2 , 3 , 5 , 8 , . . . where each
number is the sum of the two previous numbers. The most straightforward function
to compute the nth number in this sequence is as follows:

(defun f ib (n)
"Compute the nth number in the Fibonacci sequence."
(i f (<= η 1) 1

(+ (f ib (- η D) (f ib (- η 2)))))

The problem with this function is that it computes the same thing over and over
again. To compute (f i b 5) means computing (f i b 4) and (f i b 3) , but (f i b 4)
also requires (f i b 3) , they both require (f i b 2) , and so on. There are ways to rewrite
the function to do less computation, but wouldn't it be nice to write the function as
is, and have it automatically avoid redundant computation? Amazingly, there is
a way to do just that. The idea is to use the function f i b to build a new function
that remembers previously computed results and uses them, rather than recompute

270 EFFICIENCY ISSUES

them. This process is called memoization. The function memo below is a higher-order
function that takes a function as input and returns a new function that will compute
the same results, but not do the same computation twice.

(defun memo (fn)

"Return a memo-function of f n . "

(le t ((table (make-hash-table)))

#'(lambda (x)
(mult ip le-value-bind (val found-p)

(gethash χ table)
(i f found-p

val
(set f (gethash χ table) (funcal l fn x)))))))

The expression (memo # ' f i b) will produce a function that remembers its results
between calls, so that, for example, if we apply it to 3 twice, the first call will do the
computation of (f i b 3) , but the second will just look up the result in a hash table.
With f i b traced, it would look like this:

> (set f memo-fib (memo # ' f i b)) ^ #<CLOSURE -67300731>

> (funcall memo-fib 3)
(1 ENTER F IB : 3)

(2 ENTER F IB : 2)

(3 ENTER F IB : 1)
(3 EXIT F IB : 1)
(3 ENTER F IB : 0)

(3 EXIT F IB : 1)
(2 EXIT F IB : 2)
(2 ENTER F I B : 1)
(2 EXIT F IB : 1)

(1 EXIT F IB : 3)
3

> (funcal l memo-fib 3) 3

The second time we call memo - f i b with 3 as the argument, the answer is just retrieved
rather than recomputed. But the problem is that during the computation of (f i b
3) , we still compute (f i b 2) multiple times. It would be better if even the internal,
recursive calls were memoized, but they are calls to f i b, which is unchanged, not to
memo - f i b . We can solve this problem easily enough with the function memoi ze:

9.1 CACHING RESULTS OF PREVIOUS COMPUTATIONS: MEMOIZATION 271

(defun memoize (fn-name)
"Replace fn-name's global de f in i t ion with a memoized ve rs i on . "
(set f (symbol-function fn-name) (memo (symbol-function fn-name))))

When passed a symbol that names a function, memoi ze changes the global definition
of the function to a memo-function. Thus, any recursive calls will go first to the
memo-function, rather than to the original function. This is just what we want. In
the following, we contrast the memoized and unmemoized versions of f i b. First, a
call to (f i b 5) with f i b traced:

> (f ib 5)
(1 ENTER F IB : 5)

(2 ENTER F IB : 4)
(3 ENTER F IB : 3)

(4 ENTER F IB : 2)
(5 ENTER F IB : 1)
(5 EXIT F I B : 1)
(5 ENTER F IB : 0)
(5 EXIT F IB : 1)

(4 EXIT F IB : 2)
(4 ENTER F IB : 1)
(4 EXIT F IB : 1)

(3 EXIT F IB : 3)
(3 ENTER F IB : 2)

(4 ENTER F IB : 1)
(4 EXIT F IB : 1)
(4 ENTER F I B : 0)
(4 EXIT F IB : 1)

(3 EXIT F IB : 2)
(2 EXIT F IB : 5)
(2 ENTER F IB : 3)

(3 ENTER F IB : 2)
(4 ENTER F IB : 1)
(4 EXIT F IB : 1)
(4 ENTER F I B : 0)
(4 EXIT F IB : 1)

(3 EXIT F IB : 2)
(3 ENTER F IB : 1)
(3 EXIT F IB : 1)

(2 EXIT F IB : 3)
(1 EXIT F IB : 8)
8

We see that (f i b 5) and (f i b 4) are each computed once, but (f i b 3) is computed
twice, (f i b 2) threet imes,and (f ib 1) five times. Below we call (memoize ' f i b) and
repeat the calculation. This time, each computation is done only once. Furthermore,

272 EFFICIENCY ISSUES

when the computation of (f i b 5) is repeated, the answer is returned immediately
with no intermediate computation, and a further call to (f i b 6) can make use of the
valueofCfib 5) .

> (memoize ' f i b) => #<CLOSURE 76626607>

> (f ib 5)
(1 ENTER F IB : 5)

(2 ENTER F IB : 4)
(3 ENTER F IB : 3)

(4 ENTER F IB : 2)
(5 ENTER F IB : 1)
(5 EXIT F IB : 1)
(5 ENTER F IB : 0)
(5 EXIT F IB : 1)

(4 EXIT F IB : 2)
(3 EXIT F IB : 3)

(2 EXIT F IB : 5)
(1 EXIT F IB : 8)
8

> (f ib 5) ^ 8

> (f ib 6) =>
(1 ENTER F IB : 6)
(1 EXIT F IB : 13)
13

Understanding why this works requires a clear understanding of the distinction
between functions and function names. The original (defun f i b . . .) form does two
things: builds a function and stores it as the symbol - f unc t i on value of f i b. Within
that function there are two references to f i b; these are compiled (or interpreted) as
instructions to fetch the symbol - f unc t i on of f i b and apply it to the argument.

What memo i ze does is fetch the original function and transform it with memo to a
function that, when called, will first look in the table to see if the answer is already
known. If not, the original function is called, and a new value is placed in the table.
The trick is that memoi ze takes this new function and makes it the symbol - f unc t i on
value of the function name. This means that all the references in the original function
will now go to the new function, and the table will be properly checked on each
recursive call. One further complication to memo: the function ge thash returns both
the value found in the table and an indicator of whether the key was present or not.
We use mul t i pi e - va 1 ue - bi nd to capture both values, so that we can distinguish the
case when n i l is the value of the function stored in the table from the case where
there is no stored value.

If you make a change to a memoized function, you need to recompile the original
definition, and then redo the call to memoize. In developing your program, rather

9.1 CACHING RESULTS OF PREVIOUS COMPUTATIONS: MEMOIZATION 273

than saying (memoize *f) , it might be easier to wrap appropriate definitions in a
memoi ze form as follows:

(memoize
(defun f (X) . . .)
)

Or define a macro that combines defun and memoi ze:

(defmacro defun-memo (fn args &body body)
"Define a memoized funct ion. "
*(memoize (defun ,fn ,args . ,body)))

(defun-memo f (x) . . .)

Both of these approaches rely on the fact that defun returns the name of the function
defined.

η (f i b n) unmemoized memoized memoized up to
25 121393 1.1 .010 0
26 196418 1.8 .001 25
27 317811 2.9 .001 26
28 514229 4.7 .001 27
29 832040 8.2 .001 28
30 1346269 12.4 .001 29
31 2178309 20.1 .001 30
32 3524578 32.4 .001 31
33 5702887 52.5 .001 32
34 9227465 81.5 .001 33
50 2.0el0 — .014 34

100 5.7e20 — .031 50
200 4.5e41 — .096 100
500 2.2el04 — .270 200

1000 7.0e208 — .596 500
1000 7.0e208 — .001 1000
1000 7.0e208 - .876 0

Now we show a table giving the values of (f i b η) for certain n, and the time in
seconds to compute the value, before and after (memoi ze ' f i b) . For larger values
of Π, approximations are shown in the table, although f i b actually returns an exact
integer. With the unmemoized version, I stopped at η = 34, because the times were
getting too long. For the memoized version, even η = 1000 took under a second.

274 EFFICIENCY ISSUES

Note there are three entries for (f i b 1000). The first entry represents the incre
mental computation when the table contains the memoized values up to 500, the
second entry shows the time for a table lookup when (f i b 1000) is already com
puted, and the third entry is the time for a complete computation starting with an
empty table.

It should be noted that there are two general approaches to discussing the effi
ciency of an algorithm. One is to time the algorithm on representative inputs, as we
did in this table. The other is to analyze the asymptotic complexity of the algorithm. For
the f i b problem, an asymptotic analysis considers how long it takes to compute (f i b
η) as π approaches infinity. The notation 0 (/ (n)) is used to describe the complexity.
For example, the memoized version f i b is an 0 (n) algorithm because the computa
tion time is bounded by some constant times n, for any value of n. The unmemoized
version, it turns out, is O (1 . 7^), meaning computing f i b of n+1 can take up to 1.7 times
as long as f i b of n. In simpler terms, the memoized version has linear complexity,
while the unmemoized version has exponential complexity. Exercise 9.4 (page 308)
describes where the 1.7 comes from, and gives a tighter bound on the complexity.

The version of memo presented above is inflexible in several ways. First, it only
works for functions of one argument. Second, it only returns a stored value for
arguments that are eq l , because that is how hash tables work by default. For some
applications we want to retrieve the stored value for arguments that are equa 1 . Third,
there is no way to delete entries from the hash table. In many applications there are
times when it would be good to clear the hash table, either because it has grown too
large or because we have finished a set of related problems and are moving on to a
new problem.

The versions of memo and memoi ze below handle these three problems. They are
compatible with the previous version but add three new keywords for the extensions.
The name keyword stores the hash table on the property list of that name, so it can
be accessed by cl ear-memoi ze. The t e s t kejword tells what kind of hash table to
create: eq, eql , or equal. Finally, the key keyword tells which arguments of the
function to index under. The default is the first argument (to be compatible with the
previous version), but any combination of the arguments can be used. If you want
to use all the arguments, specify 1 dent i ty as the key. Note that if the key is a Ust of
arguments, then you will have to use equal hash tables.

(defun memo (fn name key tes t)
"Return a memo-function of f n . "
(le t ((table (make-hash-table : test t es t)))

(set f (get name 'memo) table)
#'(lambda (&rest args)

(le t ((k (funcal l key a rgs)))
(mult ip le-value-bind (val found-p)

(gethash k table)
(i f found-p val

9.2 COMPILING ONE LANGUAGE INTO ANOTHER 275

(set f (gethash k table) (apply fn a r g s))))))))

(defun memoize (fn-name &key (key # * f i r s t) (test # ' eq l))
"Replace fn-name's global de f in i t ion with a memoized ve rs i on . "
(set f (symbol-function fn-name)

(memo (symbol-function fn-name) fn-name key t es t)))

(defun clear-memoize (fn-name)
"Clear the hash table from a memo funct ion. "
(le t ((table (get fn-name 'memo)))

(when table (c l rhash tab le))))

9.2 Compiling One Language into Another

In chapter 2 we defined a new language—the language of grammar rules—which was
processed by an interpreter designed especially for that language. An interpreter is
a program that looks at some data structure representing a "program" or sequence
of rules of some sort and interprets or evaluates those rules. This is in contrast to a
compiler, which translates some set of rules in one language into a program in another
language.

The function generate was an interpreter for the "language" defined by the set of
grammar rules. Interpreting these rules is straightforward, but the process is some
what inefficient, in that generate must continually search through the *gramma r* to
find the appropriate rule, then count the length of the right-hand side, and so on.

A compiler for this rule-language would take each rule and translate it into a func
tion. These functions could then call each other with no need to search through the
grammar. We implement this approach with the function compi 1 e - ru l e. It makes
use of the auxiliary functions one-of and r u l e - l h s and r u l e - r h s from page 40,
repeated here:

(defun ru le - lhs (ru le)
"The left-hand side of a ru le . "
(f i r s t ru le))

(defun ru le- rhs (ru le)
"The r ight-hand side of a ru le . "
(rest (rest ru le)))

(defun one-of (set)
"Pick one element of se t , and make a l i s t of i t . "
(l i s t (random-elt se t)))

276 EFFICIENCY ISSUES

(defun random-elt (choices)
"Choose an element from a l i s t at random."
(e l t choices (random (length cho ices))))

The function compi le - ru le turns a rule into a function definition by building up
Lisp code that implements all the actions that generate would take in interpreting
the rule. There are three cases. If every element of the right-hand side is an atom,
then the rule is a lexical rule, which compiles into a call to one-of to pick a word at
random. If there is only one element of the right-hand side, then bui 1 d - code is called
to generate code for it. Usually, this will be a call to append to build up a list. Finally,
if there are several elements in the right-hand side, they are each turned into code
by bu i ld -code; are given a number by b u i l d - c a s e s ; and then a case statement is
constructed to choose one of the cases.

(defun compile-rule (ru le)
"Translate a grammar rule into a LISP function de f i n i t i on . "
(le t ((rhs (ru le - rhs ru le)))

'(defun , (r u l e - l hs rule) ()
.(cond ((every #*atom rhs) *(one-of ' . r h s))

((length=l rhs) (build-code (f i r s t rhs)))
(t ' (case (random .(length rhs))

.©(bui ld-cases 0 r h s)))))))

(defun bui ld-cases (number choices)
"Return a l i s t of case-c lauses"
(when choices

(cons (l i s t number (bui ld-code (f i r s t cho ices)))
(bu i ld-cases (+ number 1) (rest cho ices)))))

(defun build-code (choice)
"Append together mult iple const i tuents"
(cond ((nul l choice) n i l)

((atom choice) (l i s t choice))
((length=l choice) choice)
(t '(append .©(mapcar # 'bui ld-code cho ice)))))

(defun length=l (x)
" I s X a l i s t of length 1 ? "
(and (consp x) (null (rest x))))

The Lisp code built by compi le - ru le must be compiled or interpreted to make it
available to the Lisp system. We can do that with one of the following forms.
Normally we would want to call compi 1 e, but during debugging it may be easier
not to.

9.2 COMPILING ONE LANGUAGE INTO ANOTHER 277

(do l i s t (rule ^grammar*) (eval (compile-rule ru le)))

(do l i s t (ru le *grammar*) (compile (eval (compile-rule ru le))))

One frequent way to use compilation is to define a macro that expands into the code
generated by the compiler. That way, we just type in calls to the macro and don't
have to worry about making sure all the latest rules have been compiled. We might
implement this as follows:

(defmacro defrule (&rest rule)

"Define a grammar rule"

(compile-rule ru le))

(defrule Sentence - > (NP VP))

(defrule NP - > (Art Noun))

(defrule VP - > (Verb NP))

(defrule Art - > the a)

(defrule Noun - > man ball woman table)

(defrule Verb - > h i t took saw l iked)

Actually, the choice of using one big list of rules (like * g r amma r *) versus using individ
ual macros to define rules is independent of the choice of compiler versus interpreter.
Wecould justas easily definedef ru le simply to push the ruleonto*grammar*. Macros
like def rul e are useful when you want to define rules in different places, perhaps in
several separate files. The def parameter method is appropriate when all the rules
can be defined in one place.

We can see the Lisp code generated by compi 1 e - rul e in two ways: by passing it
a rule directly:

> (compile-rule '(Sentence - > (NP VP)))

(DEFUN SENTENCE ()

(APPEND (NP) (VP)))

> (compile-rule '(Noun - > man ball woman table))

(DEFUN NOUN ()

(ONE-OF '(MAN BALL WOMAN TABLE)))

or by macroexpanding a def rul e expression. The compiler was designed to produce
the same code we were writing in our first approach to the generation problem (see
page 35).

278 EFFICIENCY ISSUES

> (macroexpand ' (def ru le Adj* - > () Adj (AdJ Adj*)))
(DEFUN ADJ* ()

(CASE (RANDOM 3)
(0 NIL)
(1 (ADJ))
(2 (APPEND (ADJ) (ADJ*)))))

Interpreters are usually easier to write than compilers, although in this case, even
the compiler was not too difficult. Interpreters are also inherently more flexible than
compilers, because they put off making decisions until the last possible moment.
For example, our compiler considers the right-hand side of a rule to be a list of words
only if every element is an atom. In all other cases, the elements are treated as
nonterminals. This could cause problems if we extended the definition of Noun to
include the compound noun "chow chow":

(defrule Noun - > man ball woman table (chow chow))

The rule would expand into the following code:

(DEFUN NOUN ()
(CASE (RANDOM 5)

(0 (MAN))
(1 (BALD)
(2 (WOMAN))
(3 (TABLE))
(4 (APPEND (CHOW) (CHOW)))))

The problem is that ma η and ba l l and all the others are suddenly treated as functions,
not as literal words. So we would get a run-time error notifying us of undefined
functions. The equivalent rule would cause no trouble for the interpreter, which waits
until it actually needs to generate a symbol to decide if it is a word or a nonterminal.
Thus, the semantics of rules are different for the interpreter and the compiler, and
we as program implementors have to be very careful about how we specify the actual
meaning of a rule. In fact, this was probably a bug in the interpreter version, since
it effectively prohibits words like "noun" and "sentence" from occurring as words if
they are also the names of categories. One possible resolution of the conflict is to
say that an element of a right-hand side represents a word if it is an atom, and a list
of categories if it is a list. If we did indeed settle on that convention, then we could
modify both the interpreter and the compiler to comply with the convention. Another
possibility would be to represent words as strings, and categories as symbols.

The flip side of losing run-time flexibility is gaining compile-time diagnostics. For
example, it turns out that on the Common Lisp system I am currently using, I get
some useful error messages when I try to compile the buggy version of Noun:

9.2 COMPILING ONE LANGUAGE INTO ANOTHER 279

> (defrule Noun - > man ball woman table (chow chow))
The fol lowing functions were referenced but don' t seem def ined:

CHOW referenced by NOUN
TABLE referenced by NOUN
WOMAN referenced by NOUN
BALL referenced by NOUN
MAN referenced by NOUN

NOUN

Another problem with the compilation scheme outlined here is the possibility of name
clashes. Under the interpretation scheme, the only names used were the function
generate and the variable ^grammar*. With compilation, every left-hand side of a
rule becomes the name of a function. The grammar writer has to make sure he or
she is not using the name of an existing Lisp function, and hence redefining it. Even
worse, if more than one grammar is being developed at the same time, they cannot
have any functions in common. If they do, the user will have to recompile with
every switch from one grammar to another. This may make it difficult to compare
grammars. The best away around this problem is to use the Common Lisp idea of
packages, but for small exercises name clashes can be avoided easily enough, so we
will not explore packages until section 24.1.

The major advantage of a compiler is speed of execution, when that makes a
difference. For identical grammars running in one particular implementation of
Common Lisp on one machine, our interpreter generates about 75 sentences per
second, while the compiled approach turns out about 200. Thus, it is more than twice
as fast, but the difference is negligible unless we need to generate many thousands of
sentences. In section 9.6 we will see another compiler with an even greater speed-up.

The need to optimize the code produced by your macros and compilers ultimately
depends on the quality of the underlying Lisp compiler. For example, consider the
following code:

> (defun f l (n 1)
(le t ((11 (f i r s t D)

(12 (second 1)))
(expt (* 1 (+ η 0))

(- 4 (length (l i s t 11 12))))))
Fl

> (defun f2 (n 1) (* η n)) F2

> (disassemble ' f l)
6 PUSH ARG 10 ; Ν
7 MOVEM PDL-PUSH
8 * PDL-POP
9 RETURN PDL-POP

Fl

280 EFFICIENCY ISSUES

> (disassemble ' f2)
6 PUSH ARGO ; Ν
7 MOVEM PDL-PUSH
8 * PDL-POP
9 RETURN PDL-POP

F2

This particular Lisp compiler generates the exact same code for f 1 and f 2. Both
fimctions square the argument n, and the four machine instructions say, "Take the
0th argument, make a copy of it, multiply those two numbers, and return the result."
It's clear the compiler has some knowledge of the basic Lisp functions. In the case
of f 1, it was smart enough to get rid of the local variables 11 and 12 (and their
initialization), as well as the calls to f 1 rs t , second, 1 ength, and 1 i s t and most of the
arithmetic. The compiler could do this because it has knowledge about the functions
1 ength and 1 i s t and the arithmetic functions. Some of this knowledge might be in
the form of simplification rules.

As a user of this compiler, there's no need for me to write clever macros or
compilers that generate streamlined code as seen in f 2; I can blindly generate code
with possible inefficiencies Uke those in f 1, and assume that the Lisp compiler
will cover up for my laziness. With another compiler that didn't know about such
optimizations, I would have to be more careful about the code I generate.

9.3 Delaying Computation

Back on page 45, we saw a program to generate all strings derivable from a grammar.
One drawback of this program was that some grammars produce an infinite number
of strings, so the program would not terminate on those grammars.

It turns out that we often want to deal with infinite sets. Of course, we can't
enumerate all the elements of an infinite set, but we should be able to represent the
set and pick elements out one at a time. In other words, we want to be able to specify
how a set (or other object) is constructed, but delay the actual construction, perhaps
doing it incrementally over time. This soimds like a job for closures: we can specify
the set constructor as a function, and then call the function some time later. We will
implement this approach with the sjmtax used in Scheme—the macro del ay builds a
closure to be computed later, and the function force calls that function and caches
away the value. We use structures of type del ay to implement this. A delay structure
has two fields: the value and the function. Initially, the value field is undefined, and
the function field holds the closure that will compute the value. The first time the
delay is forced, the function is called, and its result is stored in the value field. The
function field is then set to nil to indicate that there is no need to call the function
again. The function force checks if the fimction needs to be called, and returns the

93 DELAYING COMPUTATION 281

value. If force is passed an argument that is not a delay, it just returns the argument.

(defstruct delay (value n i l) (funct ion n i l))

(defmacro delay (&rest body)
"A computation that can be executed later by FORCE."
*(make-delay : funct ion #'(lambda () . .body)))

(defun force (x)
"Find the value of x . by computing i f i t i s a de lay. "
(i f (not (delay-p x))

χ
(progn

(when (delay-funct ion x)
(set f (delay-value x)

(funcal l (delay-funct ion x)))
(set f (delay-funct ion x) n i l))

(delay-value x))))

Here's an example of the use of del ay. The list χ is constructed using a combination
of normal evaluation and delayed evaluation. Thus, the 1 is printed when χ is created,
but the 2 is not:

> (set f X (l i s t (pr int 1) (delay (pr int 2))))
1
(1 #S(DELAY .-FUNCTION (LAMBDA () (PRINT 2))))

The second element is evaluated (and printed) when it is forced. But then forcing it
again just retrieves the cached value, rather than calling the function again:

> (force (second x))
2
2

> X = > (1 #S(DELAY :VALUE 2))

> (force (second x)) 2

Now let's see how delays can be used to build infinite sets. An infinite set will be
considered a special case of what we will call a pipe: a list with a f i r s t component
that has been computed, and a res t component that is either a normal list or a
delayed value. Pipes have also been called delayed Usts, generated lists, and (most
commonly) streams. We will use the term pipe because stream already has a meaning
in Common Lisp. The book Artificial Intelligence Programming (Charniak et al. 1987)

282 EFFICIENCY ISSUES

also calls these structures pipes, reserving streams for delayed structures that do not
cache computed results.

To distinguish pipes from lists, we will use the accessors head and t a i 1 instead
of f i r s t and res t . We will also use empty-pipe instead of ni 1, make-pipe instead
of cons, and p ipe-e l t instead of el t. Note that make-pipe is a macro that delays
evaluation of the tail.

(defmacro make-pipe (head t a i l)
"Create a pipe by evaluating head and delaying t a i l . "
' (cons .head (delay . t a i l)))

(defconstant empty-pipe n i l)

(defun head (pipe) (f i r s t pipe))
(defun ta i l (p ipe) (fo rce (rest p ipe)))

(defun p ipe-el t (pipe i)
"The i-th element of a pipe. 0-based"
(i f (= i 0)

(head pipe)
(p ipe-el t (ta i l pipe) (- i 1))))

Here's a function that can be used to make a large or infinite sequence of integers
with delayed evaluation:

(defun integers (&optional (s ta r t 0) end)
"A pipe of integers from START to END.
I f END i s n i l . t h i s i s an in f i n i te p ipe. "
(i f (or (null end) (<= s tar t end))

(make-pipe s tar t (integers (+ s tar t 1) end))
n i l))

And here is an example of its use. The pipe c represents the numbers from 0 to in
finity. When it is created, only the zeroth element, 0, is evaluated. The computation
of the other elements is delayed.

> (set f c (integers 0)) ^ (0 . #S(DELAY :FUNCTION #<CLOSURE -77435477>))

> (p ipe-el t c 0) =ϊ> 0

Calling pi pe - el t to look at the third element causes the first through third elements
to be evaluated. The numbers 0 to 3 are cached in the correct positions, and further
elements remain unevaluated. Another call to pi pe-el t with a larger index would
force them by evaluating the delayed function.

9.3 DELAYINC COMPUTATION 283

> (p ipe-el t c 3) ^ 3

> c =^
(0 . #S(DELAY

:VALUE
(1 . #S(DELAY

:VALUE
(2 . #S(DELAY

:VALUE
(3 . #S(DELAY

:FUNCTION
#<CLOSURE - 7 7 4 3 2 7 2 4 »)))))))

While this seems to work fine, there is a heavy price to pay. Every delayed value must
be stored in a two-element structure, where one of the elements is a closure. Thus,
there is some storage wasted. There is also some time wasted, as ta Π or pi p e - e l t
must traverse the structures.

An alternate representation for pipes is as (value. closure) pairs, where the closure
values are stored into the actual cons cells as they are computed. Previously we
needed structures of type del ay to distinguish a delayed from a nondelayed object,
but in a pipe we know the rest can be only one of three things: nil, a list, or a delayed
value. Thus, we can use the closures directly instead of using del ay structures, if we
have some way of distinguishing closures from lists. Compiled closures are atoms, so
they can always be distinguished from lists. But sometimes closures are implemented
as lists beginning with 1 ambda or some other implementation-dependent symbol.^
The built-in function f uncti onp is defined to be true of such lists, as well as of all
symbols and all objects returned by compi 1 e. But using f uncti onp means that we
can not have a pipe that includes the symbol 1 ambda as an element, because it will be
confused for a closure:

> (functionp (las t ' (theta iota kappa lambda))) ^ Τ

If we consistently use compiled functions, then we could eliminate the problem by
testing with the built-in predicate compi 1 ed - f uncti on-p. The following definitions
do not make this assumption:

(defmacro make-pipe (head t a i l)
"Create a pipe by evaluating head and delaying t a i l . "
' (cons .head #'(lambda () . t a i l)))

^In K C L , the symbol 1 ambda -cl osure is used, and in Allegro, it is e x c l : . 1 exi cal - cl osure.

284 EFFICIENCY ISSUES

(defun ta i l (pipe)
"Return ta i l of pipe or l i s t , and destruct ive ly update
the ta i l i f i t i s a funct ion. "
(i f (functionp (rest pipe))

(set f (rest pipe) (funcall (rest p ipe)))
(rest p ipe)))

Everything else remains the same. If we recompile i n t e g e r s (because it uses the
macro ma ke - pi pe), we see the following behavior. First, creation of the infinite pipe
c is similar:

> (set f c (integers 0)) (0 , #<CLOSURE 77350123>)

> (p ipe-el t c 0) => 0

Accessing an element of the pipe forces evaluation of all the intervening elements,
and as before leaves subsequent elements unevaluated:

> (p ipe-el t c 5) =^ 5

> c =^ (0 1 2 3 4 5 . #<CLOSURE 77351636»

Pipes can also be used for finite lists. Here we see a pipe of length 1 1 :

> (set f i (integers 0 10)) =^ (0 . #<CLOSURE 77375357>)

> (p ipe-el t i 10) ^ 10

> (p ipe-el t i 11) => NIL

> i ^ (0 1 2 3 4 5 6 7 8 9 10)

Clearly, this version wastes less space and is much neater about cleaning up after
itself. In fact, a completely evaluated pipe turns itself into a list! This efficiency was
gained at the sacrifice of a general principle of program design. Usually we strive
to build more complicated abstractions, like pipes, out of simpler ones, like delays.
But in this case, part of the functionality that delays were providing was duplicated
by the cons cells that make up pipes, so the more efficient implementation of pipes
does not use delays at all.

Here are some more utility functions on pipes:

(defun enumerate (pipe &key count key (resu l t pipe))
"Go through al l (or count) elements of pipe,
poss ib ly applying the KEY funct ion. (Try PRINT.) "

Returns RESULT, which defaults to the pipe i t s e l f ,
(i f (or (eq pipe empty-pipe) (eql count 0))

9.3 DELAYING COMPUTATION 285

resul t
(progn

(unless (null key) (funcal l key (head p ipe)))
(enumerate (ta i l pipe) :count (i f count (- count 1))

:key key : resu l t r esu l t))))

(defun f i l t e r (pred pipe)
"Keep only items in pipe sa t i s f y ing pred."
(i f (funcal l pred (head pipe))

(make-pipe (head pipe)
(f i l t e r pred (ta i l p ipe)))

(f i l t e r pred (ta i l p ipe))))

And here's an application of pipes: generating prime numbers using the sieve of
Eratosthenes algorithm:

(defun sieve (pipe)
(make-pipe (head pipe)

(f i l t e r #'(lambda (x) (/= (mod χ (headpipe)) 0))
(s ieve (ta i l p ipe)))))

(defvar *pr imes* (s ieve (integers 2)))

> *primes* ^ (2 . #<CLOSURE 3075345>)

> (enumerate *primes* icount 10) =^
(2 3 5 7 11 13 17 19 23 29 31 . #<CLOSURE 5224472»

Finally, let's return to the problem of generating all strings in a grammar. First we're
going to need some more utility functions:

(defun map-pipe (fn pipe)
"Map fn over pipe, delaying al l but the f i r s t fn c a l l . "
(i f (eq pipe empty-pipe)

empty-pipe
(make-pipe (funcal l fn (head pipe))

(map-pipe fn (ta i l p ipe)))))

(defun append-pipes (x y)
"Return a pipe that appends the elements of χ and y . "
(i f (eq X empty-pipe)

y
(make-pipe (head x)

(append-pipes (ta i l x) y))))

286 EFFICIENCY ISSUES

(defun mappend-pipe (fn pipe)

"Laz i ly map fn over pipe, appending r e s u l t s . "

(i f (eq pipe empty-pipe)

empty-pipe

(let ((X (funcal l fn (head p ipe))))

(make-pipe (head x)

(append-pipes (ta i l x)

(mappend-pipe

fn (ta i l p i pe)))))))

Now we can rewrite generate-all and combine-all to use pipes instead of lists.
Everything else is the same as on page 45.

(defun generate-al l (phrase)

"Generate a random sentence or phrase"

(i f (l i s t p phrase)

(i f (null phrase)

(l i s t n i l)

(combine-al l-pipes

(generate-al l (f i r s t phrase))

(generate-al l (rest phrase))))

(let ((choices (ru le- rhs (assoc phrase *grammar*))))

(i f choices

(mappend-pipe #*generate-al l choices)

(l i s t (l i s t phrase))))))

(defun combine-al l-pipes (xpipe ypipe)
"Return a pipe of pipes formed by appending a y to an x"
; ; In other words, form the cartesian product,
(mappend-pipe

#'(lambda (y)

(map-pipe #'(lambda (x) (append-pipes χ y))

xpipe))

ypipe))

With these definitions, here's the pipe of all sentences from *grammar2* (from
page 43):

> (set f ss (generate-al l 'sentence))
((THE . #<CLOSURE 27265720>) . #<CLOSURE 27266035»

9.3 DELAYING COMPUTATION 287

> (enumerate ss rcount 5) =i>
((THE . #<CLOSURE 27265720>)

(A . #<CLOSURE 27273143»
(THE . #<CLOSURE 27402545>)
(A . #<CLOSURE 27404344>)
(THE . #<CLOSURE 27404527>)
(A . #<CLOSURE 27405473» . #<CLOSURE 27405600>)

> (enumerate ss .-count 5 :key #'enumerate)
((THE MAN HIT THE MAN)

(A MAN HIT THE MAN)
(THE BIG MAN HIT THE MAN)
(A BIG MAN HIT THE MAN)
(THE LITTLE MAN HIT THE MAN)
(THE . #<CLOSURE 27423236>) . #<CL0SURE 27423343»

> (enumerate (p ipe-el t ss 200))
(THE ADIABATIC GREEN BLUE MAN HIT THE MAN)

While we were able to represent the infinite set of sentences and enumerate instances
of it, we still haven't solved all the problems. For one, this enumeration will never
get to a sentence that does not have "hit the man" as the verb phrase. We will see
longer and longer lists of adjectives, but no other change. Another problem is that
left-recursive rules will still cause infinite loops. For example, if the expansion for
Adj*hadbeen (A d j * - > (A d j * A d j) ()) instead of (A d j * - > () (Adj A d j *)) ,
then the enumeration would never terminate, because pipes need to generate a first
element.

We have used delays and pipes for two main purposes: to put off until later
computations that may not be needed at all, and to have an expHcit representation of
large or infinite sets. It should be mentioned that the language Prolog has a different
solution to the first problem (but not the second). As we shall see in chapter 1 1 , Prolog
generates solutions one at a time, automatically keeping track of possible backtrack
points. Where pipes allow us to represent an infinite number of alternatives in the
data, Prolog allows us to represent those alternatives in the program itself.

Exercise 9.1 [h] When given a function f and a pipe p. mappend-pipe returns a
new pipe that will eventually enumerate all of (f (f i r s t ρ)) , then all of (f (second
ρ)) , and so on. This is deemed "unfair" if (f (f i r s t ρ)) has an infinite number of
elements. Define a function that will fairly interleave elements, so that all of them are
eventually enumerated. Show that the function works by changing generate - a 11 to
work with it.

288 EFFICIENCY ISSUES

9.4 Indexing Data

Lisp makes it very easy to use lists as the universal data structure. A list can represent
a set or an ordered sequence, and a list with sublists can represent a tree or graph.
For rapid prototyping, it is often easiest to represent data in lists, but for efficiency
this is not always the best idea. To find an element in a list of length η will take n/2
steps on average. This is true for a simple list, an association list, or a property list.
If η can be large, it is worth looking at other data structures, such as hash tables,
vectors, property lists, and trees.

Picking the right data structure and algorithm is as important in Lisp as it is in
any other programming language. Even though Lisp offers a wide variety of data
structures, it is often worthwhile to spend some effort on building just the right data
structure for frequently used data. For example. Lisp's hash tables are very general
and thus can be inefficient. You may want to build your own hash tables if, for
example, you never need to delete elements, thus making open hashing an attractive
possibility. We will see an example of efficient indexing in section 9.6 (page 297).

9.5 Instrumentation: Deciding What
to Optimize

Because Lisp is such a good rapid-prototyping language, we can expect to get a
working implementation quickly. Before we go about trying to improve the efficiency
of the implementation, it is a good idea to see what parts are used most often.
Improving little-used features is a waste of time.

The minimal support we need is to count the number of calls to selected functions,
and then print out the totals. This is called profiling the functions.^ For each function
to be profiled, we change the definition so that it increments a counter and then calls
the original function.

Most Lisp systems have some built-in profiling mechanism. If your system has
one, by all means use it. The code in this section is provided for those who lack such
a feature, and as an example of how functions can be manipulated. The following is
a simple profiling facility. For each profiled function, it keeps a count of the number
of times it is called under the prof i 1 e - count property of the function's name.

^The terms metering and monitoring are sometimes used instead of profiling.

9.5 INSTRUMENTATION: DECIDING WHAT TO OPTIMIZE 289

(defun p ro f i l e l (fn-name)
"Make the function count how often i t i s ca l led"

F i r s t save away the o ld , unprof i led function
Then make the name be a new function that increments
a counter and then c a l l s the or ig ina l function

(let ((fn (symbol-function fn-name)))
(set f (get fn-name 'unprof i led- fn) fn)
(set f (get fn-name 'pro f i le -count) 0)
(set f (symbol-function fn-name)

(pro f i led- fn fn-name fn))
fn-name))

(defun unprof i le l (fn-name)
"Make the function stop counting how often i t i s ca l l ed . "
(set f (symbol-function fn-name) (get fn-name 'unpro f i led- fn))
fn-name)

(defun prof i led- fn (fn-name fn)
"Return a function that increments the count."
#'(lambda (&rest args)

(incf (get fn-name 'p ro f i le -count))
(apply fn a rgs)))

(defun prof i le-count (fn-name) (get fn-name 'p ro f i le -count))

(defun prof i le- repor t (fn-names Äoptional (key # 'p ro f i l e -coun t))
"Report p ro f i l i ng s t a t i s t i c s on given func t ions . "
(loop for name in (sor t fn-names # ' > :key key) do

(format t "~&~7D ~A" (prof i le-count name) name)))

That's all we need for the bare-bones functionality. However, there are a few ways
we could improve this. First, it would be nice to have macros that, like t race and
untrace, allow the user to profile multiple functions at once and keep track of what
has been profiled. Second, it can be helpful to see the length of time spent in each
function, as well as the number of calls.

Also, it is important to avoid profiling a function twice, since that would double
the number of calls reported without alerting the user of any trouble. Suppose we
entered the following sequence of commands:

(defun f (X) (g x))
(p ro f i l e l ' f)
(p ro f i l e l ' f)

Then the definition of f would be roughly:

290 EFFICIENCY ISSUES

(lambda (&rest args)
(incf (get ' f 'p ro f i le -count))
(apply #'(lambda (&rest args)

(incf (get ' f 'p ro f i le -count))
(apply #'(lambda (x) (g x))

a rgs))
a rgs))

The result is that any call to f will eventually call the original f , but only after
incrementing the count twice.

Another consideration is what happens when a profiled function is redefined by
the user. The only way we could ensure that a redefined function would continue
profiling would be to change the definition of the macro defun to look for functions
that should be profiled. Changing system functions like defun is a risky prospect,
and in Common Lisp the Language, 2d edition, it is explicitly disallowed. Instead,
we'll do the next best thing: ensure that the next call to prof i 1 e will reprofile any
functions that have been redefined. We do this by keeping track of both the original
unprofiled function and the profiled function. We also keep a list of all functions
that are currently profiled.

In addition, we will count the amount of time spent in each function. However,
the user is cautioned not to trust the timing figures too much. First, they include the
overhead cost of the profiling facility. This can be significant, particularly because
the facility conses, and thus can force garbage collections that would not otherwise
have been done. Second, the resolution of the system clock may not be fine enough
to make accurate timings. For functions that take about 1/10 of a second or more, the
figures will be reliable, but for quick functions they may not be.

Here is the basic code for prof i 1 e and unprof i 1 e:

(defvar *pro f i led- func t ions* ni l
"Function names that are current ly p ro f i led")

(defmacro pro f i le (&rest fn-names)
"Pro f i le fn-names. With no a rgs , l i s t prof i led func t ions . "
'(mapcar # ' p r o f i l e l

(set f *p ro f i led- func t ions*
(union *pro f i led- func t ions* ' , fn -names))))

(defmacro unprof i le (&rest fn-names)
"Stop p ro f i l i ng fn-names. With no a rgs , stop al l p r o f i l i n g . "
' (progn

(mapcar # 'unpro f i le l
, (i f fn-names " , fn -names ' *p ro f i l ed - func t ions*))

(set f *p ro f i led- func t ions*
. (i f (null fn-names)

ni l

9.5 INSTRUMENTATION: DECIDING WHAT TO OPTIMIZE 291

' (se t -d i f fe rence *pro f i led- func t ions*
* , fn-names)))))

The idiom * ' , f n -names deserves comment, since it is common but can be con
fusing at first. It may be easier to understand when written in the equivalent form
' (quote , fn-names) . As always, the backquote builds a structure with both constant
and evaluated components. In this case, the quote is constant and the variable
fn-names is evaluated. In MacLisp, the function kwote was defined to serve this
purpose:

(defun kwote (x) (l i s t 'quote x))

Now we need to change prof i 1 e l and unprof i 1 e l to do the additional bookkeeping:
For prof i 1 e l , there are two cases. If the user does a prof i 1 e l on the same function
name twice in a row, then on the second time we will notice that the current function
is the same as the functioned stored under the p r o f i l e d - f n property, so nothing
more needs to be done. Otherwise, we create the profiled function, store it as the
current definition of the name under the prof i 1 ed - f η property, save the unprofiled
function, and initialize the counts.

(defun p ro f i l e l (fn-name)
"Make the function count how often i t i s ca l led"

F i r s t save away the o ld , unprof i led function
Then make the name be a new function that increments
a counter and then ca l l s the or ig ina l function

(let ((fn (symbol-function fn-name)))
(unless (eq fn (get fn-name 'p ro f i l ed - fn))

(le t ((new-fn (pro f i led- fn fn-name fn)))
(set f (symbol-function fn-name) new-fn

(get fn-name 'p ro f i l ed - fn) new-fn
(get fn-name 'unprof i led- fn) fn
(get fn-name 'prof i le - t ime) 0
(get fn-name 'pro f i le -count) 0))))

fn-name)

(defun unprof i le l (fn-name)
"Make the function stop counting how often i t i s ca l l ed . "
(set f (get fn-name 'prof i le- t ime) 0)
(set f (get fn-name 'pro f i le -count) 0)
(when (eq (symbol-function fn-name) (get fn-name 'p ro f i l ed - fn))

; ; normal case: restore unprof i led version
(set f (symbol-function fn-name)

(get fn-name 'unprof i led- fn)))
fn-name)

292 EFFICIENCY ISSUES

Now we look into the question of timing. There is a built-in Common Lisp func
tion, g e t - i n t e r n a l - rea l - t ime, that returns the elapsed time since the Lisp ses
sion started. Because this can quickly become a bignum, some implementations
provide another timing function that wraps around rather than increasing forever,
but which may have a higher resolution than g e t - i n t e r n a l - real - time. For ex
ample, on TI Explorer Lisp Machines, g e t - i n t e r n a l - r e a l - t i m e measures 1/60-
second intervals, while t ime:microsecond-t ime measures l/l,000,000-second in
tervals, but the value returned wraps around to zero every hour or so. The func
tion t ime:microsecond- t ime-d i f ference is used to compare two of these num
bers with compensation for wraparound, as long as no more than one wraparound
has occurred.

In the code below, I use the conditional read macro characters #+ and # - to define
the right behavior on both Explorer and non-Explorer machines. We have seeen
that # is a special character to the reader that takes different action depending on
the following character. For example, # ' f η is read as (f unct i on f η) . The character
sequence #+ is defined so that ^+feature expression reads as expression if the feature is
defined in the current implementation, and as nothing at all if it is not. The sequence
#- acts in just the opposite way. For example, on a TI Explorer, we would get the
following:

> ' (h i #+TI t #+Symbolics s #-Explorer e #-Mac m) ^ (HI Τ Μ)

The conditional read macro characters are used in the following definitions:

(defun get- fast- t ime ()
"Return the elapsed time. This may wrap around;
use FAST-TIME-DIFFERENCE to compare."
#+Explorer (time:microsecond-time) ; do th i s on an Explorer
#-Explorer (get - in terna l - rea l - t ime)) ; do th i s on a non-Explorer

(defun fast- t ime-di f ference (end s tar t)
"Subtract two time po in ts . "
#+Explorer (t ime:microsecond-time-difference end s tar t)
#-Explorer (- end s ta r t))

(defun fast-t ime->seconds (time)
"Convert a fast-t ime interval into seconds."
#+Explorer (/ time 1000000.0)
#-Explorer (/ time internal - t ime-uni ts-per-second))

The next step is to update prof i 1 ed - f η to keep track of the timing data. The simplest
way to do this would be to set a variable, say s t a r t , to the time when a function is
entered, run the function, and then increment the function's time by the difference be
tween the current time and s t a r t . The problem with this approach is that every func-

9.5 INSTRUMENTATION: DECIDING WHAT TO OPTIMIZE 293

tion in the call stack gets credit for the time of each called function. Suppose the func
tion f calls itself recursively five times, with each call and return taking place a second
apart, so that the whole computation takes nine seconds. Then f will be charged nine
seconds for the outer call, seven seconds for the next call, and so on, for a total of
25 seconds, even though in reality it only took nine seconds for all of them together.

A better algorithm would be to charge each function only for the time since the
last call or return. Then f would only be charged the nine seconds. The variable
* p r o f i l e - c a l l -stack* is used to holdastack of functionname/entry time pairs. This
stack is manipulated by p ro f i 1 e-enter and p ro f i 1 e-exi t to get the right timings.

The functions that are used on each call to a profiled function are declared in l ine .
In most cases, a call to a function compiles into machine instructions that set up the
argument list and branch to the location of the function's definition. With an i nl i ne
function, the body of the function is compiled in line at the place of the function
call. Thus, there is no overhead for setting up the argument list and branching to the
definition. An i nl i ne declaration can appear anywhere any other declaration can
appear. In this case, the function proel aim is used to register a global declaration.
Inline declarations are discussed in more depth on page 317.

(proclaim ' (i n l i n e prof i le-enter p ro f i l e -ex i t inc-pro f i le - t ime))

(defun pro f i led- fn (fn-name fn)
"Return a function that increments the count, and t imes."
#'(lambda (&rest args)

(prof i le-enter fn-name)
(mult ip le-value-progl

(apply fn args)
(p ro f i l e -ex i t fn-name))))

(defvar *p ro f i l e - ca l l - s t ack * n i l)

(defun prof i le-enter (fn-name)
(incf (get fn-name 'p ro f i le -count))
(unless (null * p ro f i l e - ca l l - s t ack *)

Time charged against the ca l l i ng funct ion:
(inc-prof i le- t ime (f i r s t *p ro f i l e - ca l l - s t ack *)

(car (f i r s t * p r o f i l e - c a l l - s t a c k *))))
; ; Put a new entry on the stack
(push (cons fn-name (get - fast - t ime))

*prof i l e - ca l l - s t ack *))

(defun p ro f i l e -ex i t (fn-name)
Time charged against the current funct ion:

(inc-prof i le- t ime (pop *p ro f i l e - ca l l - s t ack *)
fn-name)

Change the top entry to ref lect current time
(unless (null * p ro f i l e - ca l l - s t ack *)

(set f (cdr (f i r s t * p ro f i l e - ca l l - s t ack *))
(get - fas t - t ime))))

294 EFFICIENCY ISSUES

(defun inc-prof i le- t ime (entry fn-name)
(incf (get fn-name 'prof i le- t ime)

(fast- t ime-di f ference (get- fast- t ime) (cdr en t ry))))

Finally, we need to update prof i 1 e- report to print the timing data as well as the
counts. Note that the default f η - names is a copy of the global list. That is because we
pass f η - names to sort , which is a destructive function. We don't want the global list
to be modified as a result of this sort.

(defun prof i le- repor t (Äoptional
(fn-names (copy - l i s t *p ro f i led- func t ions*))
(key # 'p ro f i l e -count))

"Report p ro f i l i ng s t a t i s t i c s on given func t ions . "
(le t ((total- t ime (reduce # ' + (mapcar # 'pro f i le - t ime fn-names))))

(unless (null key)
(set f fn-names (sor t fn-names # ' > :key key)))

(format t "~&Total elapsed time: ~d seconds."
(fast-t ime->seconds tota l - t ime))

(format t "~& Count Sees Time% Name")
(loop for name in fn-names do

(format t ""ryo "ß.ZF '*'3d% ~A"
(prof i le-count name)
(fast-t ime->seconds (prof i le- t ime name))
(round (/ (prof i le- t ime name) total- t ime) .01)
name))))

(defun prof i le- t ime (fn-name) (get fn-name 'p ro f i le - t ime))

These functions can be used by calling prof i le , then doing some representative com
putation, then calling prof i 1 e - report, and finally unprof i 1 e. It can be convenient
to provide a single macro for doing all of these at once:

(defmacro w i th -pro f i l ing (fn-names &rest body)
' (progn

(unprof i le . ,fn-names)
(pro f i le . .fn-names)
(set f * p ro f i l e - ca l l - s t ack * n i l)
(unwind-protect

(progn . .body)
(p ro f i le - repor t ' , fn -names)
(unprof i le . . fn-names))))

Note the use of unwi nd - protect to produce the report and call unprof i 1 e even if the
computation is aborted, unwind-protect is a special form that takes any number
of arguments. It evaluates the first argument, and if all goes well it then evaluates

9.6 A CASE STUDY IN EFFICIENCY: THE SIMPLIFY PROGRAM 295

the other arguments and returns the first one, just like progl. But if an error occurs
during the evaluation of the first argument and computation is aborted, then the
subsequent arguments (called cleanup forms) are evaluated anyway.

9.6 A Case Study in Efficiency: The
SIMPLIFY Program

Suppose we wanted to speed up the s i m p l i f y program of chapter 8. This sec
tion shows how a combination of general techniques—memoizing, indexing, and
compiling—can be used to speed up the program by a factor of 130. Chapter 15 will
show another approach: replace the algorithm with an entirely different one.

The first step to a faster program is defining a benchmark, a test suite representing
a typical work load. The following is a short list of test problems (and their answers)
that are typical of the s i mpl i f y task.

(defvar n e s t - d a t a * (mapcar # ' i n f i x ->p re f i x
•((d (a * x ^ 2 + b * x + c) / d x)

(d ((a * χ 2 + b * χ + c) / x) / d x)
(d ((a * χ ^ 3 + b * χ ^ 2 + c * χ + d) / χ ^ 5) / d x)
((s i n (X + X)) * (s in (2 * x)) + (cos (d (x ^ 2) / d x)) ^ 1)
(d (3 * X + (cos X) / X) / d X))))

(defvar ^^answers* (mapcar # ' s imp l i f y * tes t -da ta*))

The function t e s t - i t runs through the test data, making sure that each answer is
correct and optionally printing profiling data.

(defun t es t - i t (Äoptional (w i th-prof i l ing t))
"Time a test run, and make sure the answers are correct . "
(le t ((answers

(i f w i th -pro f i l ing
(wi th-prof i l ing (s impl i fy s impl i fy-exp pat-match

match-variable var iab le-p)
(mapcar #*s impl i fy n e s t - d a t a *))

(time (mapcar # 's imp l i f y * tes t -da ta *)))))
(mapc #*assert-equal answers *answers*)
t))

(defun assert-equal (x y)
" I f X i s not equal to y , complain."
(asser t (equal χ y) (χ y)

"Expected "a to be equal to ~a" χ y))

Here are the results of (t e s t - i t) with and without profiling:

296 EFFICIENCY ISSUES

> (tes t - i t n i l)
Evaluation of (MAPCAR #'SIMPLIFY *TEST-DATA*) took 6.612 seconds.

> (tes t - i t t)
Total elapsed time: 22.819614 seconds.

Count Sees Time% Name
51690 11.57 51% PAT-MATCH
37908 8.75 38% VARIABLE-P

1393 0.32 1% MATCH-VARIABLE
906 0.20 1% SIMPLIFY
274 1.98 9% SIMPLIFY-EXP

Running the test takes 6.6 seconds normally, although the time triples when the
profiling overhead is added in. It should be clear that to speed things up, we have
to either speed up or cut down on the number of calls to pat-match or va r i abl e -p,
since together they account for 89% of the calls (and 89% of the time as well). We
will look at three methods for achieving both those goals.

Memoization

Consider the rule that transforms (x + x) into (2 * χ). Once this is done, we have
to simplify the result, which involves resimplifying the components. If x were some
complex expression, this could be time-consuming, and it will certainly be wasteful,
because χ is already simplified and cannot change. We have seen this type of problem
before, and the solution is memoization: make simpl i fy remember the work it has
done, rather than repeating the work. We can just say:

(memoize 's impl i fy : test # 'equal)

Two questions are unclear: what kind of hash table to use, and whether we should
clear the hash table between problems. The simplifier was timed for all four combi
nations of eq or equal hash tables and resetting or nonresetting between problems.
The fastest result was equal hashing and nonresetting. Note that with eq hashing,
the resetting version was faster, presumably because it couldn't take advantage of
the common subexpressions between examples (since they aren't eq).

hashing resetting time
none — 6.6
equal yes 3.8
equal no 3.0
eq yes 7.0
eq no 10.2

9.6 A CASE STUDY IN EFFICIENCY THE SIMPLIFY PROGRAM 297

This approach makes the function simpl i fy remember the work it has done, in
a hash table. If the overhead of hash table maintenance becomes too large, there is
an alternative: make the data remember what simplify has done. This approach was
taken in MACSYMA: it represented operators as lists rather than as atoms. Thus, in
stead of (* 2 X) , MACSYMA would use ((*) 2 χ). The simplification function would
destructively insert a marker into the operator list. Thus, the result of simplifying 2x
would be ((* s i mp) 2 χ). Then, when the simplifier was called recursively on this
expression, it would notice the s i mp marker and return the expression as is.

The idea of associating memoization information with the data instead of with the
function will be more efficient unless there are many functions that all want to place
their marks on the same data. The data-oriented approach has two drawbacks: it
doesn't identify structures that are equal but not eq, and, because it requires explicitly
altering the data, it requires every other operation that manipulates the data to know
about the markers. The beauty of the hash table approach is that it is transparent; no
code needs to know that memoization is taking place.

Indexing

We currently go through the entire list of rules one at a time, checking each rule. This
is inefficient because most of the rules could be trivially ruled out—if only they were
indexed properly. The simplest indexing scheme would be to have a separate list
of rules indexed under each operator. Instead of having simpl ify-exp check each
member of *s i mpl i f i cat i on - rul es*, it could look only at the smaller list of rules for
the appropriate operator. Here's how:

(defun simplify-exp (exp)
"Simplify using a rule, or by doing arithmetic,
or by using the simp function supplied for this operator.
This version indexes simplification rules under the operator."
(cond ((simplify-by-fn exp))

((rule-based-translator exp (rules-for (exp-op exp))
:rule-if #'exp-lhs :rule-then #'exp-rhs
:action #'(lambda (bindings response)

(simplify (sublis bindings response)))))
((evaluable exp) (eval exp))
(t exp)))

(defvar *rules-for* (make-hash-table :test #*eq))

(defun main-op (rule) (exp-op (exp-lhs rule)))

298 EFFICIENCY ISSUES

(defun index-rules (ru les)
"Index a l l the rules under the main op . "
(c lrhash * ru l es - fo r *)
(do l i s t (rule ru les)

: ; nconc instead of push to preserve the order of rules
(set f (gethash (main-op rule) * r u l es - f o r *)

(nconc (gethash (main-op rule) * r u l es - f o r *)
(l i s t r u l e)))))

(defun ru les- fo r (op) (gethash op * r u l es - f o r *))

(i ndex-rules * s i mpli f i cati on-rul es*)

Timing the memoized, indexed version gets us to .98 seconds, down from 6.6 seconds
for the original code and 3 seconds for the memoized code. If this hadn't helped, we
could have considered more sophisticated indexing schemes. Instead, we move on
to consider other means of gaining efficiency.

@ Exercise 9.2 [m] The list of rules for each operator is stored in a hash table with
the operator as key. An alternative would be to store the rules on the property list
of each operator, assuming operators must be symbols. Implement this alternative,
and time it against the hash table approach. Remember that you need some way of
clearing the old rules—trivial with a hash table, but not automatic with property lists.

Compilation

You can look at simpl i fy-exp as an interpreter for the simplification rule language.
One proven technique for improving efficiency is to replace the interpreter with a
compiler. Forexample, the rule (x + χ = 2 * χ) could be compiled into something
like:

(lambda (exp)
(i f (and (eq (exp-op exp) '+) (equal (exp- lhs exp) (exp-rhs exp)))

(make-exp :op ' * : l hs 2 : rhs (exp-rhs exp))))

This eliminates the need for consing up and passing around variable bindings, and
should be faster than the general matching procedure. When used in conjunction
with indexing, the individual rules can be simpler, because we already know we have
the right operator. For example, with the above rule indexed under "-»-", it could now
be compiled as:

9.6 A CASE STUDY IN EFFICIENCY THE SIMPLIFY PROGRAM 299

(lambda (exp)
(i f (equal (exp-lhs exp) (exp-rhs exp))

(make-exp :op ' * : l hs 2 : rhs (exp- lhs exp))))

It is important to note that when these functions return nil, it means that they
have failed to simplify the expression, and we have to consider another means of
simplification.

Another possibility is to compile a set of rules all at the same time, so that the
indexing is in effect part of the compiled code. As an example, I show here a small set
of rules and a possible compilation of the rule set. The generated function assumes
that χ is not an atom. This is appropriate because we are replacing simpl 1 fy-exp,
not simpl ify. Also, we will return nil to indicate that χ is already simplified. I
have chosen a slightly different format for the code; the main difference is the 1 et
to introduce variable names for subexpressions. This is useful especially for deeply
nested patterns. The other difference is that I explicitly build up the answer with a
call to 1 i St, rather than make-exp. This is normally considered bad style, but since
this is code generated by a compiler, I wanted it to be as efficient as possible. If the
representation of the exp data type changed, we could simply change the compiler; a
much easier task than hunting down all the references spread throughout a human-
written program. The comments following were not generated by the compiler.

(x * 1 = x)
(1 * χ = x)
(x * 0 = 0)
(0 * χ = 0)
(X * X = χ ^ 2)

(lambda (x)
(le t ((xT (exp- lhs x))

(xr (exp-rhs x)))
(or (i f (eql xr *1) ; (x 1 = X)

x l)
(i f (eql xl *1) ; (1 • X = X)

xr)
(i f (eql xr *0) ; (X • 0 = 0)

Ό)
(i f (eql xl Ό) ; (0 • X = 0)

Ό)
(i f (equal xr x l) : (X * X = X ^ 2)

(l i s t X l ' 2)))))

I chose this format for the code because I imagined (and later show) that it would be
fairly easy to write the compiler for it.

300 EFFICIENCY ISSUES

The Single-Rule Compiler

Here I show the complete single-rule compiler, to be followed by the indexed-rule-set
compiler. The single-rule compiler works like this:

> (compile-rule ' (= (+ χ x) (* 2 x)))
(LAMBDA (X)

(IF (OP? X '+)
(LET ((XL (EXP-LHS X))

(XR (EXP-RHS X)))
(IF (EQUAL XR XL)

(SIMPLIFY-EXP (LIST ' * ' 2 X L))))))

Given a rule, it generates code that first tests the pattern and then builds the right-
hand side of the rule if the pattern matches. As the code is generated, correspon
dences are built between variables in the pattern, like x, and variables in the generated
code, like x l . These are kept in the association Ust *b i ndi ngs*. The matching can be
broken down into four cases: variables that haven't been seen before, variables that
have been seen before, atoms, and lists. For example, the first time we run across
χ in the rule above, no test is generated, since anything can match x. But the entry
(x . x l) is added to the *b i ndi ngs* Hst to mark the equivalence. When the second χ
is encountered, the test (equal xr x l) is generated.

Organizing the compiler is a little tricky, because we have to do three things at
once: return the generated code, keep track of the * b i ndi ngs*, andkeep track of what
to do "next"—that is, when a test succeeds, we need to generate more code, either
to test further, or to build the result. This code needs to know about the bindings,
so it can't be done before the first part of the test, but it also needs to know where it
should be placed in the overall code, so it would be messy to do it after the first part
of the test. The answer is to pass in a function that will tell us what code to generate
later. This way, it gets done at the right time, and ends up in the right place as well.
Such a function is often called a continuation, because it tells us where to continue
computing. In our compiler, the variable consequent is a continuation function.

The compiler is called compi 1 e - rul e. It takes a rule as an argument and returns
a lambda expression that implements the rule.

(defvar *b ind ings* ni l
"A l i s t of bindings used by the rule compi ler . ")

(defun compile-rule (ru le)
"Compile a s ing le ru le . "
(let ((*b ind ings* n i l))

'(lambda (x)
,(compile-exp 'x (exp- lhs rule) ; χ i s the lambda parameter

(delay (bui ld-exp (exp-rhs rule)

9.6 A CASE STUDY IN EFFICIENCY THE SIMPLIFY PROGRAM 301

^b ind ings *))))))

All the work is done by compi 1 e-exp, which takes three arguments: a variable that
will represent the input in the generated code, a pattern that the input should be
matched against, and a continuation for generating the code if the test passes. There
are five cases: (1) If the pattern is a variable in the list of bindings, then we generate
an equality test. (2) If the pattern is a variable that we have not seen before, then
we add it to the binding list, generate no test (because anything matches a variable)
and then generate the consequent code. (3) If the pattern is an atom, then the match
succeeds only if the input is eql to that atom. (4) If the pattern is a conditional like
(? i s η numberp), then we generate the test (numberp η) . Other such patterns could
be included here but have not been, since they have not been used. Finally, (5) if the
pattern is a list, we check that it has the right operator and arguments.

(defun compile-exp (var pattern consequent)
"Compile code that tes ts the express ion, and does consequent
i f i t matches. Assumes bindings in * b i n d i n g s * . "
(cond ((get-b inding pattern *b ind ings*)

Test a previously bound var iable
* (i f (equal ,var ,(lookup pattern *b ind ings*))

, (force consequent)))
((var iab le-p pattern)

; ; Add a new b ind ings; do type checking i f needed,
(push (cons pattern var) *b ind ings*)
(force consequent))

((atom pattern)
Match a l i te ra l atom

* (i f (eql ,var pattern)
, (force consequent)))

((s ta r ts -w i th pattern ' ? i s)
(push (cons (second pattern) var) *b ind ings*)
• (i f (, (th i rd pattern) ,var)

,(force consequent)))
; ; So , fa r , only the ? i s pattern i s covered, because
; ; i t i s the only one used in s imp l i f i ca t ion ru les .
; ; Other patterns could be compiled by adding code here.

Or we could switch to a data-driven approach,
(t Check the operator and arguments

' (i f (op? ,var *,(exp-op pattern))
,(compile-args var pattern consequent)))))

The function compi 1 e - a rgs is used to check the arguments to a pattern. It generates
a 1 et form binding one or two new variables (for a unary or binary expression), and
then calls compi 1 e-exp to generate code that actually makes the tests. It just passes
along the continuation, consequent, to compi 1 e-exp.

302 EFFICIENCY ISSUES

(defun compile-args (var pattern consequent)
"Compile code that checks the arg or a rgs , and does consequent
i f the arg(s) match."

F i r s t make up var iable names for the a r g (s) .
(le t ((L (symbol var ' D)

(R (symbol var ' R)))
(i f (exp-rhs pattern)

; ; two arg case
• (let ((, L (exp- lhs ,var))

(,R (exp-rhs ,va r)))
,(compile-exp L (exp- lhs pattern)

(delay
(compile-exp R (exp-rhs pattern)

consequent))))
one arg case

• (le t ((, L (exp- lhs , va r)))
,(compile-exp L (exp- lhs pattern) consequent)))))

The remaining functions are simpler, bui 1 d-exp generates code to build the right-
hand side of a rule, op? tests if its first argument is an expression with a given
operator, and symbol constructs a new symbol. Also given is new-symbol, although
it is not used in this program.

(defun bui ld-exp (exp bindings)
"Compile code that wi l l bui ld the exp, given the b ind ings . "
(cond ((assoc exp bindings) (rest (assoc exp b ind ings)))

((var iab le-p exp)
(error "Variable ~a occurred on right-hand s ide ,~

but not le f t . " exp))
((atom exp) " , e x p)
(t (le t ((new-exp (mapcar #*(lambda (x)

(bui ld-exp χ b ind ings))
exp)))

• (s impl i fy-exp (l i s t . ,new-exp))))))

(defun op? (exp op)
"Does the exp have the given op as i t s operator?"
(and (exp-p exp) (eq (exp-op exp) op)))

(defun symbol (&rest args)
"Concatenate symbols or s t r i ngs to form an interned symbol"
(intern (format n i l " - { - a ^ } " a rgs)))

(defun new-symbol (&rest args)
"Concatenate symbols or s t r i ngs to form an uninterned symbol"
(make-symbol (format ni l " ' " {^a"}" a rgs)))

9.6 Λ CASE STUDY IN EFFICIENCY THE SIMPLIFY PROGRAM 303

Here are some examples of the compiler:

> (compile-rule ' (= (log (^ e x)) x))
(LAMBDA (X)

(IF (OP? X 'LOG)
(LET ((XL (EXP-LHS X)))

(IF (OP? XL
(LET ((XLL (EXP-LHS XL))

(XLR (EXP-RHS XL)))
(IF (EQL XLL Έ)

XLR))))))

> (compile-rule (simp-rule ' (n * (m * x) = (n * m) * x)))
(LAMBDA (X)

(IF (OP? X ·*)
(LET ((XL (EXP-LHS X))

(XR (EXP-RHS X)))
(IF (NUMBERP XL)

(IF (OP? XR ' *)
(LET ((XRL (EXP-LHS XR))

(XRR (EXP-RHS XR)))
(IF (NUMBERP XRL)

(SIMPLIFY-EXP
(LIST ·*

(SIMPLIFY-EXP (LIST ' * XL XRL))
XRR)))))))))

The Rule-Set Compiler

The next step is to combine the code generated by this single-rule compiler to generate
more compact code for sets of rules. We'll divide up the complete set of rules into
subsets based on the main operator (as we did with the r u l e s - f o r function), and
generate one big function for each operator. We need to preserve the order of the
rules, so only certain optimizations are possible, but if we make the assumption
that no function has side effects (a safe assumption in this application), we can
still do pretty well. We'll use the s imp - fn facility to install the one big function for
each operator.

The function compi 1 e - ru l e - s e t takes an operator, finds all the rules for that oper
ator, and compiles each rule individually. (It uses compi 1 e - i ndexed - r u l e rather than
compi 1 e - rul e, because it assumes we have already done the indexing for the main op
erator.) After each rule has been compiled, they are combined with combi ne- ru l e s ,
which merges similar parts of rules and concatenates the different parts. The result
is wrapped in a 1 ambda expression and compiled as the final simplification function
for the operator.

304 EFFICIENCY ISSUES

(defun compi le-rule-set (op)
"Compile a l l ru les indexed under a given main op.
and make them into the simp-fn for that op . "
(set-s imp-fn op

(compile ni l
'(lambda (x)

.(reduce #'combine-rules
(mapcar #*compile-indexed-rule

(ru les - fo r o p)))))))

(defun compile-indexed-rule (ru le) .
"Compile one rule into lambda-less code,
assuming indexing of main op . "
(let ((*b ind ings* n i l))

(compile-args
'x (exp-lhs rule)

(delay (bui ld-exp (exp-rhs ru le) ^b ind ings*)))))

He re are two examples of wha t compi 1 e - i ndexed - ru l e generates:

> (compile-indexed-rule ' (= (log 1) 0))
(LET ((XL (EXP-LHS X)))

(IF (EQL XL Ί)
Ό))

> (compile-indexed-rule *(= (log (" e x)) x))
(LET ((XL (EXP-LHS X)))

(IF (OP? XL *n
(LET ((XLL (EXP-LHS XL))

(XLR (EXP-RHS XL)))
(IF (EQL XLL Έ)

XLR))))

Thenex ts tep is to combine several of these rules into one. The funct ion comb i ne- ru l es
takes two rules a n d merges them together as m u c h as poss ib le .

(defun combine-rules (a b)
"Combine the code for two rules into one, maintaining order."

In the default case, we generate the code (or a b) ,
but we try to be cleverer and share common code,
on the assumption that there are no s ide-e f fec ts ,

(cond ((and d i s t p a) d i s t p b)
(= (length a) (length b) 3)
(equal (f i r s t a) (f i r s t b))
(equal (second a) (second b)))

; ; a=(f χ y) , b=(f χ ζ) => (f χ (combine-rules y ζ))
This can apply when f= IF or f=LET

9.6 Λ CASE STUDY IN EFFICIENCY THE SIMPLIFY PROGRAM 305

(l i s t (f i r s t a) (second a)
(combine-rules (th i rd a) (th i rd b))))

((matching- i fs a b)
' (i f .(second a)

.(combine-rules (th i rd a) (th i rd b))

.(combine-rules (fourth a) (fourth b))))
((s tar ts -w i th a O r)

a=(or . . . (i f ρ y)) . b=(i f ρ ζ) =>
(or . . . (i f ρ (combine-rules y ζ)))

e lse
a=(or . . .) b => (or . . . b)

(i f (matching-i fs (l a s t l a) b)
(append (but last a)

(l i s t (combine-rules (l a s t l a) b)))
(append a (l i s t b))))

(t a. b => (or a b)
' (o r .a .b))))

(defun matching- i fs (a b)
"Are a and b i f statements with the same predicate?"
(and (s tar ts-wi th a ' i f) (s tar ts -wi th b ' i f)

(equal (second a) (second b))))

(defun l a s t l (l i s t)
"Return the las t element (not l as t cons ce l l) of l i s t "
(f i r s t (l as t l i s t)))

Here is what combi ne- rul es does with the two rules generated above:

> (combine-rules
' (l e t ((xl (exp- lhs x))) (i f (eql xl Ί) Ό))
' (l e t ((xl (exp- lhs x)))

(i f (op? xl ' ^)
(le t ((x l l (exp- lhs x D)

(x l r (exp-rhs x l)))
(i f (eql x l l 'e) x l r)))))

(LET ((XL (EXP-LHS X)))
(OR (IF (EQL XL Ί) Ό)

(IF (OP? XL "^)
(LET ((XLL (EXP-LHS XL))

(XLR (EXP-RHS XL)))
(IF (EQL XLL Έ) XLR)))))

Now we run the compiler by calling compi 1 e -a l l - rul e s - i n d e x e d and show the
combined compiled simplification function for 1 og. The comments were entered by
hand to show what simplification rules are compiled where.

306 EFFICIENCY ISSUES

(defun compi le-a l l - ru les- indexed (ru les)
"Compile a separate fn for each operator, and store i t
as the simp-fn of the operator."
(index-rules ru les)
(le t ((a l l -ops (delete-dupl icates (mapcar #*main-op ru l es))))

(mapc # 'compi le- ru le-set a l l - o p s)))

> (compi le-a l l - ru les- indexed *s imp l i f i ca t i on - ru les *)
(SIN COS LOG ^ * / - + D)

> (simp-fn ' l og)
(LAMBDA (X)

(LET ((XL (EXP-LHS X)))
(OR (IF (EQL XL Ί)

Ό)
(IF (EQL XL Ό)

'UNDEFINED)
(IF (EQL XL ' Ε)

Ί)
(IF (OP? XL ' ^)

(LET ((XLL (EXP-LHS XL))
(XLR (EXP-RHS XL)))

(IF (EQL XLL Έ)
XLR))))))

logl = 0

log 0 - undefined

loge = l

lloge"" = X

If we want to bypass the rule-based simplifier altogether, we can change s i mp 1 i f y - exp
once again to eliminate the check for rules:

(defun simpl i fy-exp (exp)
"Simpl i fy by doing ar i thmetic, or by using the simp function
supplied for th i s operator. Do not use rules of any k ind . "
(cond ((s impl i fy -by- fn exp))

((evaluable exp) (eval exp))
(t exp)))

At last, we are in a position to run the benchmark test on the new compiled code; the
function t e s t - i t runs in about .15 seconds with memoization and .05 without. Why
would memoization, which helped before, now hurt us? Probably because there is a
lot of overhead in accessing the hash table, and that overhead is only worth it when
there is a lot of other computation to do.

We've seen a great improvement since the original code, as the following table
summarizes. Overall, the various efficiency improvements have resulted in a 130-
fold speed-up—we can do now in a minute what used to take two hours. Of course,
one must keep in mind that the statistics are only good for this one particular set of

9.7 HISTORY AND REFERENCES 307

test data on this one machine. It is an open question what performance you will get
on other problems and on other machines.

The following table summarizes the execution time and number of function calls
on the test data:

original memo memo+index memo+comp comp
run time (sees) 6.6 3.0 .98 .15 .05
speed-up — 2 7 44 130
calls
pat-match 51690 20003 5159 0 0
v a r i a b l e - p 37908 14694 4798 0 0
match-var i able 1393 551 551 0 0
s i m p l i f y 906 408 408 545 906
s i m p l i f y - e x p 274 118 118 118 274

9.7 History and References

The idea of memoization was introduced by Donald Michie 1968. He proposed
using a list of values rather than a hash table, so the savings was not as great. In
mathematics, the field of dynamic programming is really just the study of how to
compute values in the proper order so that partial results will already be cached away
when needed.

A large part of academic computer science covers compilation; Aho and Ullman
1972 is just one example. The technique of compiling embedded languages (such as
the language of pattern-matching rules) is one that has achieved much more attention
in the Lisp community than in the rest of computer science. See Emanuelson and
Haraldsson 1980, for an example.

Choosing the right data structure, indexing it properly, and defining algorithms
to operate on it is another important branch of computer science; Sedgewick 1988 is
one example, but there are many worthy texts.

Delaying computation by packaging it up in a 1 ambda expression is an idea that
goes back to Algol's use of thunks—a mechanism to implement call-by-name parame
ters, essentially by passing functions of no arguments. The name thunk comes from
the fact that these functions can be compiled: the system does not have to think
about them at run time, because the compiler has already thunk about them. Peter
Ingerman 1961 describes thunks in detail. Abelson and Sussman 1985 cover delays
nicely. The idea of eliminating unneeded computation is so attractive that entire lan
guages have built around the concept of lazy evaluation—don't evaluate an expression
until its value is needed. See Hughes 1985 or Field and Harrison 1988.

308 EFFICIENCY ISSUES

9.8 Exercises

[¿3 Exercise 9.3 [d] In this chapter we presented a compiler for s i mp1 i fy. It is not too
much harder to extend this compiler to handle the full power of pat-match. Instead
of looking at expressions only, allow trees with variables in any position. Extend and
generalize the definitions of compi 1 e -rul e and compi 1 e - rul e-set so that they can
be used as a general tool for any application program that uses pat-match and/or
rule-based-trans1 ator. Make sure that the compiler is data-driven, so that the
programmer who adds a new kind of pattern to pat-match can also instruct the
compiler how to deal with it. One hard part will be accounting for segment variables.
It is worth spending a considerable amount of effort at compile time to make this
efficient at run time.

@ Exercise 9.4 [m] Define the time to compute (fib n) without memoization as Tn.
Write a formula to express T^. Given that T25 « 1.1 seconds, predict Tioo-

t¿J Exercise 9.5 [m] Consider a version of the game of Nim played as follows: there is
a pile of η tokens. Two players alternate removing tokens from the pile; on each turn
a player must take either one, two, or three tokens. Whoever takes the last token
wins. Write a program that, given n, returns the number of tokens to take to insure
a win, if possible. Analyze the execution times for your program, with and without
memoization.

@ Exercise 9.6 [m] A more complicated Nim-like game is known as Grundy's game.
The game starts with a single pile of η tokens. Each player must choose one pile and
split it into two uneven piles. The first player to be unable to move loses. Write a
program to play Grundy's game, and see how memoization helps.

[¿3 Exercise 9.7 [h] This exercise describes a more challenging one-person game. In
this game the player rolls a six-sided die eight times. The player forms four two-digit
decimal numbers such that the total of the four numbers is as high as possible, but
not higher than 170. A total of 171 or more gets scored as zero.

The game would be deterministic and completely boring if not for the requirement
that after each roll the player must immediately place the digit in either the ones or
tens column of one of the four numbers.

Here is a sample game. The player first rolls a 3 and places it in the ones column
of the first number, then rolls a 4 and places it in the tens column, and so on. On the
last roll the player rolls a 6 and ends up with a total of 180. Since this is over the limit
of 170, the player's final score is 0.

9.8 EXERCISES 309

roll 3 4 6 6 3 5 3 6
1st num. -3 43 43 43 43 43 43 43
2nd num. - - -6 -6 36 36 36 36
3rd num. - - - -6 -6 -6 36 36
4th num. -5 -5 65
total 03 43 49 55 85 90 120 0

Write a function that allows you to play a game or a series of games. The function
should take as argument a function representing a strategy for playing the game.

S Exercise 9.8 [h] Define a good strategy for the dice game described above. (Hint:
my strategy scores an average of 143.7.)

S Exercise 9.9 [m] One problem with playing games involving random numbers is
the possibility that a player can cheat by figuring out what random is going to do next.
Read the definition of the function random and describe how a player could cheat.
Then describe a countermeasure.

S Exercise 9.10 [m] On page 292 we saw the use of the read-time conditionals, and
-, where #+ is the read-time equivalent of when, and # - is the read-time equivalent
of unless. Unfortunately, there is no read-time equivalent of case. Implement one.

@ Exercise 9.11 [h] Write a compiler for ELIZA that compiles all the rules at once into
a single function. How much naore efficient is the compiled version?

0 Exercise 9.12 [d] Write some rules to simplify Lisp code. Some of the algebraic
simplification rules will still be valid, but new ones will be needed to simplify nonal-
gebraic functions and special forms. (Since n i 1 is a valid expression in this domain,
you will have to deal with the semipredicate problem.) Here are some example rules
(using prefix notation):

= (+ χ 0) χ)
= 'n i l n i l)
= (car (cons χ y)) χ)
= (cdr (cons χ y)) y)
= (i f t χ y) χ)
= (i f n i l X y) y)

= (length n i l) 0)
= (expt y (? i f X numberp)) (expt (expt y (/ χ 2)) 2))

310 EFFICIENCY ISSUES

9.9 Answers

Answer 9.4 Let Fn denote (f i b η). Then the time to compute Fn, Tn, is a small
constant for η < 1, and is roughly equal to Tn-\ plus Tn-i for larger n. Thus, Tn is
roughly proportional to Fn'.

T„ = 4
We could use some small value of Ti to calculate Tioo if we knew Fioo- Fortunately,
we can use the equation:

where φ = ^J{5))|1 « 1.618. This equation was derived by de Moivre in 1718
(see Knuth, Donald E. Fundamental Algorithms, pp. 78-83), but the number φ has a
long interesting history. Euclid called it the "extreme and mean ratio," because the
ratio of A to β is the ratio of A -h J5 to A if A/JB is φ. In the Renaissance it was called
the "divine proportion," and in the last century it has been known as the "golden
ratio," because a rectangle with sides in this ratio can be divided into two smaller
rectangles that both have the same ratio between sides. It is said to be a pleasing
proportion when employed in paintings and architecture. Putting history aside,
given T25 « l . l sec we can now calculate:

T i o o « < A ' ° ' ' ^ « 5 x l O ^ W

which is roughly 150 million years. We can also see that the timing data in the table
fits the equation fairly well. However, we would expect some additional time for
larger numbers because it takes longer to add and garbage collect bignums than
fixnums.

S Exercise 9.13 [m] Consider the following two versions of the sieve of Eratosthenes
algorithm. The second explicitly binds a local variable. Is this worth it?

(defun sieve (pipe)
(make-pipe (head pipe)

(f i l t e r #*(lambda (x) (/ = (mod χ (headpipe)) 0))
(s ieve (ta i l p ipe)))))

(defun sieve (pipe)
(le t ((f i rs t -num (head p ipe)))

(make-pipe f i rst -num
(f i l t e r #'(lambda (x) (/= (mod χ f i rst-num) 0))

(s ieve (ta i l p i pe))))))

9.9 ANSWERS 311

Answer 9.5 First we'll define the notion of a forced win. This occurs either when
there are three or fewer tokens left or when you can make a move that gives your
opponent a possible loss. A possible loss is any position that is not a forced win. If
you play perfectly, then a possible loss for your opponent will in fact be a win for you,
since there are no ties. See the functions wi η and 1 oss below. Now your strategy
should be to win the game outright if there are three or fewer tokens, or otherwise
to choose the largest number resulting in a possible loss for your opponent. If there
is no such move available to you, take only one, on the grounds that your opponent
is more likely to make a mistake with a larger pile to contend with. This strategy is
embodied in the function nim below.

(defun win (n)
" I s a p i le of η tokens a win for the player to move?"
(or (<= η 3)

(l oss (- η D)
(l oss (- η 2))
(l oss (- η 3))))

(defun loss (n) (not (win n)))

(defun nim (n)
"Play Nim: a player must take 1-3; taking the las t one w ins . "
(cond ((<= η 3) n) ; an immediate win

(d o s s (- η 3)) 3) ; an eventual win
(d o s s (- η 2)) 2) ; an eventual win
(d o s s (- η 1)) 1) ; an eventual win
(t 1))) ; a l o s s ; the 1 i s arb i t rary

(memoize d o s s)

From this we are able to produce a table of execution times (in seconds), with and
without memoization. Only 1 oss need be memoized. (Why?) Do you have a good
explanation of the times for the unmemoized version? What happens if you change
the order of the loss clauses in wi η and/or η i m?

Answer 9.6 We start by defining a function, moves, which generates all possible
moves from a given position. This is done by considering each pile of η tokens within
a set of piles s. Any pile bigger than two tokens can be split. We take care to eliminate
duplicate positions by sorting each set of piles, and then removing the duplicates.

(defun moves (s)
"Return a l i s t of a l l poss ib le moves in Grundy's game"
; ; S i s a l i s t of integers g iv ing the s i zes of the p i les
(remove-duplicates

(loop for η in s append (make-moves η s))
: test # 'equal))

312 EFFICIENCY ISSUES

(defun make-moves (n s)
(when (>= η 2)

(let ((s / n (remove η s icount 1)))
(loop for i from 1 to (- (ce i l i ng η 2) 1)

co l lect (so r t * (l i s t * i (- n i) s /n)
' »))))

(defun sor t * (seq pred &key key)
"Sort without a l ter ing the sequence"
(sor t (copy-seq seq) pred :key key))

This time a loss is defined as a position from which you have no moves, or one from
which your opponent can force a win no matter what you do. A winning position
is one that is not a loss, and the strategy is to pick a move that is a loss for your
opponent, or if you can't, just to play anything (here we arbitrarily pick the first move
generated).

(defun loss (s)
(le t ((choices (moves s)))

(or (null choices)
(every #'win cho ices))))

(defun win (s) (not (l oss s)))

(defun grundy (s)
(let ((choices (moves s)))

(or (f i nd - i f # ' l o s s choices)
(f i r s t cho ices))))

Answer 9.7 The answer assumes that a strategy function takes four arguments:
the current die roll, the score so far, the number of remaining positions in the tens
column, and the number of remaining positions in the ones column. The strategy
function should return 1 or 1 0 .

(defun play-games (Äoptional (n-games 10) (player 'make-move))
"A dr iver for a simple dice game. In th i s game the player
r o l l s a s i x -s ided die eight t imes. The player forms four
two-digit decimal numbers such that the total of the four
numbers i s as high as poss ib le , but not higher than 170.
A total of 171 or more gets scored as zero. After each die
i s ro l led , the player must decide where to put i t .
This function returns the p laye r ' s average score . "
(/ (loop repeat n-games summing (play-game player 0 4 4))

(f loat n-games)))

9.9 ANSWERS 313

(defun play-game (player &optional (total 0) (tens 4) (ones 4))
(cond ((or (> total 170) « tens 0) (< ones 0)) 0)

((and (= tens 0) (= ones 0)) to ta l)
(t (let ((d ie (r o l l - d i e)))

(case (funcall player die total tens ones)
(1 (play-game player {+ total die)

tens (- ones 1)))
(10 (play-game player (+ total (* 10 d ie))

(- tens 1) ones))

(t 0))))))

(defun ro l l - d ie () (+ 1 (random 6)))

So, the expression (play-games 5 #'make-move) would play five games with a
strategy called make-move. This returns only the average score of the games; if you
want to see each move as it is played, use this function:

(defun show (player)
"Return a player that pr in ts out each move i t makes."
#'(lambda (die total tens ones)

(when (= total 0) (f resh - l i ne))
(let ((move (funcall player die total tens ones)))

(incf total (* die move))
(format t "~2d->~3d I ~@[*~]" (* move die) total (> total 170))
move)))

and call (pi ay-games 5 (show #'make-moves)).

Answer 9.9 The expression (random 6 (make-random-state)) returns the next
number that rol 1 -di e will return. To guard against this, we can make rol 1 -di e use
a random state that is not accessible through a global variable:

(let ((s tate (make-random-state t)))
(defun ro l l - d ie () (+ 1 (random 6 s ta te))))

Answer 9.10 Because this has to do with read-time evaluation, it must be imple
mented as a macro or read macro. Here's one way to do it:

(defmacro read-time-case (f i r s t - case &rest other-cases)
"Do the f i r s t case, where normally cases are
speci f ied with #+ or poss ib ly #- marks."
(declare (ignore other-cases))
f i r s t - case)

314 EFFICIENCY ISSUES

A fanciful example, resurrecting a number of obsolete Lisps, follows:

(defun get- fast- t ime 0
(read-time-case

#+Explorer (t i me:mi crosecond-t i me)
#+Franz (sys i t ime)
#+(or PSL UCI) (time)
#+YKT (currenttime)
#+MTS (status 39)
#+ In te r l i sp (clock 1)
#+L isp l .5 (tempus-fugit)

otherwise
(get - in terna l - rea l - t ime)))

Answer 9.13 Yes. Computing (head pipe) may be a trivial computation, but it
will be done many times. Binding the local variable makes sure that it is only done
once. In general, things that you expect to be done multiple times should be moved
out of delayed functions, while things that may not be done at all should be moved
inside a delay.

CHAPTER 10

Low-Level
Efficiency Issues

There are only two qualities in the world: efficiency
and inefficiency; and only two sorts of people: the

efficient and the inefficient
—George Bernard Shaw

John Bull's Other Island (1904)

r I 1 he efficiency techniques of the previous chapter all involved fairly significant changes
I to an algorithm. But what happens when you already are using the best imaginable

algorithms, and performance is still a problem? One answer is to find what parts of the
program are used most frequently and make micro-optimizations to those parts. This chapter
covers the following six optimization techniques. If your programs all run quickly enough, then
feel free to skip this chapter. But if you would like your programs to run faster, the techniques
described here can lead to speed-ups of 40 times or more.

316 LOW-LEVEL EFFICIENCY ISSUES

10.1 Use Declarations
On general-purpose computers running Lisp, much time is spent on type-checking.
You can gain efficiency at the cost of robustness by declaring, or promising, that
certain variables will always be of a given type. For example, consider the following
function to compute the sum of the squares of a sequence of numbers:

(defun sum-squares (seq)
(let ((sum 0))

(dotimes (i (length seq))
(incf sum (square (e l t seq i))))

sum))

(defun square (x) (* χ x))

If this function will only be used to sum vectors of fixnums, we can make it a lot faster
by adding declarations:

(defun sum-squares (vect)
(declare (type (simple-array fixnum *) vect)

(in l ine square) (optimize speed (safety 0)))
(le t ((sum 0))

(declare (fixnum sum))
(dotimes (i (length vect))

(declare (fixnum i))
(incf sum (the fixnum (square (svref vect i)))))))

sum))

The fixnum declarations let the compiler use integer arithmetic directly, rather than
checking the type of each addend. The (the f i xnum . . .) special form is a promise
that the argument is a fbcnum. The (opt i mi ze speed (s a f e t y 0)) declaration tells
the compiler to make the function run as fast as possible, at the possible expense of

• Use declarations.

• Avoid generic functions.

• Avoid complex argument lists.

• Provide compiler macros.

• Avoid unnecessary consing.

• Use the right data structure.

10.1 USE DECLARATIONS 317

making the code less safe (by ignoring type checks and so on). Other quantities that
can be optimized are compi la t ion-speed, space and in ANSI Common Lisp only,
debug (ease of debugging). Quantities can be given a number from 0 to 3 indicating
how important they are; 3 is most important and is the default if the number is left out.

The (i n l i n e squa re) declaration allows the compiler to generate the multipli
cation specified by square right in the loop, without explicitly making a function
call to square. The compiler will create a local variable for (s v r e f vect i) and will
not execute the reference twice—inline functions do not have any of the problems
associated with macros as discussed on page 853. However, there is one drawback:
when you redefine an inline function, you may need to recompile all the functions
that call it.

You should declare a function in l ine when it is short and the function-calling
overhead will thus be a significant part of the total execution time. You should not
declare a function i nl i ne when the function is recursive, when its definition is likely
to change, or when the function's definition is long and it is called from many places.

In the example at hand, declaring the function i n l i n e saves the overhead of
a function call. In some cases, further optimizations are possible. Consider the
predicate s t a r t s - w i t h :

(defun s tar ts-wi th (l i s t x)
" I s th i s a l i s t whose f i r s t element i s x ? "
(and (consp l i s t) (eql (f i r s t l i s t) x)))

Suppose we have a code fragment like the following:

(i f (consp l i s t) (s tar ts-wi th l i s t x) . . .)

If s ta r t s - w i th is declared i nl i ne this will expand to:

(i f (consp l i s t) (and (consp l i s t) (eql (f i r s t l i s t) x)) . . .)

which many compilers will simplify to:

(i f (consp l i s t) (eql (f i r s t l i s t) x) . . .)

Very few compilers do this kind of simplification across functions without the hint
provided by i n l i n e .

Besides eliminating run-time type checks, declarations also allow the compiler
to choose the most efficient representation of data objects. Many compilers support
both boxed and unboxed representations of data objects. A boxed representation
includes enough information to determine the type of the object. An unboxed
representation is just the "raw bits" that the computer can deal with directly. Consider

318 LOW-LEVEL EFFICIENCY ISSUES

the following function, which is used to clear a 1024x1024 array of floating point
numbers, setting each one to zero:

(defun clear-m-array (array)
(declare (optimize (speed 3) (safety 0)))
(declare (type (simple-array s i ng le - f l oa t (1024 1024)) ar ray))
(dotimes (i 1024)

(dotimes (j 1024)
(set f (aref array i j) 0 . 0))))

In Allegro Common Lisp on a Sun SPARCstation, this compiles into quite good code,
comparable to that produced by the C compiler for an equivalent C program. If the
declarations are omitted, however, the performance is about 40 times worse.

The problem is that without the declarations, it is not safe to store the raw floating
point representation of 0 .0 in each location of the array. Instead, the program
has to box the 0 .0 , allocating storage for a typed pointer to the raw bits. This
is done inside the nested loops, so the result is that each call to the version of
clear-m-array without declarations calls the floating-point-boxing function 1048567
times, allocating a megaword of storage. Needless to say, this is to be avoided.

Not all compilers heed all declarations; you should check before wasting time
with declarations your compiler may ignore. The function di sassembl e can be used
to show what a function compiles into. For example, consider the trivial function to
add two numbers together. Here it is with and without declarations:

(defun f (x y)
(declare (fixnum χ y) (optimize (safety 0) (speed 3)))
(the fixnum (+ χ y)))

(defun g (x y) (+ χ y))

Here is the disassembled code for f from Allegro Common Lisp for a Motorola
68000-series processor:

> (disassemble *f)
disassembling #<Function f ® #x83ef79>
formáis: χ y

; ; code vector (̂ #x83ef44
0: l ink a6.#0
4: move.l a2 . - (a7)
6: move.l a5 , - (a7)
8: move.l 7(a2) ,a5
12: move.l 8(a6),d4
16: add.l 12(a6),d4
20: move.l # l , d l

y
; X

10.1 USE DECLARATIONS 319

22
26
28

move.l
unlk
rtd

-8(a6) ,a5
a6
#8

This may look intimidating at first glance, but you don't have to be an expert at 68000
assembler to gain some appreciation of what is going on here. The instructions
labeled 0-8 (labels are in the leftmost column) comprise the typical function preamble
for the 68000. They do subroutine linkage and store the new function object and
constant vector into registers. Since f uses no constants, instructions 6, 8, and 22
are really unnecessary and could be omitted. Instructions 0,4, and 26 could also be
omitted if you don't care about seeing this function in a stack trace during debugging.
More recent versions of the compiler will omit these instructions.

The heart of function f is the two-instruction sequence 12-16. Instruction 12
retrieves y, and 16 adds y to x, leaving the result in d4, which is the "result" register.
Instruction 20 sets dl, the "number of values returned" register, to 1.

Contrast this to the code for g, which has no declarations and is compiled at
default speed and safety settings:

(disassemble ' g)
; disassembling #<Function
; formáis: χ y

g @ #x83dbdl>

; ; code vector @ #x83db64
0: add.l #8.31(a2)
4 : sub.w #2,dl
6: beq.s 12
8: jmp 16(a4) ; wnaerr
12 l ink a6.#0
16 move.l a2 , - (a7)
18 move.l a5 , - (a7)
20 move.l 7(a2) ,a5
24 t s t . b -208(a4) ; s i g n a l - h i t
28 beq.s 34
30 j s r 872(a4) ; p rocess-s ig
34 move.l 8(a6),d4 ; y
38 move.l 12(a6),d0 ; X

42 or . l d4,d0
44 and.b #7.d0
48 bne.s 62
50 add.l 12(a6),d4 ; X

54 bvc.s 76
56 j s r 696(a4) ; add-overflow
60 bra .s 76
62 move.l 12(a6) , - (a7) ; χ
66 move.l d4 . - (a7)
68 move.l #2.d l

320 LOW-LEVEL EFFICIENCY ISSUES

70
74
76
78
82
84

move.l
j s r
move.l
move.l
unl k
rtd

-304(a4),a0
(a4)
L d l
-8(a6) .a5
a6
#8

; +-2op

See how much more work is done. The first four instructions ensure that the right
number of arguments have been passed to g. If not, there is a jump to wnae rr (wrong-
number-of-arguments-error). Instructions 12-20 have the argument loading code
that was at 0-8 in f. At 24-30 there is a check for asynchronous signals, such as the
user hitting the abort key. After χ and y are loaded, there is a type check (42-48). If
the arguments are not both fixnums, then the code at instructions 62-74 sets up a
call to +_2op, which handles type coercion and non-fixnum addition. If all goes well,
we don't have to call this routine, and do the addition at instruction 50 instead. But
even then we are not done—just because the two arguments were fixnums does not
mean the result will be. Instructions 54-56 check and branch to an overflow routine
if needed. Finally, instructions 76-84 return the final value, just as in f.

Some low-quality compilers ignore declarations altogether. Other compilers
don't need certain declarations, because they can rely on special instructions in the
underlying architecture. On a Lisp Machine, both f and g compile into the same
code:

6 PUSH
7 +
8 RETURN

ARG 10
ARG I I
PDL-POP

The Lisp Machine has a microcoded + instruction that simultaneously does a fixnum
add and checks for non-fixnum arguments, branching to a subroutine if either argu
ment is not a fixnum. The hardware does the work that the compiler has to do on a
conventional processor. This makes the Lisp Machine compiler simpler, so compil
ing a function is faster. However, on modern pipelined computers with instruction
caches, there is little or no advantage to microcoding. The current trend is away from
microcode toward reduced instruction set computers (RISC).

On most computers, the following declarations are most likely to be helpful:

• fixnum and f loa t . Numbers declared as fixnums or floating-point numbers
can be handled directly by the host computer's arithmetic instructions. On
some systems, f loa t by itself is not enough; you have to say s ing le - f loa t
or doubl e-f l oat. Other numeric declarations will probably be ignored. For
example, declaring a variable as integer does not help the compiler much,
because bignums are integers. The code to add bignums is too complex to put

10.1 USE DECLARATIONS 321

inline, so the compiler will branch to a general-purpose routine (like +_2op in
Allegro), the same routine it would use if no declarations were given.

• l i s t and a r ray, Many Lisp systems provide separate functions for the list- and
array- versions of commonly used sequence functions. For example, (del e te
X (the l i s t 1)) compiles into (sys : del e t e - l i s t - e q l χ 1) on a TI Explorer
Lisp Machine. Another function, sys: del e te-vector , is used for arrays, and
the generic function del ete is used only when the compiler can't tell what type
the sequence is. So if you know that the argument to a generic function is either
a 1 i s t or an a rray, then declare it as such.

• simpl e-vector and simpl e-array. Simple vectors and arrays are those that
do not share structure with other arrays, do not have fill pointers, and are
not adjustable. In many implementations it is faster to aref a simpl e-vector
than a vector. It is certainly much faster than taking an el t of a sequence of
unknown type. Declare your arrays to be simple (if they in fact are).

• (a r ray type). It is often important to specialize the type of array elements. For
example, an (a r ray short - fl oat) may take only half the storage of a general
array, and such a declaration will usually allow computations to be done using
the CPU's native floating-point instructions, rather than converting into and
out of Common Lisp's representation of floating points. This is very important
because the conversion normally requires allocating storage, but the direct
computation does not. The specifiers (simpl e-array iype) and (vector type)
should be used instead of (array type) when appropriate. A very common
mistake is to declare (s i mpl e - vector type). This is an error because Common
Lisp expects (simple-vector s/ze)—don't ask me why,

• (array '^dimensions). Thefullformof an array or si mpl e-array type specifier
is (array type dimensions). So, for example, (array b i t (* *)) is a two-
dimensional bit array, and (a r ray b i t (1024 1024)) is a 1024 χ 1024 bit array.
It is very important to specify the number of dimensions when known, and less
important to specify the exact size, although with multidimensional arrays,
declaring the size is more important. The format for a vector type specifier is
(vector type size).

Note that several of these declarations can apply all at once. For example, in

(position # \ . (the simple-string file-name))

the variable filename has been declared to be a vector, a simple array, and a se
quence of type str ing-char. All three of these declarations are helpful. The type
simple-string is an abbreviation for (simple-array s t r ing-char) .

322 LOW-LEVEL EFFICIENCY ISSUES

This guide applies to most Common Lisp systems, but you should look in the
implementation notes for your particular system for more advice on how to fine-tune
your code.

10.2 Avoid Generic Functions

Common Lisp provides functions with great generality, but someone must pay the
price for this generality. For example, if you write (e l t χ 0) , different machine
instruction will be executed depending on if χ is a list, string, or vector. Without
declarations, checks will have to be done at runtime. You can either provide decla
rations, as in (e l t (the l i s t x) O),oruseamorespecificfunction,suchas (f i r s t
x) in the case of lists, (char χ 0) for strings, (a re f xO) for vectors, and (svref χ
0) for simple vectors. Of course, generic functions are useful—I wrote random-el t
as shown following to work on lists, when I could have written the more efficient
random-mem instead. The choice paid off when I wanted a function to choose a ran
dom character from a string—random-el t does the job unchanged, while random-mem
does not.

(defun random-elt (s) (e l t s (random (length s))))
(defun random-mem (1) (nth (random (length (the l i s t 1))) 1))

This example was simple, but in more complicated cases you can make your sequence
functions more efficient by having them explicitly check if their arguments are lists
or vectors. See the definition of map- i nto on page 857.

10.3 Avoid Complex Argument Lists

Functions with keyword arguments suffer a large degree of overhead. This may also
be true for optional and rest arguments, although usually to a lesser degree. Let's
look at some simple examples:

(defun reg (a b e d) (l i s t a b e d))
(defun rs t (a b c &rest d) (l i s t * a b e d))
(defun opt (Äoptional a b (c 1) (d (sqr t a))) (l i s t a b e d))
(defun key (&key a b (c 1) (d (sqr t a))) (l i s t a b e d))

We can see what these compile into for the TI Explorer, but remember that your
compiler may be quite different.

103 AVOID COMPLEX ARGUMENT LISTS 323

> (disassemble ' reg)
8 PUSH ARG 10
9 PUSH ARG I I

10 PUSH ARG 12
11 PUSH ARG 13
12 TAIL-REC CALL-4 FEFI3

> (disassemble ' r s t)
8 PUSH ARG 10
9 PUSH ARGIl .

10 PUSH ARG 12
11 PUSH LOCAL 10
12 RETURN CALL-4 FEE 13

A
β
C
D
' L I S T

A
Β
C
D
' L I S T *

With the regular argument list, we just push the four variables on the argument stack
and branch to the list function. (Chapter 22 explains why a tail-recursive call is just
a branch statement.)

With a rest argument, things are almost as easy. It turns out that on this machine,
the microcode for the calling sequence automatically handles rest arguments, storing
them in local variable 0. Let's compare with optional arguments:

(defun opt («.optional a b (c 1) (d (sqr t a))) (l i s t a b e d))

> (disassemble Op t)
24 DISPATCH FEFI5 C0=^25;l=^25
25 PUSH-NUMBER 1
26 POP ARG 12 C
27 PUSH ARG 10 A
28 PUSH CALL-1 FEFI3 #'SQRT
29 POP ARG 13 D
30 PUSH ARG 10 A
31 PUSH ARGIl Β
32 PUSH ARG 12 C
33 PUSH ARG 13 D
34 TAIL-REC CALL-4 FEFI4 # ' L I S T

Although this assembly language may be harder to read, it turns out that optional
arguments are handled very efficiently. The calling sequence stores the number of
optional arguments on top of the stack, and the DISPATCH instruction uses this to
index into a table stored at location FEFI 5 (an offset five words from the start of
the function). The result is that in one instruction the function branches to just the
right place to initialize any unspecified arguments. Thus, a function with optional
arguments that are all supplied takes only one more instruction (the dispatch) than
the "regular" case. Unfortunately, keyword arguments don't fare as well:

(defun key (&key a b (c 1) (d (sqr t a))) (l i s t a b e d))

324 LOW-LEVEL EFFICIENCY ISSUES

> (disassemble 'key)
14 PUSH-NUMBER 1
15 POP LOCALIS
16 PUSH FEE 13
17 POP LOCAL 14
18 TEST LOCAL 10
19 BR-NULL 24
20 PUSH FEE 14
21 SET-NIL PDL-PUSH
22 PUSH-LOC LOCAL I I

SYS:-.KEYWORD-GARBAGE

' (: A :B :C :D)

23 (AUX) %STORE-KEY-WORD-ARGS
24 PUSH LOCAL I I
25 PUSH LOCAL 12
26 PUSH LOCAL 13
27 PUSH LOCAL 14
28 EQ FEE 13
29 BR-NULL 33
30 PUSH LOCAL I I
31 PUSH CALL-1 FEFI5
32 RETURN CALL-4 FEE 16
33 PUSH LOCAL 14
34 RETURN CALL-4 FEE 16

A
Β
C

SYS::KEYWORD-GARBAGE

A

#'SQRT
' L I S T

' L I S T

It is not important to be able to read all this assembly language. The point is that there
is considerable overhead, even though this architecture has a specific instruction
(%STORE-KEY-WORD-ARGS) to help deal with keyword arguments.

Now let's look at the results on another system, the Allegro compiler for the
68000. First, here's the assembly code for reg, to give you an idea of the minimal
calling sequence:^

(disassemble ' reg)
disassembling #<Function reg ® #x83db59>
formáis: a b e d
code vector @ #x83dblc

0
4
6
8
12
16
20
24
28
30

l i nk
move.l
move.l
move.l
move.l
move.l
move.l
move.l
move.l
j s r

a6,#0
a2 . - (a7)
a5 . - (a7)
7(a2) ,a5
20(a6) , - (a7)
16(a6) . - (a7)
12(a6) , - (a7)
8 (a6) . - (a7)
#4.dl
848(a4)

a
b
c
d

l i s t

^ These are all done with safety 0 and speed 3.

103 AVOID COMPLEX ARGUMENT LISTS 325

34
38
40

move.l -8(a6) .a5
unlk a6
rtd #10

Now we see that &rest arguments take a lot more code in this system:

> (disassemble ' r s t)
;; disassembling #<Function rs t @ #x83de89>
;; formáis: a D c &rest d
11 code vector ® #x83de34
0: sub.w #3,dl
2 : bge.s 8
4 : jmp 16(a4) ; wnaerr
8: move.l (a7)+.a l
10 move.l d3 . - (a7) ; n i l
12 sub.w # l , d l
14 b l t . s 38
16 move.l a l , -52 (a4) ; c-protected-retaddr
20 j s r 40(a4) ; cons
24 move.l d4 , - (a7)
26 dbra d l ,20
30 move.l -52(a4) .a l ; C-protected-retaddr
34 c l r . l -52(a4) ; C-protected-retaddr
38 move.l a l . - (a 7)
40 l ink a6.#0
44 move.l a2 . - (a7)
46 move.l a5 , - (a7)
48 move.l 7(a2) .a5
52 move.l -332(a4),a0 ; l i s t *
56 move.l -8(a6) ,a5
60 unlk a6
62 move.l #4,d l
64 jmp (a4)

The loop from 20-26 builds up the &rest list one cons at a time. Part of the difficulty
is that cons could initiate a garbage collection at any time, so the list has to be built
in a place that the garbage collector will know about. The function with optional
arguments is even worse, taking 34 instructions (104 bytes), and keywords are worst
of all, weighing in at 71 instructions (178 bytes), and including a loop. The overhead
for optional arguments is proportional to the number of optional arguments, while
for keywords it is proportional to the product of the number of parameters allowed
and the number of arguments actually supplied.

A good guideline to follow is to use keyword arguments primarily as an interface
to infrequently used functions, and to provide versions of these functions without
keywords that can be used in places where efficiency is important. Consider:

326 LOW-LEVEL EFFICIENCY ISSUES

(proclaim ' (i n l i n e key))
(defun key (&key a b (c 1) (d (sqr t a))) (*no-key a b e d))
(defun *no-key (a b e d) (l i s t a b e d))

Here the function key is used as an interface to the function no - key, which does the
real work. The inline proclamation should allow the compiler to compile a call to key
as a call to no - key with the appropriate arguments:

> (disassemble #'(lambda (x y) (key :b χ :a y)))

10 PUSH
11 PUSH
12 PUSH-NUMBER
13 PUSH
14 PUSH CALL-1

ARG I I
ARG 10
1
ARG I I
FEFI3

15 TAIL-REC CALL-4 FEFI4

Y
X

Y
#'SQRT
#*NO-KEY

The overhead only comes into play when the keywords are not known at compile
time. In the following example, the compiler is forced to call key, not no - key, because
it doesn't know what the keyword k will be at run time:

> (disassemble #*(lambda (k χ y) (key k χ :a y)))
10 PUSH ARGIO Κ
11 PUSH ARG 11 Χ
12 PUSH FEFI3 ' : Α
13 PUSH ARG 12 Υ
14 TAIL-REC CALL- 4 FEFI4 # Τ Ε Υ

Of course, in this simple example I could have replaced no-key with 1 i s t , but in
general there will be some more complex processing. If I had proclaimed no-key
inline as well, then I would get the following:

> (disassemble #'(lambda (x y) (key :b χ :a y)))
10 PUSH ARG 11 ; Y
11 PUSH ARG 10 ; Χ
12 PUSH-NUMBER 1
13 PUSH ARG I I ; Y
14 PUSH CALL-1 FEFI3 ; #'SQRT
15 TAIL-REC CALL-4 FEFI4 ; # ' L I S T

If you like, you can define a macro to automatically define the interface to the keyword-
less function:

103 AVOID COMPLEX ARGUMENT LISTS 327

(defmacro defun* (fn-name a r g - l i s t &rest body)
"Define two funct ions, one an interface to a &keyword-less
vers ion . Proclaim the interface function i n l i n e . "
(i f (and (member '&key a r g - l i s t)

(not (member *&rest a r g - l i s t)))
(let ((no-key-fn-name (symbol fn-name ' *no-key))

(args (mapcar # ' f i r s t - o r - s e l f
(set-di f ference

a r g - l i s t
1ambda-l ist-keywords))))

' (progn
(proclaim ' (i n l i n e ,fn-name))
(defun ,no-key-fn-name ,args

..body)
(defun ,fn-name , a r g - l i s t

(,no-key-fn-name . . a r g s))))
'(defun ,fn-name , a r g - l i s t

. .body)))

> (macroexpand ' (defun* key (&key a b (c 1) (d (sqr t a)))
(l i s t a b c d)))

(PROGN (PROCLAIM ' (INL INE KEY))
(DEFUN KEY*NO-KEY (A Β C D) (LIST A Β C D))
(DEFUN KEY (&KEY A Β (C 1) (D (SQRT A)))

(KEY*NO-KEY A Β C D)))

> (macroexpand ' (defun* reg (a b e d) (l i s t a b e d)))
(DEFUN REG (A Β C D) (LIST A Β C D))

There is one disadvantage to this approach: a user who wants to declare key inHne
or not inline does not get the expected result. The user has to know that key is
implemented with key*no- key, and declare key*no- key inline.

An alternative is just to proclaim the function that uses &key to be inline. Rob
MacLachlan provides an example. In CMU Lisp, the function member has the follow
ing definition, which is proclaimed inline:

(defun member (item l i s t &key (key # ' iden t i t y)
(test #'eql tes tp) (tes t -no t ni l notp))

(do ((l i s t l i s t (cdr l i s t)))
((nul l l i s t) n i l)

(let ((car (car l i s t)))
(i f (cond

(testp
(funcall test item

(funcall key car)))
(notp

(not

328 LOW-LEVEL EFFICIENCY ISSUES

(funcall test-not item
(funcal l key ca r))))

(t
(funcal l test item

(funcal l key ca r))))
(return l i s t)))))

A call like (member ch 1 :key # ' f i r s t - l e t t e r r tes t #'cha r=) expands into the
equivalent of the following code. Unfortunately, not all compilers are this clever with
inline declarations.

(do ((l i s t l i s t (cdr l i s t)))
((nul l l i s t) n i l)

(let ((car (car l i s t)))
(i f (char= ch (f i r s t - l e t t e r car))

(return l i s t))))

This chapter is concerned with efficiency and so has taken a stand against the use
of keyword parameters in frequently used functions. But when maintainability
is considered, keyword parameters look much better. When a program is being
developed, and it is not clear if a function will eventually need additional arguments,
keyword parameters may be the best choice.

10.4 Avoid Unnecessary Consing

The cons function may appear to execute quite quickly, but like all functions that
allocate new storage, it has a hidden cost. When large amounts of storage are
used, eventually the system must spend time garbage collecting. We have not
mentioned it earlier, but there are actually two relevant measures of the amount of
space consumed by a program: the amount of storage allocated, and the amount of
storage retained. The difference is storage that is used temporarily but eventually
freed. Lisp guarantees that unused space will eventually be reclaimed by the garbage
collector. This happens automatically—the programmer need not and indeed can not
explicitly free storage. The problem is that the efficiency of garbage collection can
vary widely. Garbage collection is particularly worrisome for real-time systems,
because it can happen at any time.

The antidote to garbage woes is to avoid unnecessary copying of objects in often-
used code. Try using destructive operations, like nreverse, delete, and nconc,
rather than their nondestructive counterparts, (like reverse, remove, and append)
whenever it is safe to do so. Or use vectors instead of lists, and reuse values rather
than creating copies. As usual, this gain in efficiency may lead to errors that can

10.4 AVOID UNNECESSARY CONSINC 329

be difficult to debug. However, the most common kind of unnecessary copying
can be eliminated by simple reorganization of your code. Consider the following
version of f 1 a t ten , which returns a list of all the atoms in its input, preserving order.
Unlike the version in chapter 5, this version returns a single list of atoms, with no
embedded lists.

(defun f la t ten (input)
"Return a f l a t l i s t of the atoms in the input.
Ex: (f la t ten ' ((a) (b (c) d))) => (a b c d) . "
(cond ((nul l input) n i l)

((atom input) (l i s t input))
(t (append (f la t ten (f i r s t input))

(f la t ten (rest i npu t))))))

This definition is quite simple, and it is easy to see that it is correct. However, each
call to append requires copying the first argument, so this version can cons O (n^) cells
on an input with η atoms. The problem with this approach is that it computes the
list of atoms in the f 1 r s t and r e s t of each subcomponent of the input. But the f i r s t
sublist by itself is not part of the final answer—that's why we have to call append. We
could avoid generating garbage by replacing append with nconc, but even then we
would still be wasting time, because nconc would have to scan through each sublist
to find its end.

The version below makes use of an accumulator to keep track of the atoms that
have been collected in the r e s t , and to add the atoms in the f 1 r s t one at a time with
cons, rather than building up unnecessary sublists and appending them. This way
no garbage is generated, and no subcomponent is traversed more than once.

(defun f la t ten (input &optional accumulator)
"Return a f la t l i s t of the atoms in the input.
Ex: (f la t ten ' ((a) (b (c) d))) => (a b c d) . "
(cond ((nul l input) accumulator)

((atom input) (cons input accumulator))
(t (f la t ten (f i r s t input)

(f la t ten (rest input) accumulator)))))

The version with the accumulator may be a little harder to understand, but it is far
more efficient than the original version. Experienced Lisp programmers become
quite skilled at replacing calls to append with accumulators.

Some of the early Lisp machines had unreliable garbage-collection, so users
just turned garbage collection off, used the machine for a few days, and rebooted
when they ran out of space. With a large virtual memory system this is a feasible
approach, because virtual memory is a cheap resource. The problem is that real
memory is still an expensive resource. When each page contains mostly garbage

330 LOW-LEVEL EFFICIENCY ISSUES

and only a little live data, the system will spend a lot of time paging data in and out.
Compacting garbage-collection algorithms can relocate live data, packing it into a
minimum number of pages.

Some garbage-collection algorithms have been optimized to deal particularly well
with just this case. If your system has an ephemeral or generational garbage collector,
you need not be so concerned with short-lived objects. Instead, it will be the medium-
aged objects that cause problems. The other problem with such systems arises when
an object in an old generation is changed to point to an object in a newer generation.
This is to be avoided, and it may be that reverse is actually faster than nreverse in
such cases. To decide what works best on your particular system, design some test
cases and time them.

As an example of efficient use of storage, here is a version of pat-match that
eliminates (almost) all consing. The original version of pat-match, as used in ELIZA
(page 180), used an association list of variable/value pairs to represent the binding
list. This version uses two sequences: a sequence of variables and a sequence of
values. The sequences are implemented as vectors instead of lists. In general, vectors
take half as much space as lists to store the same information, since half of every list
is just pointing to the next element.

In this case, the savings are much more substantial than just half. Instead of
building up small binding lists for each partial match and adding to them when the
match is extended, we will allocate a sufficiently large vector of variables and values
just once, and use them over and over for each partial match, and even for each
invocation of pat-match. To do this, we need to know how many variables we are
currently using. We could initialize a counter variable to zero and increment it each
time we found a new variable in the pattern. The only difficulty would be when the
counter variable exceeds the size of the vector. We could just give up and print an
error message, but there are more user-friendly alternatives. For example, we could
allocate a larger vector for the variables, copy over the existing ones, and then add in
the new one.

It turns out that Common Lisp has a built-in facility to do just this. When a
vector is created, it can be given a fill pointer. This is a counter variable, but one that
is conceptually stored inside the vector. Vectors with fill pointers act like a cross
between a vector and a stack. You can push new elements onto the stack with the
functions vector-push or vector-push-extend. The latter will automatically allocate
a larger vector and copy over elements if necessary. You can remove elements with
vector - pop, or you can explicitly look at the fill pointer with f Π 1 - poi η te r, or change
it with a se t f . Here are some examples (with *p r in t -array* set to t so we can see
the results):

> (setf a (make-array 5 :fiH-pointer 0)) ^ #()

> (vector-push 1 a) 0

10.4 AVOID UNNECESSARY CONSING 331^

> (vector-push 2 a) =ϊ> 1

> a =^ #(1 2)

> (vector-pop a) =^ 2

> a #(1)

> (dotimes (i 10) (vector-push-extend 'x a)) NIL

> a = : ^ # (l X X X X X X X X X X)

> (f i l l - po in te r a) => 11

> (set f (f i l l - po in te r a) 1) 1

> a =^ #(1)

> (f ind *x a) =^ NIL NIL ; FIND can't find past the fill pointer

> (aref a 2) =^ X ; But AREF can see beyond the fill pointer

Using vectors with fill pointers in pat-match, the total storage for binding lists is
just twice the number of variables in the largest pattern. I have arbitrarily picked
10 as the maximum number of variables, but even this is not a hard limit, because
vector-push-extend can increase it. In any case, the total storage is small, fixed
in size, and amortized over all calls to pat-match. These are just the features that
indicate a responsible use of storage.

However, there is a grave danger with this approach: the value returned must
be managed carefully. The new pat-match returns the value of success when it
matches, success is bound to a cons of the variable and value vectors. These can be
freely manipulated by the calling routine, but only up until the next call to pa t - ma tch.
At that time, the contents of the two vectors can change. Therefore, if any calling
function needs to hang on to the returned value after another call to pat-match, it
should make a copy of the returned value. So it is not quite right to say that this
version of pat-match eliminates all consing. It will cons when vector-push-extend
runs out of space, or when the user needs to make a copy of a returned value.

Here is the new definition of pat-match. It is implemented by closing the defi
nition of pat-match and its two auxilliary functions inside a 1 et that establishes the
bindings of vars, val s , and s u c c e s s , but that is not crucial. Those three variables
could have been implemented as global variables instead. Note that it does not sup
port segment variables, or any of the other options implemented in the pat-match
of chapter 6.

(le t * ((vars (make-array 10 : f i l l - po in te r 0 ladjustable t))
(va ls (make-array 10 : f i l l - po in te r 0 :adjustable t))
(success (cons vars v a l s)))

332 LOW-LEVEL EFFICIENCY ISSUES

(defun eff icient-pat-match (pattern input)
"Match pattern against input ."
(set f (f i l l - po in te r vars) 0)
(set f (f i l l - po in te r va ls) 0)
(pat-match-1 pattern input))

(defun pat-match-1 (pattern input)
(cond ((var iab le-p pattern) (match-var pattern input))

((eql pattern input) success)
((and (consp pattern) (consp input))
(and (pat-match-1 (f i r s t pattern) (f i r s t input))

(pat-match-1 (rest pattern) (rest input))))
(t f a i l)))

(defun match-var (var input)
"Match a s ing le var iable against input . "
(let ((i (pos i t ion var va rs)))

(cond ((nul l i)
(vector-push-extend var vars)
(vector-push-extend input va ls)
success)

((equal input (aref va ls i)) success)
(t f a i l)))))

An example of its use:

> (eff icient-pat-match ' (Tx + ?x = ?y . ?z)
' (2 + 2 = (3 + 1) i s t rue))

(#(?X ?Y 11) . #(2 (3 + 1) (I S TRUE)))

Extensible vectors with fill pointers are convenient, and much more efficient than
consing up lists. However, there is some overhead involved in using them, and for
those sections of code that must be most efficient, it is best to stick with simple
vectors. The following version of e f f i cient-pat-match explicitly manages the size
of the vectors and explicitly replaces them with new ones when the size is exceeded:

(le t * ((cur rent -s ize 0)
(max-size 1)
(vars (make-array max-size))
(va ls (make-array max-size))
(success (cons vars v a l s)))

(declare (simple-vector vars va ls)
(fixnum current -s ize max-size))

WA AVOID UNNECESSARY CONSING 333

(defun eff icient-pat-match (pattern input)
"Match pattern against input . "
(set f current -s ize 0)
(pat-match-1 pattern input))

pat-match-1 i s unchanged

(defun match-var (var input)
"Match a s ing le var iable against input . "
(let ((i (pos i t ion var va rs)))

(cond
((nul l i)

(when (= current -s ize max-size)
Make new vectors when we run out of space

(set f max-size (* 2 max-size)
vars (replace (make-array max-size) vars)
va ls (replace (make-array max-size) va ls)
success (cons vars v a l s)))

; ; Store var and i t s value in vectors
(set f (aref vars cur rent -s ize) var)
(set f (aref va ls cur rent -s ize) input)
(incf cur rent -s ize)
success)

((equal input (aref va ls i)) success)
(t f a i l)))))

In conclusion, replacing lists with vectors can often save garbage. But when you
must use lists, it pays to use a version of cons that avoids consing when possible. The
following is such a version:

(proclaim ' (i n l i n e reuse-cons))

(defun reuse-cons (x y x-y)
"Return (cons χ y) , or jus t x-y i f i t i s equal to (cons χ y) . "
(i f (and (eql χ (car x - y)) (eql y (cdr x - y)))

x-y
(cons X y)))

The trick is based on the definition of s u b s t in Steele's Common Lisp the Language.
Here is a definition for a version of remove that uses r e u s e - cons :

334 LOW-LEVEL EFFICIENCY ISSUES

(defun remq (item l i s t)
"Like REMOVE, but uses EQ, and only works on l i s t s . "
(cond ((nul l l i s t) n i l)

((eq item (f i r s t l i s t)) (remq item (rest l i s t)))
(t (reuse-cons (f i r s t l i s t)

(remq item (rest l i s t))
l i s t))))

Avoid Consing: Unique Lists

Of course, reuse - cons only works when you have candidate cons cells around. That
is, (reuse-cons a b c) only saves space when c is (or might be) equal to (cons a b) .
For some applications, it is useful to have a version of cons that returns a unique cons
cell without needing c as a hint. We will call this version ucons for "unique cons."
ucons maintains a double hash table: *uni q - cons - tabl e* is a hash table whose keys
are the cars of cons cells. The value for each car is another hash table whose keys
are the cdrs of cons cells. The value of each cdr in this second table is the original
cons cell. So two different cons cells with the same ca r and cdr will retrieve the same
value. Here is an implementation of ucons:

(defvar *un iq-cons- tab le* (make-hash-table : test # 'eq))

(defun ucons (x y)
"Return a cons s . t . (eq (ucons χ y) (ucons χ y)) i s t rue. "
(le t ((car- table (or (gethash χ *un iq-cons- tab le*)

(set f (gethash χ *un iq-cons- tab le*)
(make-hash-table : test # ' eq)))))

(or (gethash y car- table)
(set f (gethash y car- table) (cons χ y)))))

ucons, unlike cons, is a true function: it will always return the same value, given
the same arguments, where "same" is measured by eq. However, if ucons is given
arguments that are equal but not eq, it will not return a unique result. For that
we need the function unique. It has the property that (unique x) is eq to (unique
y) whenever χ and y are equal. unique uses a hash table for atoms in addition to
the double hash table for conses. This is necessary because strings and arrays can
be equal without being eq. Besides unique, we also define ul i s t and uappend for
convenience.

(defvar *uniq-atom-table* (make-hash-table .-test # 'equal))

10.4 AVOID UNNECESSARY CONSING 335

(defun unique (exp)
"Return a canonical representation that i s EQUAL to exp.
such that (equal χ y) implies (eq (unique x) (unique y)) . "
(typecase exp

(symbol exp)
(fixnum exp) Remove i f fixnums are not eq in your L isp
(atom (or (gethash exp *uniq-atom-table*)

(set f (gethash exp *uniq-atom-table*) exp)))
(cons (unique-cons (car exp) (cdr exp)))))

(defun unique-cons (x y)
"Return a cons s . t . (eq (ucons χ y) (ucons x2 y2)) i s true
whenever (equal χ x2) and (equal y y2) are t rue. "
(ucons (unique x) (unique y)))

(defun u l i s t (&rest args)
"A uniqui f ied l i s t . "
(unique args))

(defun uappend (x y)
"A unique l i s t equal to (append χ y) . "
(i f (null X)

(unique y)
(ucons (f i r s t x) (uappend (rest x) y))))

The above code works, but it can be improved. The problem is that when uni que is
applied to a tree, it always traverses the tree all the way to the leaves. The function
unique-cons is like ucons, except that unique-cons assumes its arguments are not
yet unique. We can modify uni que - cons so that it first checks to see if its arguments
are unique, by looking in the appropriate hash tables:

(defun unique-cons (x y)
"Return a cons s . t . (eq (ucons χ y) (ucons x2 y2)) i s true
whenever (equal χ x2) and (equal y y2) are t rue. "
(le t ((ux) (uy)) : unique χ and y

(le t ((car- table
(or (gethash χ *un iq-cons- tab le*)

(gethash (set f ux (unique x)) *un iq-cons- tab le*)
(set f (gethash ux *uniq-cons- tab le*)

(make-hash-table : test #*eq)))))
(or (gethash y car- table)

(gethash (set f uy (unique y)) car- table)
(set f (gethash uy car- table)

(cons ux uy))))))

Another advantage of uni que is that it can help in indexing. If lists are unique,
then they can be stored in an eq hash table instead of a equal hash table. This can

336 LOW-LEVEL EFFICIENCY ISSUES

lead to significant savings v^hen the list structures are large. An eq hash table for
lists is almost as good as a property list on symbols.

Avoid Consing: Multiple Values

Parameters and multiple values can also be used to pass around values, rather than
building up lists. For example, instead of:

(defstruct point "A point in 3-D cartesian space." χ y z)

(defun scale-point (k pt)
"Mult ip ly a point by a constant, K."
(make-point :x (* k (point-x pt))

:y (* k (point-y pt))
:z (* k (point-z p t))))

one could use the following approach, which doesn't generate structures:

(defun scale-point (k χ y z)
"Mult ip ly the point (x , y , z) by a constant, K."
(values (* k x) (* k y) (* k z)))

Avoid Consing: Resources

Sometimes it pays to manage explicitly the storage of instances of some data type. A
pool of these instances may be called a resource. Explicit management of a resource
is appropriate when: (1) instances are frequently created, and are needed only
temporarily; (2) it is easy/possible to be sure when instances are no longer needed;
and (3) instances are fairly large structures or take a long time to initialize, so that it
is worth reusing them instead of creating new ones. Condition (2) is the crucial one:
If you deallocate an instance that is still being used, that instance will mysteriously
be altered when it is reallocated. Conversely, if you fail to deallocate unneeded
instances, then you are wasting valuable memory space. (The memory management
scheme is said to leak in this case.)

The beauty of using Lisp's built-in memory management is that it is guaranteed
never to leak and never to deallocate structures that are in use. This eliminates two
potential bug sources. The penalty you pay for this guarantee is some inefficiency of
the general-purpose memory management as compared to a custom user-supplied
management scheme. But beware: modern garbage-collection techniques are highly
optimized. In particular, the so-called generation scavenging or ephemeral garbage
collectors look more often at recently allocated storage, on the grounds that recently
made objects are more likely to become garbage. If you hold on to garbage in your
own data structures, you may end up with worse performance.

WA AVOID UNNECESSARY CONSING 337

With all these warnings in mind, here is some code to manage resources:

(defmacro defresource (name &key constructor (i n i t i a l - cop ies 0)
(s ize (max i n i t i a l - cop ies 10)))

(let ((resource (symbol name ' - resource))
(deallocate (symbol 'deal locate- name))
(al locate (symbol 'a l loca te- name)))

' (l e t ((. resource (make-array . s i ze i f i l l - po in te r 0)))
(defun .a l locate ()

"Get an element from the resource pool , or make one."
(i f (= (f i l l - po in te r .resource) 0)

.constructor
(vector-pop . resource)))

(defun .deallocate (.name)
"Place a no-longer-needed element back in the poo l . "
(vector-push-extend .name .resource))

. (i f (> i n i t i a l - cop ies 0)
'(mapc # ' .dea l locate (loop repeat . i n i t i a l - cop ies

col lect (.a l l oca te))))
' .name)))

Let's say we had some structure called a buffer which we were constantly making
instances of and then discarding. Furthermore, suppose that buffers are fairly
complex objects to build, that we know we'll need at least 10 of them at a time, and
that we probably won't ever need more than 100 at a time. We might use the buffer
resource as follows:

(defresource buffer :constructor (make-buffer)
: s i ze 100 : i n i t i a l - cop ies 10)

This expands into the following code:

(let ((buffer-resource (make-array 100 : f i l 1-pointer 0)))
(defun al locate-buffer ()

"Get an element from the resource pool , or make one."
(i f (= (f i l1 -po in te r buffer-resource) 0)

(make-buffer)
(vector-pop buf fer- resource)))

(defun deal locate-buffer (buffer)
"Place a no-longer-needed element back in the poo l . "
(vector-push-extend buffer buffer-resource))

(mapc # 'deanocate-buf fer
(loop repeat 10 col lect (a l locate-buf fer)))

'buf fer)

338 LOW-LEVEL EFFICIENCY ISSUES

We could then use:

(le t ((b (a l locate-buf fer)))

(process b)

(deal locate-buffer b)))

The important thing to remember is that this works only if the buffer b really can
be deallocated. If the function process stored away a pointer to b somewhere,
then it would be a mistake to deallocate b, because a subsequent allocation could
unpredictably alter the stored buffer. Of course, if process stored a copy of b, then
everything is alright. This pattern of allocation and deallocation is so common that
we can provide a macro for it:

(defmacro with-resource ((var resource Äoptional protect) &rest body)
"Execute body with VAR bound to an instance of RESOURCE."
(le t ((a l locate (symbol 'a l loca te- resource))

(deallocate (symbol 'deal locate- resource)))
(i f protect

• (le t ((. va r n i l))
(unwind-protect

(progn (set f ,var (.a l loca te)) .©body)
(unless (null .var) (.deal locate . va r))))

• (let ((. va r (.a l loca te)))
.©body
(.deal locate . va r)))))

The macro allows for an optional argument that sets up an unwi nd - protect environ
ment, so that the buffer gets deallocated even when the body is abnormally exited.
The following expansions should make this clearer:

> (macroexpand ' (wi th-resource (b buffer)
" . . . " (process b) " . . . "))

(let ((b (a l locate-buf fer)))
Μ It

(process b)
11 II

(deal locate-buffer b))

> (macroexpand ' (wi th-resource (b buffer t)
" . . . " (process b) " . . . "))

(le t ((b n i l))
(unwind-protect

(progn (set f b (a l locate-buf fer))

10.5 USE THE RIGHT DATA STRUCTURES 339

(process b)
" . . . ")

(unless (null b)
(deal locate-buffer b))))

An alternative to full resources is to just save a single data object. Such an approach
is simpler because there is no need to index into a vector of objects, but it is sufficient
for some applications, such as a tail-recursive function call that only uses one object
at a time.

Another possibility is to make the system slower but safer by having the
deal 1 ocate function check that its argument is indeed an object of the correct type.

Keep in mind that using resources may put you at odds with the Lisp system's own
storage management scheme. In particular, you should be concerned with paging
performance on virtual memory systems. A common problem is to have only a few
live objects on each page, thus forcing the system to do a lot of paging to get any work
done. Compacting garbage collectors can collect live objects onto the same page, but
using resources may interfere with this.

10.5 Use the Right Data Structures

It is important to implement key data types with the most efficient implementation.
This can vary from machine to machine, but there are a few techniques that are
universal. Here we consider three case studies.

The Right Data Structure: Variables

As an example, consider the implementation of pattern-matching variables. We saw
from the instrumentation of s i mp 1 i f y that variable-p was one of the most frequently
used functions. In compiling the matching expressions, I did away with all calls to
vari abl e-p, but let's suppose we had an application that required run-time use of
variables. The specification of the data type vari abl e will include two operators,
the recognizer vari abl e-p, and the constructor make-vari abl e, which gives a new,
previously unused variable. (This was not needed in the pattern matchers shown so
far, but will be needed for unification with backward chaining.) One implementation
of variables is as symbols that begin with the character # \ ? :

(defun var iable-p (x)
" I s X a var iable (a symbol beginning with * ? ') ? "
(and (symbolp x) (equal (e l t (symbol-name x) 0) # \ ?)))

340 LOW-LEVEL EFFICIENCY ISSUES

(defun make-variable () "Generate a new var iab le" (gentemp " ? "))

We could try to speed things up by changing the implementation of variables to be
keywords and making the functions inline:

(proclaim ' (i n l i n e var iable-p make-variable))
(defun var iable-p (x) " I s χ a var iab le?" (keywordp x))
(defun make-variable () (gentemp "X" #.(f ind-package "KEYWORD")))

(The reader character sequence # . means to evaluate at read time, rather than at
execution time.) On my machine, this implementation is pretty fast, and I accepted
it as a viable compromise. However, other implementations were also considered.
One was to have variables as structures, and provide a read macro and print function:

(defstruct (var iable (ip r in t - funct ion p r in t -var iab le)) name)

(defvar * v a r s * (make-hash-table))

(set-macro-character # \ ?
#'(lambda (stream char)

Find an old var , or make a new one with the given name
(declare (ignore char))
(let ((name (read stream t ni l t)))

(or (gethash name *va rs *)
(set f (gethash name *va rs *) (make-variable mame name))))))

(defun pr in t -var iab le (var stream depth)
(declare (ignore depth))
(format stream " ? ~ a " (var-name var)))

It turned out that, on all three Lisps tested, structures were slower than keywords
or symbols. Another alternative is to have the ? read macro return a cons whose
first is, say, : var. This requires a special output routine to translate back to the ?
notation. Yet another alternative, which turned out to be the fastest of all, was to
implement variables as negative integers. Of course, this means that the user cannot
use negative integers elsewhere in patterns, but that turned out to be acceptable for
the application at hand. The moral is to know which features are done well in your
particular implementation and to go out of your way to use them in critical situations,
but to stick with the most straightforward implementation in noncritical sections.

Lisp makes it easy to rely on lists, but one must avoid the temptation to overuse
lists; to use them where another data structure is more appropriate. For example, if
you need to access elements of a sequence in arbitrary order, then a vector is more
appropriate than list. If the sequence can grow, use an adjustable vector. Consider
the problem of maintaining information about a set of people, and searching that set.
A naive implementation might look like this:

10.5 USE THE RIGHT DATA STRUCTURES 341

The Right Data Structure: Queues

A queue is a data structure where one can add elements at the rear and remove them
from the front. This is almost like a stack, except that in a stack, elements are both
added and removed at the same end.

Lists can be used to implement stacks, but there is a problem in using lists to
implement queues: adding an element to the rear requires traversing the entire list.
So collecting η elements would be O(n^) instead of 0{n).

An alternative implementation of queues is as a cons of two pointers: one to the
list of elements of the queue (the contents), and one to the last cons cell in the list.
Initially, both pointers would be nil. This implementation in fact existed in BBN Lisp
and UCI Lisp under the function name tconc:

(defvar *people* ni l "Will hold a l i s t of people")

(defstruct person name address id-number)

(defun person-with- id (id)
(f ind id *people* :key #'person-id-number))

In a traditional language like C, the natural solution is to include in the person
structure a pointer to the next person, and to write a loop to follow these pointers.
Of course, we can do that in Lisp too:

(defstruct person name address id-number next)

(defun person-with- id (id)
(loop for person = *people* then (person-next person)

unti l (null person)
do (when (eql id (person-id-number person))

(RETURN person))))

This solution takes less space and is probably faster, because it requires less memory
accesses: one for each person rather than one for each person plus one for each
cons cell. So there is a small price to pay for using lists. But Lisp programmers feel
that price is worth it, because of the convenience and ease of coding and debugging
afforded by general-purpose functions like f i nd.

In any case, if there are going to be a large number of people, the list is definitely
the wrong data structure. Fortunately, Lisp makes it easy to switch to more efficient
data structures, for example:

(defun person-with- id (id)
(gethash id *people*))

342 LOW-LEVEL EFFICIENCY ISSUES

; ; ; A queue i s a (contents . l as t) pair

(defun tconc (item q)
" Inser t item at the end of the queue."
(set f (cdr q)

(i f (null (cdr q))
(set f (car q) (cons item n i l))
(set f (rest (cdr q))

(cons item n i l)))))

The tconc implementation has the disadvantage that adding the first element to
the contents is different from adding subsequent elements, so an i f statement is
required to decide which action to take. The definition of queues given below avoids
this disadvantage with a clever trick. First, the order of the two fields is reversed.
The car of the cons cell is the last element, and the cdr is the contents. Second, the
empty queue is a cons cell where the cdr (the contents field) is nil, and the car (the
last field) is the cons itself. In the definitions below, we change the name tconc to
the more standard enqueue, and provide the other queue functions as well:

; ; ; A queue i s a (l as t . contents) pair

(proclaim ' (i n l i n e queue-contents make-queue enqueue dequeue
front empty-queue-p queue-nconc))

(defun queue-contents (q) (cdr q))

(defun make-queue ()
"Bui ld a new queue, with no elements."
(le t ((q (cons ni l n i l)))

(set f (car q) q)))

(defun enqueue (item q)
" Inser t item at the end of the queue."
(set f (car q)

(set f (rest (car q))
(cons item n i l)))

q)

(defun dequeue (q)
"Remove an item from the front of the queue."
(pop (cdr q))

(i f (null (cdr q)) (set f (car q) q))

q)

(defun front (q) (f i r s t (queue-contents q)))

(defun empty-queue-p (q) (nul l (queue-contents q)))

10,5 USE THE RIGHT DATA STRUCTURES 343

(defun queue-nconc (q l i s t)
"Add the elements of LIST to the end of the queue."
(set f (car q)

(l as t (set f (rest (car q)) l i s t))))

The Right Data Structure: Tables

A table is a data structure to which one can insert a key and associate it with a value,
and later use the key to look up the value. Tables may have other operations, like
counting the number of keys, clearing out all keys, or mapping a function over each
key/value pair.

Lisp provides a wide variety of choices to implement tables. An association list
is perhaps the simplest: it is just a list of key/value pairs. It is appropriate for small
tables, up to a few dozen pairs. The hash table is designed to be efficient for large
tables, but may have significant overhead for small ones. If the keys are symbols,
property lists can be used. If the keys are integers in a narrow range (or can be
mapped into them), then a vector may be the most efficient choice.

Here we implement an alternative data structure, the trie. A trie implements a
table for keys that are composed of a finite sequence of components. For example,
if we were implementing a dictionary as a trie, each key would be a word, and
each letter of the word would be a component. The value of the key would be the
word's definition. At the top of the dictionary trie is a multiway branch, one for each
possible first letter. Each second-level node has a branch for every possible second
letter, and so on. To find an n-letter word requires η reads. This kind of organization
is especially good when the information is stored on secondary storage, because a
single read can bring in a node with all its possible branches.

If the keys can be arbitrary list structures, rather than a simple sequence of letters,
we need to regularize the keys, transforming them into a simple sequence. One way
to do that makes use of the fact that any tree can be written as a linear sequence
of atoms and cons operations, in prefix form. Thus, we would make the following
transformation:

(a (b c) d) =
(cons a (cons (cons b (cons c n i l)) (cons d n i l))) =
(cons a cons cons b cons c ni l cons d n i l)

In the implementation of tries below, this transformation is done on the fly: The four
user-level functions are make-trie to create a new trie, pu t - t r ie and g e t - t r i e to
add and retrieve key/value pairs, and del e t e - t r i e to remove them.

Notice that we use a distinguished value to mark deleted elements, and that
g e t - t r i e returns two values: the actual value found, and a flag saying if anything

344 LOW-LEVEL EFFICIENCY ISSUES

was found or not. This is consistent with the interface to gethash and f i n d , and
allows us to store null values in the trie. It is an inobtrusive choice, because the
programmer who decides not to store null values can just ignore the second value,
and everything will work properly.

(defstruct t r ie (value n i l) (arcs n i l))
(defconstant t r ie-deleted "deleted")

(defun put- t r ie (key t r ie value)
"Set the value of key in t r i e . "
(set f (t r ie -va lue (f ind - t r ie key t t r i e)) value))

(defun get - t r ie (key t r i e)
"Return the value for a key in a t r i e , and t /n i l i f found."
(le t * ((key- t r ie (f i nd - t r ie key ni l t r i e))

(val (i f key- t r ie (t r ie -va lue key - t r i e))))
(i f (or (null key- t r ie) (eq val t r ie-de leted))

(values ni l n i l)
(values val t))))

(defun delete- t r ie (key t r i e)
"Remove a key from a t r i e . "
(put- t r ie key t r i e t r ie-deleted))

(defun f ind - t r ie (key extend? t r i e)
"Find the t r ie node for th i s key.
I f EXTEND? i s t rue, make a new node i f need be."
(cond ((nul l t r i e) n i l)

((atom key)
(fo l low-arc key extend? t r i e))

(t (f i nd - t r ie
(cdr key) extend?
(f ind- t r ie

(car key) extend?
(f i nd - t r ie

" . " extend? t r i e))))))

(defun fol low-arc (component extend? t r i e)
"Find the t r i e node for th i s component of the key.
I f EXTEND? i s t rue, make a new node i f need be. "
(le t ((arc (assoc component (t r i e -a rcs t r i e))))

(cond ((not (null arc)) (cdr arc))
((not extend?) n i l)
(t (le t ((new-tr ie (make-tr ie)))

(push (cons component new-trie)
(t r i e -a rcs t r i e))

new- t r ie)))))

10.5 USE THE RIGHT DATA STRUCTURES 345

There are a few subtleties in the implementation. First, we test for deleted entries
with an eq comparison to a distinguished marker, the string t r i e-de1 eted. No other
object will be eq to this string except t r i e-del eted itself, so this is a good test. We
also use a distinguished marker, the string " . " , to mark cons cells. Components are
implicitly compared against this marker with an eql test by the assoc in fol 1 ow - arc.
Maintaining the identity of this string is crucial; if, for example, you recompiled
the definition of f i nd-tri e (without changing the definition at all), then you could
no longer find keys that were indexed in an existing trie, because the " . " used by
f i nd-tri e would be a different one from the " . " in the existing trie.

Artificial Intelligence Programming (Charniak et al. 1987) discusses variations on
the trie, particularly in the indexing scheme. If we always use proper lists (no non-null
cdrs), then a more efficient encoding is possible. As usual, the best type of indexing
depends on the data to be indexed. It should be noted that Charniak et al. call the trie
a discrimination net. In general, that term refers to any tree with tests at the nodes.

A trie is, of course, a kind of tree, but there are cases where it pays to convert a trie
into a dag—di directed acyclic graph. A dag is a tree where some of the subtrees are
shared. Imagine you have a spelUng corrector program with a list of some 50,000 or
so words. You could put them into a trie, each word with the value t. But there would
be many subtrees repeated in this trie. For example, given a word list containing look,
looks, looked, and looking as well as show, shows, showed, and showing, there would
be repetition of the subtree containing -s, -ed and -ing. After the trie is built, we
could pass the whole trie to un i que, and it would collapse the shared subtrees, saving
storage. Of course, you can no longer add or delete keys from the dag without risking
unintended side effects.

This process was carried out for a 56,000 word list. The trie took up 3.2Mbytes,
while the dag was 1.1 Mbytes. This was still deemed unacceptable, so a more compact
encoding of the dag was created, using a .2Mbytes vector. Encoding the same word
list in a hash table took twice this space, even with a special format for encoding
suffixes.

Tries work best when neither the indexing key nor the retrieval key contains
variables. They work reasonably well when the variables are near the end of the
sequence. Consider looking up the pattern "yel 1 o?" in the dictionary, where the " ?"
character indicates a match of any letter. Following the branches for "yel 1 o" leads
quickly to the only possible match, "yel 1 ow". In contrast, fetching with the pattern
" ??11 ow" is much less efficient. The table lookup function would have to search all
26 top-level branches, and for each of those consider all possible second letters, and
for each of those consider the path " 11 ow". Quite a bit of searching is required before
arriving at the complete set of matches: bellow, billow, fallow, fellow, follow, hallow,
hollow, mallow, mellow, pillow, sallow, tallow, wallow, willow, and yellow.

We will return to the problem of discrimination nets with variables in section 14.8,
page 472.

346 LOW-LEVEL EFFICIENCY ISSUES

10.6 Exercises

@ Exercise 10.1 [h] Define tlie macro de f tab le , such that (def t ab le person a s s o c)
will act much like a def struct— i t will define a set of functions for manipulating a
table of people: ge t -person , put -person, cl ear -person , and map-person. The table
should be implemented as an association list. Later on, you can change the represen
tation of the table simply by changing the form to (def tabl e person hash) , without
having to change anything else in your code. Other implementation options include
property lists and vectors, def t ab le should also take three keyword arguments:
i nl i ne, s i ze and t e s t . Here is a possible macroexpansion:

> (macroexpand ' (def tableperson hash .-inline t : s i ze 100)) =
(progn

(proclaim ' (i n l i n e get-person put-person map-person))
(defparameter *person-table*

(make-hash-table : test #'eql : s i ze 100))
(defun get-person (x Äoptional defaul t)

(gethash χ *person- table* defaul t))
(defun put-person (x value)

(set f (gethash χ *person-table*) value))
(defun clear-person () (c l rhash *person- tab le*))
(defun map-person (fn) (maphash fn *person- tab le*))
(defsetf get-person put-person)
'person)

@ Exercise 10.2 [m] We can use the : type option to defstruct to define structures
implemented as lists. However, often we have a two-field structure that we would
like to implement as a cons cell rather than a two-element list, thereby cutting storage
in half. Since defstruct does not allow this, define a new macro that does.

@ Exercise 10.3 [m] Use reuse - cons to write a version of f 1 at ten (see page 329) that
shares as much of its input with its output as possible.

t¿l Exercise 10.4 [h] Consider the data type set. A set has two main operations: adjoin
an element and test for membership. It is convenient to also add a map-over-elements
operation. With these primitive operations it is possible to build up more complex
operations like union and intersection.

As mentioned in section 3.9, Common Lisp provides several implementations
of sets. The simplest uses lists as the underlying representation, and provides the

10.7 ANSWERS 347

functions ad j oi η, member, uni on, i n tersec t i on, and set-di f f erence. Another uses
bit vectors, and a similar one uses integers viewed as bit sequences. Analyze the
time complexity of each implementation for each operation.

Next, show how sorted lists can be used to implement sets, and compare the
operations on sorted lists to their counterparts on unsorted lists.

10.7 Answers

Answer 10.2

(defmacro def-cons-st ruct (cons car cdr &optional i n l i n e ?)
"Define a l i ases for cons, car and cdr . "
' (progn (proclaim ' (. (i f i n l i ne? ' i n l i ne 'no t in l ine)

.car .cdr .cons))
(defun .car (x) (car x))
(defun .cdr (x) (cdr x))
(defsetf .car (x) (va l) ' (s e t f (car .x) . va l))
(defsetf .cdr (x) (va l) ' (s e t f (cdr .x) . va l))
(defun .cons (x y) (cons χ y))))

Answer 10.3

(defun f la t ten (exp Äoptional (so- fa r n i l) las t -cons)
"Return a f la t l i s t of the atoms in the input.
Ex: (f la t ten ' ((a) (b (c) d))) => (a b c d) . "
(cond ((nul l exp) so - fa r)

((atom exp) (reuse-cons exp so- fa r l as t - cons))
(t (f la t ten (f i r s t exp)

(f la t ten (rest exp) so- fa r exp)
exp))))

CHAPTER

Logic Programming

A language that doesn't affect the way you think
about programming is not worth knowing.

—Alan Perlis

L isp is the major language for AI work, but it is by no means the only one. The other
strong contender is Prolog, whose name derives from "programming in logic."^ The idea
behind logic programming is that the programmer should state the relationships that

describe a problem and its solution. These relationships act as constraints on the algorithms
that can solve the problem, but the system itself, rather than the programmer, is responsible for
the details of the algorithm. The tension between the "programming" and "logic" will be covered
in chapter 14, but for now it is safe to say that Prolog is an approximation to the ideal goal of logic
programming. Prolog has arrived at a comfortable niche between a traditional programming
language and a logical specification language. It relies on three important ideas:

^Actually, programmation en logique, since it was invented by a French group (see page 382).

INTRODUCTION 349

• Prolog encourages the use of a single uniform data base. Good compilers provide
efficient access to this data base, reducing the need for vectors, hash tables,
property lists, and other data structures that the Lisp programmer must deal
with in detail. Because it is based on the idea of a data base, Prolog is relational,
while Lisp (and most languages) are functional. In Prolog we would represent
a fact like "the population of San Francisco is 750,000" as a relation. In Lisp,
we would be inclined to write a function, p o p u l a t i o n , which takes a city as
input and returns a number. Relations are more flexible; they can be used not
only to find the population of San Francisco but also, say, to find the cities with
populations over 500,000.

• Prolog provides logic variables instead of "normal" variables. A logic variable is
bound by unification rather than by assignment. Once bound, a logic variable
can never change. Thus, they are more like the variables of mathematics. The
existence of logic variables and unification allow the logic programmer to state
equations that constrain the problem (as in mathematics), without having to
state an order of evaluation (as with assignment statements).

• Prolog provides automatic backtracking. In Lisp each function call returns a single
value (unless the programmer makes special arrangements to have it return
multiple values, or a list of values). In Prolog, each query leads to a search for
relations in the data base that satisfy the query. If there are several, they are
considered one at a time. If a query involves multiple relations, as in "what city
has a population over 500,000 and is a state capital?," Prolog will go through
the popul a t i on relation to find a city with a population over 500,000. For each
one it finds, it then checks the capi ta l relation to see if the city is a capital. If
it is, Prolog prints the city; otherwise it backtracks, trying to find another city
in the popu la t i on relation. So Prolog frees the programmer from worrying
about both how data is stored and how it is searched. For some problems, the
naive automatic search will be too inefficient, and the programmer will have to
restate the problem. But the ideal is that Prolog programs state constraints on
the solution, without spelling out in detail how the solutions are achieved.

This chapter serves two purposes: it alerts the reader to the possibility of writing
certain programs in Prolog rather than Lisp, and it presents implementations of the
three important Prolog ideas, so that they may be used (independently or together)
within Lisp programs. Prolog represents an interesting, different way of looking
at the programming process. For that reason it is worth knowing. In subsequent
chapters we will see several useful applications of the Prolog approach.

350 LOGIC PROGRAMMING

11.1 Idea 1: A Uniform Data Base

The first important Prolog idea should be familiar to readers of this book: manip
ulating a stored data base of assertions. In Prolog the assertions are called clauses,
and they can be divided into two types: facts, which state a relationship that holds
between some objects, and rules, which are used to state contingent facts. Here
are representations of two facts about the population of San Francisco and the cap
ital of California. The relations are popula t ion and c a p i t a l , and the objects that
participate in these relations are SF, 750000, Sacramento, and CA:

(population SF 750000)
(capital Sacramento CA)

We are using Lisp syntax, because we want a Prolog interpreter that can be imbedded
in Lisp. The actual Prolog notation would be popul a t i o n (s f , 7 5 0 0 0 0) . Here are
some facts pertaining to the 1 i kes relation:

(l i kes Kim Robin)
(l i kes Sandy Lee)
(l i kes Sandy Kim)
(l i kes Robin cats)

These facts could be interpreted as meaning that Kim likes Robin, Sandy likes both
Lee and Kim, and Robin likes cats. We need some way of telling Lisp that these are
to be interpreted as Prolog facts, not a Lisp function call. We will use the macro <- to
mark facts. Think of this as an assignment arrow which adds a fact to the data base:

« - (l i kes Kim Robin))
(< - (l i kes Sandy Lee))
(< - (l i kes Sandy Kim))
(< - (l i kes Robin ca ts))

One of the major differences between Prolog and Lisp hinges on the difference
between relations and functions. In Lisp, we would define a function 1 i kes, so
that (l i kes 'Sandy) would return the list (Lee Kim). If we wanted to access the
information the other way, we would define another function, say, 1 i kers-of, so
that (1 i ker s - of ' Lee) returns (Sandy) . In Prolog, we have a single 1 i kes relation
instead of multiple functions. This single relation can be used as if it were multiple
functions by posing different queries. For example, the query (1 i kes Sandy ?who)
succeeds with ?who bound to Lee or Kim, and the query (1 i kes ?who Lee) succeeds
with ?who bound to Sandy.

/ hl IDEA 1: A UNIFORM DATA BASE 351

The second type of clause in a Prolog data base is the rule. Rules state contingent
facts. For example, we can represent the rule that Sandy likes anyone who likes cats
as follows:

(< - (l i kes Sandy ?x) (l i kes ?x ca ts))

This can be read in two ways. Viewed as a logical assertion, it is read, "For any x,
Sandy likes χ if χ likes cats." This is a declarative interpretation. Viewed as a piece
of a Prolog program, it is read, "If you ever want to show that Sandy likes some x,
one way to do it is to show that χ likes cats." This is a procedural interpretation.
It is called a backward-chaining interpretation, because one reasons backward from
the goal (Sandy likes x) to the premises (x likes cats). The symbol <- is appropriate
for both interpretations: it is an arrow indicating logical implication, and it points
backwards to indicate backward chaining.

It is possible to give more than one procedural interpretation to a declarative form.
(We did that in chapter 1, where grammar rules were used to generate both strings
of words and parse trees.) The rule above could have been interpreted procedurally
as "If you ever find out that some χ likes cats, then conclude that Sandy likes x." This
would be forward chaining: reasoning from a premise to a conclusion. It turns out
that Prolog does backward chaining exclusively. Many expert systems use forward
chaining exclusively, and some systems use a mixture of the two.

The leftmost expression in a clause is called the head, and the remaining ones are
called the body. In this view, a fact is just a rule that has no body; that is, a fact is true
no matter what. In general, then, the form of a clause is:

(<- head body...)

A clause asserts that the head is true only if all the goals in the body are true. For
example, the following clause says that Kim likes anyone who likes both Lee and
Kim:

(< - (l i kes Kim ?x) (l i kes ?x Lee) (l i kes ?x Kim))

This can be read as:

For any X, deduce that Km l i kes χ
if it can be proved that X l i kes lee and χ l i kes Kim.

352 LOGIC PROGRAMMING

11.2 Idea 2: Unification of Logic Variables

Unification is a straightforward extension of the idea of pattern matching. The
pattern-matching functions we have seen so far have always matched a pattern
(an expression containing variables) against a constant expression (one with no
variables). In unification, two patterns, each of which can contain variables, are
matched against each other. Here's an example of the difference between pattern
matching and unification:

> (pat-match ' (Tx + ?y) ' (2 + D) ^ ((?Y . 1) (?X . 2))

> (unify ' (? x + 1) ' (2 + ? y)) => ((?Y . 1) (?X . 2))

Within the unification framework, variables (such as ?x and ? y above) are called logic
variables. Like normal variables, a logic variable can be assigned a value, or it can
be unbound. The difference is that a logic variable can never be altered. Once it is
assigned a value, it keeps that value. Any attempt to unify it with a different value
leads to failure. It is possible to unify a variable with the same value more than once,
just as it was possible to do a pattern match of (?x + ?x) with (2 + 2).

The difference between simple pattern matching and unification is that unifica
tion allows two variables to be matched against each other. The two variables remain
unbound, but they become equivalent. If either variable is subsequently bound to
a value, then both variables adopt that value. The following example equates the
variables ?x and ? y by binding ?x to ? y :

> (unify ' (f ?x) ' (f ? y)) => ((?X . ?Y))

Unification can be used to do some sophisticated reasoning. For example, if we have
two equations, α -h α = 0 and χ y = y, and if we know that these two equations
unify, then we can conclude that a, x, and y are all 0. The version of uni f y we will
define shows this result by binding ? y to 0, ?x to ? y , and ?a to ?x. We will also
define the function u n i f i e r , which shows the structure that results from unifying
two structures.

> (unify ' (? a + ?a = 0) ' (? x + ?y = ? y)) =^
((?Y . 0) (?X . ?Y) (?A . ?X))

> (un i f ie r ' (? a + ?a = 0) ' (? x + ?y = ? y)) =^ (0 + 0 = 0)

To avoid getting carried away by the power of unification, it is a good idea to take stock
of exactly what unification provides. It does provide a way of stating that variables
are equal to other variables or expressions. It does not provide a way of automatically
solving equations or applying constraints other than equality. The following example

/1.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 353

makes it clear that unification treats the symbol + only as an uninterpreted atom, not
as the addition operator:

> (un i f ier ' (? a + ?a = 2) ' (? x + ?y = ? y)) ^ (2 + 2 = 2)

Before developing the code for un i f y, we repeat here the code taken from the pattern-
matching utility (chapter 6):

(defconstant fa i l n i l " Indicates pat-match fa i l u re ")

(defconstant no-bindings *((t . t))
" Indicates pat-match success, with no va r i ab les . ")

(defun var iable-p (x)
" I s X a var iable (a symbol beginning with * ? *) ? "
(and (symbolp x) (equal (char (symbol-name x) 0) # \ ?)))

(defun get-binding (var bindings)
"Find a (var iable . value) pair in a binding l i s t . "
(assoc var b ind ings))

(defun binding-val (binding)
"Get the value part of a s ing le b ind ing. "
(cdr b inding))

(defun lookup (var bindings)
"Get the value part (for var) from a binding l i s t . "
(binding-val (get-binding var b ind ings)))

(defun extend-bindings (var val b indings)
"Add a (var . value) pair to a binding l i s t . "
(cons (cons var va l)

Once we add a " rea l " b inding,
we can get r id of the dummy no-bindings

(i f (and (eq bindings no-b indings))
ni l
b ind ings)))

(defun match-variable (var input b indings)
"Does VAR match input? Uses (or updates) and returns b ind ings . "
(let ((binding (get-binding var b ind ings)))

(cond ((not binding) (extend-bindings var input b ind ings))
((equal input (binding-val b inding)) b indings)
(t f a i l))))

The un i f y function follows; it is identical to pat-match (as defined on page 180)
except for the addition of the line marked The function uni f y - v a r i abl e also
follows match - v a r i a b l e closely:

354 LOGIC PROGRAMMING

(defun unify (χ y Äoptional (bindings no-b ind ings))
"See i f X and y match with given b ind ings . "
(cond ((eq bindings f a i l) f a i l)

((var iab le-p x) (un i fy -var iab le χ y b ind ings))
((var iab le-p y) (un i fy -var iab le y χ b ind ings))
((eql X y) b indings)
((and (consp x) (consp y))
(unify (rest x) (rest y)

(unify (f i r s t x) (f i r s t y) b ind ings)))
(t f a i l)))

(defun uni fy-var iab le (var χ bindings)
"Unify var with x . using (and maybe extending) b ind ings . "

Warning - buggy vers ion
(i f (get-binding var b indings)

(unify (lookup var bindings) χ b indings)
(extend-bindings var χ b ind ings)))

Unfortunately, this definition is not quite right. It handles simple examples:

> (unify ' (? x + 1) ' (2 + ? y)) => ((?Y . 1) (?X . 2))

> (unify ' ? x ' ? y) ((?X . ?Y))

> (unify ' (? x ?x) ' (Ty ? y)) =^ ((?Y . ?Y) (?X . ?Y))

but there are several pathological cases that it can't contend with:

> (unify ' (? x ?x ?x) ' (? y ?y ? y))
» T r a p #043622 (PDL-OVERFLOW REGULAR)
The regular push-down l i s t has overflowed.
While in the function GET-BINDING ^ UNIFY-VARIABLE Φ= UNIFY

The problem here is that once ? y gets bound to itself, the call to u n i f y inside
uni f y - v a r i abl e leads to an infinite loop. But matching ? y against itself must al
ways succeed, so we can move the equality test in uni f y before the variable test. This
assumes that equal variables are eq l , a valid assumption for variables implemented
as symbols (but be careful if you ever decide to implement variables some other way).

(defun unify (x y Äoptional (bindings no-b ind ings))
"See i f X and y match with given b ind ings . "
(cond ((eq bindings f a i l) f a i l)

((eql X y) b indings) moved th i s l ine
((var iab le-p x) (un i fy -var iab le χ y b ind ings))
((var iab le-p y) (un i fy -var iab le y χ b ind ings))
((and (consp x) (consp y))
(unify (rest x) (rest y)

; 1.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 355

(unify (f i r s t x) (f i r s t y) b ind ings)))
(t f a i l)))

Here are some test cases:

> (unify ' (? x ?x) ' (? y ? y)) ((?X . ?Y))

> (unify ' (? x ?x ?x) ' (? y ?y ? y)) ((?X . ?Y))

> (unify ' (? x ?y) ' (? y ?x)) ^ ((?Y . ?X) (?X . ?Y))

> (unify ' (? x ?y a) ' (? y ?x ?x))
» T r a p #043622 (PDL-OVERFLOW REGULAR)
The regular push-down l i s t has overflowed.
While in the function GET-BINDING ^ UNIFY-VARIABLE <= UNIFY

We have pushed off the problem but not solved it. Allowing both (?Y . ?X) and
(?X . ?Y) in the same binding list is as bad as allowing (?Y . ?Y). To avoid the
problem, the policy should be never to deal with bound variables, but rather with
their values, as specified in the binding list. The function uni f y - va r i abl e fails to
implement this policy. It does have a check that gets the binding for va r when it is a
bound variable, but it should also have a check that gets the value of x, when χ is a
bound variable:

(defun uni fy-var iab le (var χ bindings)
"Unify var with x, using (and maybe extending) b ind ings . "
(cond ((get-binding var bindings)

(unify (lookup var bindings) χ b ind ings))
((and (var iable-p x) (get-binding χ b ind ings))
(unify var (lookup χ bindings) b ind ings))

(t (extend-bindings var χ b ind ings))))

Here are some more test cases:

> (unify ' (? x ?y) * (?y ?x)) ((?X . ?Y))

> (unify ' (? x ?y a) ' (? y ?x ?x)) ^ ((?Y . A) (?X . ?Y))

It seems the problem is solved. Now let's try a new problem:

> (unify ' ? x ' (f ?x)) => ((?X F ?X))

Here((?X F ?X)) really means ((?X . ((F ? X)))) , so ?X is bound to (F ?X).This
represents a circular, infinite unification. Some versions of Prolog, notably Prolog II
(Giannesini et al. 1986), provide an interpretation for such structures, but it is tricky
to define the semantics of infinite structures.

356 LOGIC PROGRAMMING

The easiest way to deal with such infinite structures is just to ban them. This
ban can be realized by modifying the unifier so that it fails whenever there is an
attempt to unify a variable with a structure containing that variable. This is known in
unification circles as the occurs check. In practice the problem rarely shows up, and
since it can add a lot of computational complexity, most Prolog systems have ignored
the occurs check. This means that these systems can potentially produce unsound
answers. In the final version of uni fy following, a variable is provided to allow the
user to turn occurs checking on or off.

(defparameter *occurs-check* t "Should we do the occurs check?")

(defun unify (x y Äoptional (bindings no-b ind ings))
"See i f X and y match with given b ind ings . "
(cond ((eq bindings f a i l) f a i l)

((eql X y) b indings)
((var iab le-p x) (un i fy -var iab le χ y b ind ings))
((var iab le-p y) (un i fy -var iab le y χ b ind ings))
((and (consp x) (consp y))
(unify (rest x) (rest y)

(unify (f i r s t x) (f i r s t y) b ind ings)))
(t f a i l)))

(defun un i fy-var iab le (var χ bindings)
"Unify var with x . using (and maybe extending) b ind ings . "
(cond ((get-binding var bindings)

(unify (lookup var b indings) χ b ind ings))
((and (var iable-p x) (get-binding χ b ind ings))
(unify var (lookup χ bindings) b ind ings))

((and *occurs-check* (occurs-check var χ b ind ings))
f a i l)

(t (extend-bindings var χ b ind ings))))

(defun occurs-check (var χ bindings)
"Does var occur anywhere ins ide x ? "
(cond ((eq var x) t)

((and (var iable-p x) (get-binding χ b ind ings))
(occurs-check var (lookup χ bindings) b ind ings))

((consp x) (or (occurs-check var (f i r s t x) b indings)
(occurs-check var (rest x) b ind ings)))

(t n i l)))

Now we consider how u n i f y will be used. In particular, one thing we want is a
function for substituting a binding list into an expression. We originally chose
association lists as the implementation of bindings because of the availability of the
function subl i s . Ironically, sub l i s won't work any more, because variables can
be bound to other variables, which are in turn bound to expressions. The function
s u b s t - b i ndi ngs acts like subl i s, except that it substitutes recursive bindings.

/12 IDEA 2: UNIFICATION OF LOGIC VARIABLES 357

(defun subst-b indings (bindings x)
"Subst i tute the value of var iables in bindings into x ,
taking recurs ively bound var iables into account."
(cond ((eq bindings f a i l) f a i l)

((eq bindings no-bindings) x)
((and (var iable-p x) (get-binding χ b ind ings))

(subst-b indings bindings (lookup χ b ind ings)))
((atom x) x)
(t (reuse-cons (subst-b indings bindings (car x))

(subst -b ind ings bindings (cdr x))
x))))

Now let's try uni fy on some examples:

> (unify ' (? x ?y a) ' (? y ?x ?x)) =^ ((?Y . A) (?X . ?Y))

> (unify ·?χ ' (f ?x)) NIL

> (unify ' (? x ?y) ' ((f ?y) (f ? x))) ^ NIL

> (unify ' (? x ?y ?z) ' ((Ty ?z) (?x ?z) (?x ? y))) => NIL

> (unify 'a 'a) ((T . T))

Finally, the function u n i f i e r calls u n i f y and substitutes the resulting binding Ust
into one of the arguments. The choice of χ is arbitrary; an equal result would come
from substituting the binding list into y.

(defun un i f ie r (x y)
"Return something that un i f ies with both χ and y (or f a i l) . "
(subst-b indings (unify χ y) χ))

Here are some examples of uni f i er:

> (un i f ie r ' (? χ ?y a) ' (? y ?x ?x)) (A A A)

> (un i f ie r ' ((? a * ?x ̂ 2) + (?b * ?x) + ?c)
' (? z + (4 * 5) + 3)) =^

((?A * 5 ^ 2) + (4 * 5) + 3)

358 LOGIC PROGRAMMING

Programming with Prolog

The amazing thing about Prolog clauses is that they can be used to express relations
that we would normally think of as "programs," not "data." For example, we can
define the member relation, which holds between an item and a list that contains that
item. More precisely, an item is a member of a list if it is either the first element of the
list or a member of the rest of the list. This definition can be translated into Prolog
almost verbatim:

(< - (member ?item (?item . ? r e s t)))
(< - (member ?item (?x . ? r e s t)) (member ?item ? r e s t))

Of course, we can write a similar definition in Lisp. The most visible difference is that
Prolog allows us to put patterns in the head of a clause, so we don't need recognizers
like consp or accessors like f i r s t and rest . Otherwise, the Lisp definition is similar:^

(defun lisp-member (item l i s t)
(and (consp l i s t)

(or (eql item (f i r s t l i s t))
(lisp-member item (rest l i s t)))))

If we wrote the Prolog code without taking advantage of the pattern feature, it would
look more like the Lisp version:

(< - (member ?item ? l i s t)
(= ? l i s t (?item . ? r e s t)))

^Actually, this is more like the Lisp f i nd than the Lisp member. In this chapter we have
adopted the traditional Prolog definition of member.

When *occurs - check* is false, we get the following answers:

> (unify ' ? x *(f ?x)) ^ ((?X F ?X))

> (unify ' (? x ?y) ' ((f ?y) (f ? x))) =>
((?Y F ?X) (?X F ?Y))

> (unify ' (? x ?y ?z) ' ((? y ?z) (?x ?z) (?x ? y)))
((?Z ?X ?Y) (?Y ?X 11) (?X ?Y ?Z))

/1.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 359

(< - (member ?item ? l i s t)
(= ? l i s t (?x . ? r e s t))
(member ?item ? r e s t))

If we define or in Prolog, we would write a version that is clearly just a syntactic
variant of the Lisp version.

(< - (member ?item ? l i s t)
(= ? l i s t (? f i r $ t . ? r e s t))
(or (= ?item ? f i r s t)

(member ? i tern ? r e s t)))

Let's see how the Prolog version of member works. Imagine that we have a Prolog
interpreter that can be given a query using the macro ?- , and that the definition of
member has been entered. Then we would see:

> (? - (member 2 (1 2 3)))
Yes;

> (? - (member 2 (1 2 3 2 1)))
Yes;
Yes;

The answer to the first query is "yes" because 2 is a member of the rest of the list. In
the second query the answer is "yes" twice, because 2 appears in the list twice. This
is a little surprising to Lisp programmers, but there still seems to be a fairly close
correspondence between Prolog's and Lisp's member. However, there are things that
the Prolog member can do that Lisp cannot:

> (? - (member ?x (1 2 3)))
?X = 1 ;
?X = 2
?X = 3

Here member is used not as a predicate but as a generator of elements in a Hst.
While Lisp functions always map from a specified input (or inputs) to a specified
output, Prolog relations can be used in several ways. For member, we see that the
first argument, ?x, can be either an input or an output, depending on the goal that
is specified. This power to use a single specification as a function going in several
different directions is a very flexible feature of Prolog. (Unfortunately, while it works
very well for simple relations like member, in practice it does not work well for large
programs. It is very difficult to, say, design a compiler and automatically have it work
as a disassembler as well.)

360 LOGIC PROGRAMMING

Now we turn to the implementation of the Prolog interpreter, as summarized in
figure 1 1 . 1 . The first implementation choice is the representation of rules and facts.
We will build a single uniform data base of clauses, without distinguishing rules from
facts. The simplest representation of clauses is as a cons cell holding the head and
the body. For facts, the body will be empty.

; ; Clauses are represented as (head . body) cons ce l l s
(defun clause-head (clause) (f i r s t c lause))
(defun clause-body (c lause) (rest c lause))

The next question is how to index the clauses. Recall the procedural interpretation
of a clause: when we want to prove the head, we can do it by proving the body. This
suggests that clauses should be indexed in terms of their heads. Each clause will be
stored on the property list of the predicate of the head of the clause. Since the data
base is now distributed across the property list of various symbols, we represent the
entire data base as a Hst of symbols stored as the value of *db-predi cates*.

Clauses are stored on the predicate 's p l i s t
(defun get-c lauses (pred) (get pred ' c l auses))
(defun predicate (re la t ion) (f i r s t re la t ion))

(defvar *db-predicates* ni l
"A l i s t of al l predicates stored in the database.")

Now we need a way of adding a new clause. The work is split up into the macro < - ,
which provides the user interface, and a function, add-cl a use, that does the work.
It is worth defining a macro to add clauses because in effect we are defining a new
language: Prolog-In-Lisp. This language has only two syntactic constructs: the < -
macro to add clauses, and the ? - macro to make queries.

(defmacro < - (&rest clause)
"Add a clause to the data base. "
•(add-clause ' . c l a u s e))

(defun add-clause (clause)
"Add a clause to the data base, indexed by head's predicate."

The predicate must be a non-variable symbol,
(le t ((pred (predicate (clause-head c lause))))

(asser t (and (symbolp pred) (not (var iable-p pred))))
(pushnew pred *db-predicates*)
(set f (get pred ' c lauses)

(nconc (get-c lauses pred) (l i s t c lause)))
pred))

Now all we need is a way to remove clauses, and the data base will be complete.

11.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 361

< -
? -

Top-Level Macros
Add a clause to the data base.
Prove a query and print answer(s).

*db-precli c a t e s *
occurs-check

Special Variables
A list of all predicates.
Should we check for circular unifications?

c lause
v a r i a b l e

Data Types
Consists of a head and a body.
A symbol starting with a ?.

add-c lause
prove
p rove -a l l
t o p - l e v e l - p r o v e

Major Functions
Add a clause to the data base.
Return a list of possible solutions to goal.
Return a list of solutions to the conjunction of goals.
Prove the goals, and print variables readably.

g e t - c l a u s e s
predicate
c l e a r - d b
c l e a r - p r e d i c a t e
rename-variables
un ique- f ind-anywhere - i f
s h o w - p r o l o g - s o l u t i ons
show-pro log -vars
v a r i a b l e s - i n

Auxiliary F^mctions
Find all the clauses for a predicate.
Pick out the predicate from a relation.
Remove all clauses (for all predicates) from the data base.
Remove the clauses for a single predicate.
Replace all variables in χ with new ones.
Find all unique leaves satisfying predicate.
Print the variables in each of the solutions.
Print each variable with its binding.
Return a list of all the variables in an expression.

f a i l
no -b ind ings

Previously Defined Constants
An indication that unification has failed.
A succesful unification with no variables.

uni fy
u n i f y - v a r i a b l e
occurs-check
s u b s t - b i n d i n g s
g e t - b i n d i n g
lookup
extend-b indings
v a r i a b l e - p
reuse-cons

Previously Defined Functions
Return bindings that unify two expressions (section 11.2).
Unify a variable against an expression.
See if a particular variable occurs inside an expression.
Substitute bindings into an expression.
Get the (var . val) binding for a variable.
Get the value for a variable.
Add a new variable/value pair to a binding list.
Is the argument a variable?
Like cons, except will reuse an old value if possible.

Figure 1 1 . 1 : Glossary for the Prolog Interpreter

362 LOGIC PROGRAMMING

(defun clear-db ()
"Remove al l c lauses (for al l predicates) from the data base. "
(mapc # 'c lear-predicate *db-predicates*))

(defun clear-predicate (predicate)
"Remove the clauses for a s ing le predicate."
(set f (get predicate ' c lauses) n i l))

A data base is useless without a way of getting data out, as well as putting it in. The
function prove will be used to prove that a given goal either matches a fact that is in
the data base directly or can be derived from the rules. To prove a goal, first find all
the candidate clauses for that goal. For each candidate, check if the goal unifies with
the head of the clause. If it does, try to prove all the goals in the body of the clause.
For facts, there will be no goals in the body, so success will be immediate. For rules,
the goals in the body need to be proved one at a time, making sure that bindings from
the previous step are maintained. The implementation is straightforward:

(defun prove (goal b indings)
"Return a l i s t of poss ib le so lu t ions to g o a l . "
(mapcan #'(lambda (clause)

(let ((new-clause (rename-variables c lause)))
(prove-al l (clause-body new-clause)

(unify goal (clause-head new-clause) b ind ings))))
(get-c lauses (predicate goa l))))

(defun prove-al l (goals b indings)
"Return a l i s t of so lu t ions to the conjunction of goals . ' "
(cond ((eq bindings f a i l) f a i l)

((nul l goa ls) (l i s t b ind ings))
(t (mapcan #*(lambda (goa l l - so lu t ion)

(prove-al l (rest goals) goa l l - so lu t i on))
(prove (f i r s t goa ls) b ind ings)))))

The tricky part is that we need some way of distinguishing a variable ? x in one
clause from another variable ? x in another clause. Otherwise, a variable used in two
different clauses in the course of a proof would have to take on the same value in
each clause, which would be a mistake. Just as arguments to a function can have
different values in different recursive calls to the function, so the variables in a clause
are allowed to take on different values in different recursive uses. The easiest way to
keep variables distinct is just to rename all variables in each clause before it is used.
The function rename-var i abl es does this:^

^See exercise 11.12 for an alternative approach.

/1.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 363

(defun rename-variables (x)
"Replace al l var iables in χ with new ones. "
(sub l i s (mapcar #'(lambda (var) (cons var (gensym (s t r ing va r))))

(va r iab les - in x))
X))

Rename - variables makes use of gensym, a function that generates a new symbol each
time it is called. The symbol is not interned in any package, which means that there
is no danger of a programmer typing a symbol of the same name. The predicate
vari abl es - i η and its auxiliary function are defined here:

(defun va r iab les - in (exp)
"Return a l i s t of a l l the var iables in EXP. "
(unique-f ind-anywhere-i f #*var iable-p exp))

(defun unique-f ind-anywhere-if (predicate tree
Äoptional found-so- far)

"Return a l i s t of leaves of tree sa t i s f y i ng predicate,
with dupl icates removed."
(i f (atom tree)

(i f (funcal l predicate tree)
(adjoin tree found-so- far)
found-so- far)

(unique-f ind-anywhere-i f
predicate
(f i r s t tree)
(unique-f ind-anywhere-i f predicate (rest tree)

found-so- fa r))))

Finally, we need a nice interface to the proving functions. We will use ? - as a macro
to introduce a query. The query might as well allow a conjunction of goals, so ? - will
call prove-all . Together,<- and?- def ine the complete syntax of our Prolog-In-Lisp
language.

(defmacro ? - (&rest goals) ' (prove-a l l ' . g o a l s no-b indings))

Now we can enter all the clauses given in the prior example:

« - (l i kes Kim Robin))
(< - (l i kes Sandy Lee))
(< - (l i kes Sandy Kim))
(< - (l i kes Robin ca ts))
(< - (l i kes Sandy ?x) (l i kes ?x ca ts))
(< - (l i kes Kim ?x) (l i kes ?x Lee) (l i kes ?x Kim))
(< - (l i kes ?x ?x))

364 LOGIC PROGRAMMING

To ask whom Sandy Hkes, we would use:

> (? - (l i kes Sandy ?who))
(((?WHO . LEE))

((?WHO . KIM))
((7X2856 . ROBIN) (?WHO . 7X2856))
((7X2860 . CATS) (7X2857 . CATS) (7X2856 . SANDY) (7WH0 . 7X2856))
((7X2865 . CATS) (7X2856 . 7X2865) (7WH0 . 7X2856))
((7WH0 . SANDY) (7X2867 . SANDY)))

Perhaps surprisingly, there are six answers. The first two answers are Lee and Kim,
because of the facts. The next three stem from the clause that Sandy likes everyone
who likes cats. First, Robin is an answer because of the fact that Robin likes cats.
To see that Robin is the answer, we have to unravel the bindings: ?who is bound to
?x2856, which is in turn bound to Robin.

Now we're in for some surprises: Sandy is listed, because of the following reason
ing: (1) Sandy likes anyone/thing who likes cats, (2) cats like cats because everyone
likes themself, (3) therefore Sandy likes cats, and (4) therefore Sandy likes Sandy.
Cats is an answer because of step (2), and finally, Sandy is an answer again, because
of the clause about liking oneself. Notice that the result of the query is a list of
solutions, where each solution corresponds to a different way of proving the query
true. Sandy appears twice because there are two different ways of showing that
Sandy likes Sandy. The order in which solutions appear is determined by the order
of the search. Prolog searches for solutions in a top-down, left-to-right fashion. The
clauses are searched from the top down, so the first clauses entered are the first ones
tried. Within a clause, the body is searched left to right. In using the (1 i kes Ki m ?x)
clause, Prolog would first try to find an χ who likes Lee, and then see if χ likes Kim.

The output from prove-al 1 is not very pretty. We can fix that by defining a new
function, top-level -prove, which calls prove-all as before, but then passes the
list of solutions to show-prolog-solutions, which prints them in a more readable
format Note thatshow-prolog-solutions returns no values: (values) . This means
the read-eval-print loop will not print anything when (values) is the result of a
top-level call.

(defmacro 7- (&rest goals)
*(top- level-prove * ,goa l s))

(defun top- level-prove (goals)
"Prove the goa l s , and pr int var iables readably."
(show-prolog-solut ions

(va r iab les - in goals)
(prove-al l goals no-b ind ings)))

/1.2 IDEA 2: UNIFICATION OF LOGIC VARIABLES 365

(defun show-prolog-solut ions (vars so lu t ions)

"Pr int the var iables in each of the so lu t i ons . "

(i f (null so lu t ions)

(format t "-&No.")

(mapc #'(lambda (so lu t ion) (show-prolog-vars vars so lu t ion))

so lu t ions))

(va lues))

(defun show-prolog-vars (vars b indings)

"Pr int each var iable with i t s b ind ing. "

(i f (nul l vars)

(format t "~&Yes")

(do l i s t (var vars)

(format t ""Ä^a = ~a" var

(subst-b indings bindings va r))))

(princ " ; "))

Now let's try some queries:

> (? - (l i kes Sandy ?who))

?WHO = LEE;

?WHO = KIM;

?WHO = ROBIN;

?WHO = SANDY;

?WHO = CATS;

?WHO = SANDY;

> (? - (l i kes ?who Sandy))

?WHO = SANDY;

?WHO = KIM;

?WHO = SANDY;

> (? - (l i kes Robin Lee))

No.

The first query asks again whom Sandy likes, and the second asks who likes Sandy.
The third asks for confirmation of a fact. The answer is "no," because there are no
clauses or facts that say Robin likes Lee. Here's another example, a list of pairs of
people who are in a mutual liking relation. The last answer has an uninstantiated
variable, indicating that everyone likes themselves.

366 LOGIC PROGRAMMING

> (? - (l i kes ?x ?y) (l i kes ?y ? x))

?Y = KIM

?X = SANDY;

?Y = SANDY

?X = SANDY;

?Y = SANDY

?X = SANDY;

?Y = SANDY

?X = KIM;

?Y = SANDY

?X = SANDY;

?Y = 7X3251

?X = 7X3251;

It makes sense in Prolog to ask open-ended queries like "what lists is 2 a member of?"
or even "what items are elements of what lists?"

(7- (member 2 71 i s t))

(7- (member 7item 71 is t))

These queries are valid Prolog and will return solutions, but there will be an infinite
number of them. Since our interpreter collects all the solutions into a single list
before showing any of them, we will never get to see the solutions. The next section
shows how to write a new interpreter that fixes this problem.

El Exercise 11.1 [m] The representation of relations has been a list whose first element
is a symbol. However, for relations with no arguments, some people prefer to write
(<- ρ q r) rather than (<- (p) (q) (r)) . Make changes so that either form is
acceptable.

SI Exercise 11.2 [m] Some people find the < - notation difficult to read. Define macros
rul e and fac t so that we can write:

(fact (l i kes Robin ca ts))

(rule (l i kes Sandy 7x) i f (l i kes 7x ca ts))

/13 IDEA 3: AUTOMATIC BACKTRACKING 367

11.3 Idea 3: Automatic Backtracking
The Prolog interpreter implemented in the last section solves problems by returning a
list of all possible solutions. We'll call this a batch approach, because the answers are
retrieved in one uninterrupted batch of processing. Sometimes that is just what you
want, but other times a single solution will do. In real Prolog, solutions are presented
one at a time, as they are found. After each solution is printed, the user has the
option of asking for more solutions, or stopping. This is an incremental approach.
The incremental approach will be faster when the desired solution is one of the first
out of many alternatives. The incremental approach will even work when there is an
infinite number of solutions. And if that is not enough, the incremental approach can
be implemented so that it searches depth-first. This means that at any point it will
require less storage space than the batch approach, which must keep all solutions in
memory at once.

In this section we implement an incremental Prolog interpreter. One approach
would be to modify the interpreter of the last section to use pipes rather than lists.
With pipes, unnecessary computation is delayed, and even infinite lists can be
expressed in a finite amount of time and space. We could change to pipes simply by
changing the mapcan in prove and prove-a11 to mappend-pi pe (page 286). The books
by Winston and Horn (1988) and by Abelson and Sussman (1985) take this approach.
We take a different one.

The first step is a version of prove and prove-al 1 that return a single solution
rather than a list of all possible solutions. This should be reminiscent of achi eve and
achieve-a11 from gps (chapter 4). Unlike gps, recursive subgoals and clobbered
siblinggoals are not checked for. However, prove is required to search systematically
through all solutions, so it is passed an additional parameter: a list of other goals to
achieve after achieving the first goal. This is equivalent to passing a continuation to
prove. The result is that if prove ever succeeds, it means the entire top-level goal has
succeeded. If it fails, it just means the program is backtracking and trying another
sequence of choices. Note that prove relies on the fact that f ai 1 is ni 1, because of
the way it uses some.

(defun prove-al l (goals b indings)
"Find a so lut ion to the conjunction of g o a l s . "
(cond ((eq bindings f a i l) f a i l)

((nul l goals) b indings)
(t (prove (f i r s t goals) bindings (rest g o a l s)))))

(defun prove (goal bindings other-goals)
"Return a l i s t of poss ib le so lu t ions to g o a l . "
(some #*(lambda (clause)

(le t ((new-clause (rename-variables c lause)))
(prove-al l

(append (clause-body new-clause) o ther-goals)

368 LOGIC PROGRAMMING

(unify goal (clause-head new-clause) b ind ings))))
(get-c lauses (predicate goa l))))

If ρ rove does succeed, it means a solution has been found. If we want more solutions,
we need some way of making the process fail, so that it will backtrack and try again.
One way to do that is to extend every query with a goal that will print out the variables,
and ask the user if the computation should be continued. If the user says yes, then
the goal fails, and backtracking starts. If the user says no, the goal succeeds, and since
it is the final goal, the computation ends. This requires a brand new type of goal: one
that is not matched against the data base, but rather causes some procedure to take
action. In Prolog, such procedures are called primitives, because they are built-in to
the language, and new ones may not be defined by the user. The user may, of course,
define nonprimitive procedures that call upon the primitives.

In our implementation, primitives will be represented as Lisp functions. A
predicate can be represented either as a list of clauses (as it has been so far) or as a
single primitive. Here is a version of prove that calls primitives when appropriate:

(defun prove (goal bindings other-goals)
"Return a l i s t of poss ib le so lu t ions to g o a l . "
(le t ((c lauses (get-c lauses (predicate goa l))))

(i f (l i s t p c lauses)
(some

#'(lambda (clause)
(let ((new-clause (rename-variables c lause)))

(prove-al1
(append (clause-body new-clause) other-goals)
(unify goal (clause-head new-clause) b ind ings))))

c lauses)
The predicate 's "c lauses" can be an atom;

; ; a pr imit ive function to cal l
(funcall c lauses (rest goal) bindings

o ther -goa ls))))

Here is theversionof top - leve l -provethatadds the primitivegoalshow-prolog-vars
totheendofthelistofgoals. Note that this versionneednot call s h o w - p r o l o g - s o l u t ions
itself, since the printing will be handled by the primitive for show-prol o g - v a r s .

(defun top- level-prove (goals)
(prove-al l ' (.©goa ls (show-prolog-vars ,®(var iab les- in goa l s)))

no-bindings)
(format t "~&No.")
(values))

Here we define the primitive show-prol og- v a r s . All primitives must be functions of

/13 IDEA 3: AUTOMATIC BACKTRACKING 369

three arguments: a Hst of arguments to the primitive relation (here a list of variables
to show), a binding list for these arguments, and a list of pending goals. A primitive
should either return f ai 1 or call prove-al 1 to continue.

(defun show-prolog-vars (vars bindings other-goals)

"Pr int each var iable with i t s b inding.

Then ask the user i f more so lu t ions are des i red . "

(i f (null vars)

(format t "~&Yes")

(do l i s t (var vars)

(format t ""Ä^a = ~a" var

(subst-b indings bindings va r))))

(i f (continue-ρ)

fa i l

(prove-al l other-goals b ind ings)))

Since primitives are represented as entries on the clauses property of predicate
symbols, we have to register show- prol og - va rs as a primitive like this:

(set f (get 'show-prolog-vars ' c lauses) 'show-prolog-vars)

Finally, the Lisp predicate conti nue-p asks the user if he or she wants to see more
solutions:

(defun continue-p ()

"Ask user i f we should continue looking for so l u t i ons . "

(case (read-char)

(# \ ; t)

(# \ . n i l)

(#\newline (continue-p))

(otherwise

(format t " Type ; to see more or . to stop")

(cont inue-p))))

This version works just as well as the previous version on finite problems. The only
difference is that the user, not the system, types the semicolons. The advantage is
that we can now use the system on infinite problems as well. First, we'll ask what
Hsts 2 is a member of:

370 LOGIC PROGRAMMING

> (?- (member 2 ? l i s t))
?LIST = (2 . 7REST3302);
?LIST = (7X3303 2 . 7REST3307);
7LIST = (7X3303 7X3308 2 . 7REST3312);
7LIST = (7X3303 7X3308 7X3313 2 . 7REST3317).
No.

The answers mean that 2 is a member of any Ust that starts with 2, or whose second
element is 2, or whose third element is 2, and so on. The infinite computation was
halted when the user typed a period rather than a semicolon. The "no" now means
that there are no more answers to be printed; it will appear if there are no answers at
all, if the user types a period, or if all the answers have been printed.

We can ask even more abstract queries. The answer to the next query says that
an item is an element of a list when it is the the first element, or the second, or the
third, or the fourth, and so on,

> (7- (member 7item 71ist))
7 ITEM = 7ITEM3318
7LIST = (7ITEM3318 . 7REST3319);
7ITEM = 7ITEM3323
7LIST = (7X3320 7ITEM3323 . 7REST3324):
7 ITEM = 7ITEM3328
7LIST = (7X3320 7X3325 7ITEM3328 . 7REST3329);
7 ITEM = 7ITEM3333
7LIST = (7X3320 7X3325 7X3330 7ITEM3333 . 7REST3334).
No.

Now let's add the definition of the relation 1 ength:

« - (length () 0))
« - (length (7x . 7y) (1+ 7n)) (length 7y 7n))

Here are some queries showing that length can be used to find the second argument,
the first, or both:

> (7- (length (a b e d) 7n))
7N = (1+ (1+ (1+ (1+ 0)))) ;
No.

> (7- (length 71ist (1+ (1+ 0))))
7LIST = (7X3869 7X3872);
No.

/1.3 IDEA 3: AUTOMATIC BACKTRACKING 371

> (? - (length ? l i s t ?n))
?LIST = NIL
?N = 0;
?LIST = (?X3918)
?N = (1+ 0) ;
?L IST = (7X3918 7X3921)
7N = (1+ (1+ 0)) .
No.

The next two queries show the two lists of length two with a as a member. Both
queries give the correct answer, a two-element list that either starts or ends with a.
However, the behavior after generating these two solutions is quite different.

> (7- (length 71 (1+ (1+ 0))) (member a 71))
7L = (A 7X4057);
7L = (7Y4061 A) ;
No.

> (7- (member a 71) (length 71 (1+ (1+ 0))))
7L = (A 7X4081);
7L = (7Y4085 A) ; [Abor t]

In the first query, l ength only generates one possible solution, the list with two
unbound elements, member takes this solution and instantiates either the first or the
second element to a.

In the second query, member keeps generating potential solutions. The first two
partial solutions, where a is the first or second member of a list of unknown length,
are extended by 1 ength to yield the solutions where the list has length two. After
that, member keeps generating longer and longer lists, which 1 ength keeps rejecting.
It is implicit in the definition of member that subsequent solutions will be longer, but
because that is not explicitly known, they are all generated anyway and then explicitly
tested and rejected by 1 ength.

This example reveals the limitations of Prolog as a pure logic-programming lan
guage. It turns out the user must be concerned not only about the logic of the problem
but also with the flow of control. Prolog is smart enough to backtrack and find all
solutions when the search space is small enough, but when it is infinite (or even
very large), the programmer still has a responsibility to guide the flow of control.
It is possible to devise languages that do much more in terms of automatic flow of
control."* Prolog is a convenient and efficient middle ground between imperative
languages and pure logic.

^See the MU-Prolog and NU-Prolog languages (Naish 1986).

372 LOGIC PROGRAMMING

Approaches to Backtracking

Suppose you are asked to make a "small" change to an existing program. The
problem is that some function, f, which was thought to be single-valued, is now
known to return two or more vaUd answers in certain circumstances. In other words,
f is nondeterministic. (Perhaps f is sqrt , and we now want to deal with negative
numbers). What are your alternatives as a programmer? Five possibiUties can be
identified:

• Guess. Choose one possibility and discard the others. This requires a means
of making the right guesses, or recovering from wrong guesses.

• Know. Sometimes you can provide additional information that is enough to
decide what the right choice is. This means changing the calling function(s) to
provide the additional information.

• Return a list. This means that the calling function(s) must be changed to expect
a list of replies.

• Return a pipe, as defined in section 9.3. Again, the calling function(s) must be
changed to expect a pipe.

• Guess and save. Choose one possibility and return it, but record enough
information to allow computing the other possibilities later. This requires
saving the current state of the computation as well as some information on the
remaining possibilities.

The last alternative is the most desirable. It is efficient, because it doesn't require
computing answers that are never used. It is unobtrusive, because it doesn't require
changing the calling function (and the calling function's calling function) to expect a
list or pipe of answers. Unfortunately, it does have one major difficulty: there has
to be a way of packaging up the current state of the computation and saving it away
so that it can be returned to when the first choice does not work. For our Prolog
interpreter, the current state is succinctly represented as a list of goals. In other
problems, it is not so easy to summarize the entire state.

We will see in section 22.4 that the Scheme dialect of Lisp provides a function,
ca 11 - wi th - cu r rent - conti nua t i on, that does exactly what we want: it packages the
current state of the computation into a function, which can be stored away and
invoked later. Unfortunately, there is no corresponding function in Common Lisp.

Anonymous Variables

Before moving on, it is useful to introduce the notion of an anonymous variable.
This is a variable that is distinct from all others in a clause or query, but which the

/1.4 THE ZEBRA PUZZLE 373

programmer does not want to bother to name. In real Prolog, the underscore is used
for anonymous variables, but we will use a single question mark. The definition of
member that follows uses anonymous variables for positions within terms that are not
needed within a clause:

(< - (member ?item (?item . ?)))
(< - (member ?item (? . ? r e s t)) (member ?item ? r e s t))

However, we also want to allow several anonymous variables in a clause but still be
able to keep each anonymous variable distinct from all other variables. One way to
do that is to replace each anonymous variable with a unique variable. The function
repl ace - ? - va rs uses gensym to do just that. It is installed in the top-level macros <-
and ? - so that all clauses and queries get the proper treatment.

(defmacro < - (&rest clause)
"Add a clause to the data base. "
*(add-clause ' . (r e p l a c e - ? - v a r s c lause)))

(defmacro ? - (&rest goals)
"Make a query and pr int answers."
' (top- level -prove ' . (r e p l a c e - ? - v a r s goa l s)))

(defun rep lace-?-vars (exp)
"Replace any ? within exp with a var of the form ? 1 2 3 . "
(cond ((eq exp ' ?) (gensym " ? "))

((atom exp) exp)
(t (reuse-cons (rep lace-?-vars (f i r s t exp))

(rep lace-?-vars (rest exp))
exp))))

A named variable that is used only once in a clause can also be considered an
anonymous variable. This is addressed in a different way in section 12.3.

11.4 The Zebra Puzzle
Here is an example of something Prolog is very good at: a logic puzzle. There are
fifteen facts, or constraints, in the puzzle:

1. There are five houses in a line, each with an owner, a pet, a cigarette, a drink,
and a color.

2. The Englishman lives in the red house.

3. The Spaniard owns the dog.

374 LOGIC PROGRAMMING

4 . Coffee is drunk in the green house.

5 . The Ukrainian drinks tea.

6. The green house is immediately to the right of the ivory house.

7. The Winston smoker owns snails.

8. Kools are smoked in the yellow house.

9. Milk is drunk in the middle house.

1 0 . The Norwegian lives in the first house on the left.

1 1 . The man who smokes Chesterfields lives next to the man with the fox.

1 2 . Kools are smoked in the house next to the house with the horse.

1 3 . The Lucky Strike smoker drinks orange juice.

1 4 . The Japanese smokes Parliaments.

1 5 . The Norwegian lives next to the blue house.

The questions to be answered are: who drinks water and who owns the zebra? To
solve this puzzle, we first define the relations nextto (for "next to") and i ri ght (for
"immediately to the right of"). They are closely related to member, which is repeated
here.

(< - (member ?item (?item . ? r e s t)))
(< - (member ?item (?x . ? r e s t)) (member ?item ? r e s t))

(< - (nextto ?x ?y ? l i s t) (i r i gh t ?x ?y ? l i s t))
(< - (nextto ?x ?y ? l i s t) (i r i gh t ?y ?x ? l i s t))

(< - (i r i gh t ? l e f t ? r i gh t (? l e f t ? r i gh t . ? r e s t)))
(< - (i r i gh t Tieft ? r i gh t (?x . ? r e s t))

(i r i gh t ? l e f t ? r i gh t ? r e s t))

« - (= ?x ?x))

We also defined the identity relation, =. It has a single clause that says that any χ is
equal to itself. One might think that this implements eq or equal. Actually, since
Prolog uses unification to see if the two arguments of a goal each unify with ?x, this
means that = is unification.

Now we are ready to define the zebra puzzle with a single (long) clause. The
variable ?h represents the list of five houses, and each house is represented by a term
of the form (house nationality pet cigarette drink color). The variable ?w is the water
drinker, and ?z is the zebra owner. Each of the 15 constraints in the puzzle is listed

11A THE ZEBRA PUZZLE 375

in the body of zebra, ahhough constraints 9 and 10 have been combined into the
first one. Consider constraint 2, "The EngUshman lives in the red house." This is
interpreted as "there is a house whose nationality is Englishman and whose color is
red, and which is a member of the list of houses": in other words, (member (house
englishman ? ? ? red) ?h). The other constraints are similarly straightforward.

(< - (zebra ?h ?w ?z)
Each house i s of the form:
(house nat ional i ty pet c igarette drink house-color)

(= ?h ((house norwegian ? ? ? ?) ;1 ,10
?
(house ? ? ? milk ?) ? ?)) ; 9

(member (house englishman ? ? ? red) ?h) ; 2
(member (house Spaniard dog ? ? ?) ?h) ; 3
(member (house 111 coffee green) ?h) ; 4
(member (house Ukra in ian ? ? tea ?) ?h) ; 5
(i r i gh t (house 1111 ivory) ; 6

(house 1111 green) ?h)
(member (house ? s n a i l s winston ? ?) ?h) ; 7
(member (house ? ? kools ? yel low) ?h) ; 8
(nextto (house ? ? chester f ie ld ? ?) ;11

(house ? fox ? ? ?) ?h)
(nextto (house ? ? kools ? ?) ;12

(house ? horse ? ? ?) ?h)
(member (house ? ? luckyst r ike orange-juice ?) ?h) ;13
(member (house Japanese ? parliaments ? ?) ?h) ;14
(nextto (house norwegian 1111) ;15

(house 1111 blue) ?h)
Now for the quest ions:

(member (house ?w ? ? water ?) ?h) ;Q1
(member (house ?z zebra 111) ?h)) ;Q2

Here's the query and solution to the puzzle:

> (? - (zebra ?houses ?water-drinker ?zebra-owner))
7H0USES = ((HOUSE NORWEGIAN FOX KOOLS WATER YELLOW)

(HOUSE UKRAINIAN HORSE CHESTERFIELD TEA BLUE)
(HOUSE ENGLISHMAN SNAILS WINSTON MILK RED)
(HOUSE SPANIARD DOG LUCKYSTRIKE ORANGE-JUICE IVORY)
(HOUSE JAPANESE ZEBRA PARLIAMENTS COFFEE GREEN))

7WATER-DRINKER = NORWEGIAN
7ZEBRA-0WNER = JAPANESE.
No.

This took 278 seconds, and profiHng (see page 288) reveals that the function prove was
called 12,825 times. A call to prove has been termed a logical inference, so our system

376 LOGIC PROGRAMMING

is performing 12825/278 = 46 logical inferences per second, or LIPS. Good Prolog
systems perform at 10,000 to 100,000 LIPS or more, so this is barely Hmping along.

Small changes to the problem can greatly affect the search time. For example,
the relation nextto holds when the first house is immediately right of the second, or
when the second is immediately right of the first. It is arbitrary in which order these
clauses are listed, and one might think it would make no difference in which order
they were listed. In fact, if we reverse the order of these two clauses, the execution
time is roughly cut in half.

11.5 The Synergy of Backtracking and
Unification

Prolog's backward chaining with backtracking is a powerful technique for generating
the possible solutions to a problem. It makes it easy to implement a generate-and-test
strategy, where possible solutions are considered one at a time, and when a candidate
solution is rejected, the next is suggested. But generate-and-test is only feasible when
the space of possible solutions is small.

In the zebra puzzle, there are five attributes for each of the five houses. Thus
there are 5! ^, or over 24 billion candidate solutions, far too many to test one at a time.
It is the concept of unification (with the corresponding notion of a logic variable) that
makes generate-and-test feasible on this puzzle. Instead of enumerating complete
candidate solutions, unification allows us to specify partial candidates. We start out
knowing that there are five houses, with the Norwegian living on the far left and
the milk drinker in the middle. Rather than generating all complete candidates that
satisfy these two constraints, we leave the remaining information vague, by unifying
the remaining houses and attributes with anonymous logic variables. The next
constraint (number 2) places the Englishman in the red house. Because of the way
member is written, this first tries to place the Englishman in the leftmost house. This
is rejected, because Englishman and Norwegian fail to unify, so the next possibiUty is
considered, and the Englishman is placed in the second house. But no other features
of the second house are specified—we didn't have to make separate guesses for the
Englishman's house being green, yellow, and so forth. The search continues, filling
in only as much as is necessary and backing up whenever a unification fails.

For this problem, unification serves the same purpose as the delay macro
(page 281). It allows us to delay deciding the value of some attribute as long as
possible, but to immediately reject a solution that tries to give two different values
to the same attribute. That way, we save time if we end up backtracking before the
computation is made, but we are still able to fill in the value later on.

It is possible to extend unification so that it is doing more work, and backtracking
is doing less work. Consider the following computation:

/1.6 DESTRUCTIVE UNIFICATION 377

(? - (length ?1 4)
(member d ?1) (member a ?1) (member c ?1) (member b ?1)
(= ?1 (a b c d)))

The first two Hnes generate permutations of the Hst (d a c b) , and the third line
tests for a permutation equal to (a b c d) . Most of the work is done by backtracking.
An alternative is to extend unification to deal with lists, as well as constants and
variables. Predicates like 1 ength and member would be primitives that would have to
know about the representation of lists. Then the first two lines of the above program
would set ?1 to something like # s (l i s t : l e n g t h 4 :members (d a c d)) . The
third line would be a call to the extended unification procedure, which would further
specify ?1 to be something like:

#s(11st rlength 4 imembers (d a c d) :order (a b c d))

By making the unification procedure more complex, we eliminate the need for back
tracking entirely.

t¿3 Exercise 11.3 [s] Would a unification algorithm that delayed member tests be a good
idea or a bad idea for the zebra puzzle?

11.6 Destructive Unification
As we saw in section 11.2, keeping track of a binding list of variables is a little tricky.
It is also prone to inefficiency if the binding list grows large, because the list must
be searched linearly, and because space must be allocated to hold the binding list.
An alternative implementation is to change u n i f y to a destructive operation. In
this approach, there are no binding lists. Instead, each variable is represented as
a structure that includes a field for its binding. When the variable is unified with
another expression, the variable's binding field is modified to point to the expression.
Such variables will be called v a r s to distinguish them from the implementation of
variables as symbols starting with a question mark, v a r s are defined with the
following code:

(defconstant unbound "Unbound")

(defstruct var name (binding unbound))

(defun bound-p (var) (not (eq (var-binding var) unbound)))

The macro de re f gets at the binding of a variable, returning its argument when it is an

378 LOGIC PROGRAMMING

unbound variable or a nonvariable expression. It includes a loop because a variable
can be bound to another variable, which in turn is bound to the ultimate value.

Normally, it would be considered bad practice to implement de ref as a macro,
since it could be implemented as an inline function, provided the caller was willing
to write (s e t f χ (deref x)) instead of (de ref x) . However, de ref will appear
in code generated by some versions of the Prolog compiler that will be presented in
the next section. Therefore, to make the generated code look neater, I have allowed
myself the luxury of the deref macro.

(defmacro deref (exp)
"Follow pointers for bound va r i ab les . "
' (progn (loop while (and (var-p ,exp) (bound-p ,exp))

do (set f ,exp (var-binding ,exp)))
,exp))

The function u n i f y ! below is the destructive version of uni fy . It is a predicate
that returns true for success and false for failure, and has the side effect of altering
variable bindings.

(defun uni fy ! (x y)
"Destruct ively unify two expressions"
(cond ((eql (deref x) (deref y)) t)

((var-p x) (se t -b ind ing! χ y))
((var-p y) (se t -b ind ing! y χ))
((and (consp χ) (consp y))

(and (uni fy ! (f i r s t x) (f i r s t y))
(uni fy ! (rest x) (res t y))))

(t n i l)))

(defun set -b ind ing! (var value)
"Set v a r ' s binding to value. Always succeeds (returns t) . "
(set f (var-binding var) value)
t)

To make vars easier to read, we can install a : pr i n t - f uncti on:

(defstruct (var (ip r in t - funct ion p r in t -var))
name (binding unbound))

(defun pr in t -var (var stream depth)
(i f (or (and (numberp *p r in t - l eve l *)

(>= depth *p r in t - l eve l *))
(var-p (deref va r)))

(format stream " ? ~ a " (var-name var))
(write var :stream stream)))

/1.6 DESTRUCTIVE UNIFICATION 379

Thisis the first example of a carefully crafted : p r i n t - f unc t i on. There are three things
to notice about it. First, it explicitly writes to the stream passed as the argument.
It does not write to a default stream. Second, it checks the variable depth against
*p r i nt -1 evel *, and prints just the variable name when the depth is exceeded. Third,
it uses wr i te to print the bindings. This is because wr i te pays attention to the current
values of *p r i n t - e s c a p e * , * p r i n t - p r e t t y * , and soon. Other printing functions such
as p r i n l or p r i nt do not pay attention to these variables.

N o w , for backtracking purposes, we want to make s e t - b i ndi n g ! keep track of
the bindings that were made, so they can be undone later:

(defvar * t r a i l * (make-array 200 i f i l l - po in te r 0 ladjustable t))

(defun set -b ind ing! (var value)
"Set v a r ' s binding to value, after saving the var iable
in the t r a i l . Always returns t."
(unless (eq var value)

(vector-push-extend var * t r a i l *)
(set f (var-binding var) value))

t)

(defun undo-bindings! (o l d - t r a i l)
"Undo al l bindings back to a given point in the t r a i l . "
(loop unti l (= (f i l l - po in te r n r a i l *) o l d - t r a i l)

do (set f (var-binding (vector-pop * t r a i l *)) unbound)))

N o w we need a way of making new variables, where each one is distinct. That could
be done by gensym-ing a new name for each variable, but a quicker solution is just to
increment a counter. The constructor function ? is defined to generate a new variable
with a name that is a new integer. This is not strictly necessary; we could have just
used the automatically provided constructor make-var. However, I thought that the
operation of providing new anonymous variable was different enough from providing
a named variable that it deserved its own function. Besides, make-var may be less
efficient, because it has to process the keyword arguments. The function ? has no
arguments; it just assigns the default values specified in the slots of the va r structure.

(defvar *var-counter* 0)

(defstruct (var (iconstructor ? ())
(:pr in t - funct ion p r in t -var))

(name (incf *var-counter*))
(binding unbound))

A reasonable next step would be to use destructive unification to make a more
efficient interpreter. This is left as an exercise, however, and instead we put the
interpreter aside, and in the next chapter develop a compiler.

380 LOGIC PROGRAMMING

11.7 Prolog in Prolog

As stated at the start of this chapter, Prolog has many of the same features that
make Lisp attractive for program development. Just as it is easy to write a Lisp
interpreter in Lisp, it is easy to write a Prolog interpreter in Prolog. The following
Prolog metainterpreter has three main relations. The relation c1 a use is used to store
clauses that make up the rules and facts that are to be interpreted. The relation
prove is used to prove a goal. It calls prove-al 1, which attempts to prove a list of
goals, prove-al 1 succeeds in two ways: (1) if the list is empty, or (2) if there is some
clause whose head matches the first goal, and if we can prove the body of that clause,
followed by the remaining goals:

(< - (prove ?goa l) (prove-al l (?goa l)))

(< - (prove-al l n i l))
(< - (prove-al l (?goal . ?goa l s))

(clause (< - ?goal . ?body))
(concat ?body ?goa ls ?new-goals)
(prove-al l ?new-goals))

Now we add two clauses to the data base to define the member relation:

(< - (clause (< - (mem ?x (?x . ? y)))))
(< - (clause (< - (mem ?x (? . ? z)) (mem ?x ? z))))

Finally, we can prove a goal using our interpreter:

(? - (prove (mem ?x (1 2 3))))
?X = 1 ;
?X = 2 ;
?X = 3 ;
No.

11.8 Prolog Compared to Lisp

Many of the features that make Prolog a succesful language for AI (and for program
development in general) are the same as Lisp's features. Let's reconsider the list of
features that make Lisp different from conventional languages (see page 25) and see
what Prolog has to offer:

/1.8 PROLOG COMPARED TO LISP 381

• Built-in Support for Lists (and other data types). New data types can be created
easily using lists or structures (structures are preferred). Support for reading,
printing, and accessing components is provided automatically. Numbers,
symbols, and characters are also supported. However, because logic variables
cannot be altered, certain data structures and operations are not provided. For
example, there is no way to update an element of a vector in Prolog.

• Automatic Storage Management. The programmer can allocate new objects with
out worrying about reclaiming them. Reclaiming is usually faster in Prolog than
in Lisp, because most data can be stack-allocated instead of heap-allocated.

• Dynamic Typing. Declarations are not required. Indeed, there is no standard
way to make type declarations, although some implementations allow for them.
Some Prolog systems provide only fixnums, so that eliminates the need for a
large class of declarations.

• First-Class Functions. Prolog has no equivalent of 1 ambda, but the built-in pred
icate cal 1 allows a term—a piece of data—to be called as a goal. Although
backtracking choice points are not first-class objects, they can be used in a way
very similar to continuations in Lisp.

• Uniform Syntax. Like Lisp, Prolog has a uniform syntax for both programs and
data. This makes it easy to write interpreters and compilers in Prolog. While
Lisp's prefix-operator list notation is more uniform, Prolog allows infix and
postfix operators, which may be more natural for some applications.

• Interactive Environment. Expressions can be immediately evaluated. High-
quality Prolog systems offer both a compiler and interpreter, along with a host
of debugging tools.

• Extensibility. Prolog syntax is extensible. Because programs and data share
the same format, it is possible to write the equivalent of macros in Prolog and
to define embedded languages. However, it can be harder to ensure that the
resulting code will be compiled efficiently. The details of Prolog compilation
are implementation-dependent.

To put things in perspective, consider that Lisp is at once one of the highest-level
languages available and a universal assembly language. It is a high-level language
because it can easily capture data, functional, and control abstractions. It is a good
assembly language because it is possible to write Lisp in a style that directly reflects
the operations available on modern computers.

Prolog is generally not as efficient as an assembly language, but it can be more
concise as a specification language, at least for some problems. The user writes
specifications: lists of axioms that describe the relationships that can hold in the
problem domain. If these specifications are in the right form, Prolog's automatic

382 LOGIC PROGRAMMING

backtracking can find a solution, even though the programmer does not provide an
explicit algorithm. For other problems, the search space will be too large or infinite,
or Prolog's simple depth-first search with backup will be too inflexible. In this case,
Prolog must be used as a programming language rather than a specification language.
The programmer must be aware of Prolog's search strategy, using it to implement an
appropriate algorithm for the problem at hand.

Prolog, like Lisp, has suffered unfairly from some common myths. It has been
thought to be an inefficient language because early implementations were inter
preted, and because it has been used to write interpreters. But modern compiled
Prolog can be quite efficient (see Warren et al. 1977 and Van Roy 1990). There is a
temptation to see Prolog as a solution in itself rather than as a programming language.
Those who take that view object that Prolog's depth-first search strategy and basis in
predicate calculus is too inflexible. This objection is countered by Prolog program
mers who use the facilities provided by the language to build more powerful search
strategies and representations, just as one would do in Lisp or any other language.

11.9 History and References
Cordell Green (1968) was the first to articulate the view that mathematical results
on theorem proving could be used to make deductions and thereby answer queries.
However, the major technique in use at the time, resolution theorem proving (see
Robinson 1965), did not adequately constrain search, and thus was not practical.
The idea of goal-directed computing was developed in Carl Hewitt's work (1971) on
the PLANNER language for robot problem solving. He suggested that the user provide
explicit hints on how to control deduction.

At about the same time and independently, Alain Colmerauer was developing
a system to perform natural language analysis. His approach was to weaken the
logical language so that computationally complex statements (such as logical dis
junctions) could not be made. Colmerauer and his group implemented the first
Prolog interpreter using Algol-W in the summer of 1972 (see Roussel 1975). It was
Roussel's wife, Jacqueline, who came up with the name Prolog as an abbreviation
for "programmation en logique." The first large Prolog program was their natural
language system, also completed that year (Colmerauer et al. 1973). For those who
read English better than French, Colmerauer (1985) presents an overview of Prolog.
Robert Kowalski is generally considered the coinventer of Prolog. His 1974 article
outlines his approach, and his 1988 article is a historical review on the early logic
programming work.

There are now dozens of text books on Prolog. In my mind, six of these stand
out. Clocksin and Mellish's Programming in Prolog (1987) was the first and remains
one of the best. Sterling and Shapiro's The Art of Prolog (1986) has more substantial
examples but is not as complete as a reference. An excellent overview from a slightly

11.10 EXERCISES 383

more mathematical perspective is Pereira and Shieber's Prolog and Natural-Language
Analysis (1987). The book is worthwhile for its coverage of Prolog alone, and it also
provides a good introduction to the use of logic programming for language under
standing (see part V for more on this subject). O'Keefe's The Craft of Prolog (1990)
shows a number of advanced techinques. O'Keefe is certainly one of the most influ
ential voices in the Prolog community. He has definite views on what makes for good
and bad coding style and is not shy about sharing his opinions. The reader is warned
that this book evolved from a set of notes on the Clocksin and Mellish book, and the
lack of organization shows in places. However, it contains advanced material that
can be found nowhere else. Another collection of notes that has been organized into
a book is Coelho and Cotta's Prolog by Example. Published in 1988, this is an update
of their 1980 book. How to Solve it in Prolog. The earlier book was an underground
classic in the field, serving to educate a generation of Prolog programmers. Both
versions include a wealth of examples, unfortunately with little documentation and
many typos. Finally, Ivan Bratko's Prolog Programming for Artificial Intelligence (1990)
covers some introductory AI material from the Prolog perspective.

Maier and Warren's Computing with Logic (1988) is the best reference for those
interested in implementing Prolog. It starts with a simple interpreter for a variable-
free version of Prolog, and then moves up to the full language, adding improvements
to the interpreter along the way. (Note that the second author, David S. Warren of
Stonybrook, is different from David H. D. Warren, formerly at Edinburgh and now
at Bristol. Both are experts on Prolog.)

Lloyd's Foundations of Logic Programming (1987) provides a theoretical explanation
of the formal semantics of Prolog and related languages. Lassez et al. (1988) and
Knight (1989) provide overviews of unification.

There have been many attempts to extend Prolog to be closer to the ideal of Logic
Programming. The language MU-Prolog and NU-Prolog (Naish 1986) and Prolog III
(Colmerauer 1990) are particularly interesting. The latter includes a systematic
treatment of the ^ relation and an interpretation of infinite trees.

11.10 Exercises

@ Exercise 11.4 [m] It is somewhat confusing to see "no" printed after one or more
valid answers have appeared. Modify the program to print "no" only when there are
no answers at all, and "no more" in other cases.

t¿J Exercise 11.5 [h] At least six books (Abelson and Sussman 1985, Charniak and
McDermottl985, Charniaketal. 1986, Hennessey 1989, Wilensky 1986, and Winston
and Horn 1988) present unification algorithms with a common error. They all have
problems unifying (?x ?y a) with (?y ?x ?x) . Some of these texts assume that uni fy

384 LOGIC PROGRAMMING

will be called in a context where no variables are shared between the two arguments.
However, they are still suspect to the bug, as the following example points out:

> (unify ' (f (?x ?y a) (?y ?x ?x)) ' (f ?z ? z))
((?Y . A) (?X . ?Y) (?Z ?X ?Y A))

Despite this subtle bug, I highly recommend each of the books to the reader. It is
interesting to compare different implementations of the same algorithm. It turns out
there are more similarities than differences. This indicates two things: (1) there is a
generally agreed-upon style for writing these functions, and (2) good programmers
sometimes take advantage of opportunities to look at other's code.

The question is: Can you give an informal proof of the correctness of the algorithm
presented in this chapter? Start by making a clear statement of the specification.
Apply that to the other algorithms, and show where they go wrong. Then see if you
can prove that the un i f y function in this chapter is correct. Failing a complete proof,
can you at least prove that the algorithm will always terminate? See Norvig 1991 for
more on this problem.

t¿J Exercise 11.6 [h] Since logic variables are so basic to Prolog, we would like them
to be efficient. In most implementations, structures are not the best choice for small
objects. Note that variables only have two slots: the name and the binding. The
binding is crucial, but the name is only needed for printing and is arbitrary for most
variables. This suggests an alternative implementation. Each variable will be a
cons cell of the variable's binding and an arbitrary marker to indicate the type. This
marker would be checked by v a r i abl e-p. Variable names can be stored in a hash
table that is cleared before each query. Implement this representation for variables
and compare it to the structure representation.

Exercise 11.7 [m] Consider the following alternative implementation for anony
mous variables: Leave the macros < - and ?- alone, so that anonymous variables
are allowed in assertions and queries. Instead, change uni fy so that it lets anything
match against an anonymous variable:

(defun unify (x y Äoptional (bindings no-b ind ings))
"See i f χ and y match with given b ind ings . "
(cond ((eq bindings f a i l) f a i l)

((eql χ y) b indings)
((or (eq χ * ?) (eq y ' ?)) b indings)
((var iab le-p x) (un i fy -var iab le χ y b ind ings))
((var iab le-p y) (un i fy -var iab le y χ b ind ings))
((and (consp x) (consp y))
(unify (rest x) (rest y)

11.10 EXERCISES 385

(unify (f i r s t x) (f i r s t y) b ind ings)))
(t f a i l)))

Is this alternative correct? If so, give an informal proof. If not, give a counterexample.

@ Exercise 11.8 Pi] Write a version of the Prolog interpreter that uses destructive
unification instead of binding lists.

C3 Exercise 11.9 [m] Write Prolog rules to express the terms father, mother, son,
daughter, and grand- versions of each of them. Also define parent, child, wife,
husband, brother, sister, uncle, and aunt. You will need to decide which relations
are primitive (stored in the Prolog data base) and which are derived by rules.

For example, here's a definition of grandfather that says that G is the grandfather
of C if G is the father of some P, who is the parent of C:

(< - (grandfather ?g ?c)
(father ?g ?p)
(parent ?p ?c))

@ Exercise 11.10 [m] The following problem is presented in Wirth 1976:

I married a widow (let's call her W) who has a grown-up daughter (call her
D). My father (F), who visited us often, fell in love with my step-daughter and
married her. Hence my father became my son-in-law and my step-daughter
became my mother. Some months later, my wife gave birth to a son (Si), who
became the brother-in-law of my father, as well as my uncle. The wife of my
father, that is, my step-daughter, also had a son (S2).

Represent this situation using the predicates defined in the previous exercise,
verify its conclusions, and prove that the narrator of this tale is his own grandfather.

@ Exercise 11.11 [d] Recall the example:

> (? - (length (a b e d) ?n))
?N = (1+ (1+ (1+ (1+ 0)))) ;

It is possible to produce 4 instead of (1+ (1+ (1+ (1+ 0)))) byextendingthenotion
of unification. Ait-Kaci et al. 1987 might give you some ideas how to do this.

386 LOGIC PROGRAMMING

@ Exercise 11.12 [h] The function rename-vari abl es was necessary to avoid confu
sion between the variables in the first argument to un i fy and those in the second
argument. An alternative is to change the uni f y so that it takes two binding lists, one
for each argument, and keeps them separate. Implement this alternative.

11.11 Answers

Answer 11.9 We will choose as primitives the unary predicates mal e and f emal e
and the binary predicates chi 1 d and married. The former takes the child first; the
latter takes the husband first. Given these primitives, we can make the following
definitions:

« - (father ? f ?c) (male ? f) (parent ? f ? c))
(< - (mother ?m ?c) (female ?m) (parent ?m ? c))
(< - (son ? s ?p) (male ? s) (parent ?p ? s))
(< - (daughter ? s ?p) (male ? s) (parent ?p ? s))

(< - (grandfather ?g ?c) (father ?g ?p) (parent ?p ? c))
(< - (grandmother ?g ?c) (mother ?g ?p) (parent ?p ? c))
(< - (grandson ?gs ?gp) (son ?gs ?p) (parent ?gp ?p))
(< - (granddaughter ?gd ?gp) (daughter ?gd ?p) (parent ?gp ?p))

(< - (parent ?p ?c) (ch i ld ?c ?p))
(< - (wife ?w ?h) (married ?h ?w))
(< - (husband ?h ?w) (married ?h ?w))

(< - (s i b l i ng ?x ?y) (parent ?p ?x) (parent ?p ? y))
(< - (brother ?b ?x) (male ?b) (s i b l i ng ?b ? x))
(< - (s i s t e r ? s ?x) (female ? s) (s i b l i ng ? s ? x))
(< - (uncle ?u ?n) (brother ?u ?p) (parent ?p ?n))
(< - (aunt ?a ?n) (s i s t e r ?a ?p) (parent ?p ?n))

Note that there is no way in Prolog to express a true definition. We would like to say
that "P is the parent of C if and only if C is the child of P," but Prolog makes us express
the biconditional in one direction only.

//.// ANSWERS 387

Answer 11.10 Because we haven't considered step-relations in the prior defini
tions, we have to extend the notion of parent to include step-parents. The definitions
have to be written very carefully to avoid infinite loops. The strategy is to structure
the defined terms into a strict hierarchy: the four primitives are at the bottom, then
pa rent is defined in terms of the primitives, then the other terms are defined in terms
of parent and the primitives.

We also provide a definition for son-in-law:

(< - (parent ?p ?c) (married ?p ?w) (ch i ld ?c ?w))
(< - (parent ?p ?c) (married ?h ?p) (ch i ld ?c ?w))
(< - (son- in- law ? s ?p) (parent ?p ?w) (married ? s ?w))

Now we add the information from the story. Note that we only use the four primitives
male, female, married, and child:

« - (male I)) (< - (male F)) « - (male S D) « - (male S2))
« - (female W)) (< - (female D))
(< - (married I W))
(< - (married F D))
« - (ch i ld D W))
(< - (ch i ld I F))
« - (ch i ld S I I))
(< - (ch i ld S2 F))

Now we are ready to make the queries:

> (? - (son- in- law F I))
Yes.

> (? - (mother D I))
Yes.

> (? - (uncle S I I))
Yes.

> (? - (grandfather I I))
Yes.

CHAPTER 12
Compiling Logic
Programs

V I 1 he end of chapter 1 1 introduced a new, more efficient representation for logic variables.
I It would be reasonable to build a new version of the Prolog interpreter incorporating

JL this representation. However, chapter 9 has taught us that compilers run faster than
interpreters and are not that much harder to build. Thus, this chapter will present a Prolog
compiler that translates from Prolog to Lisp.

Each Prolog predicate will be translated into a Lisp function, and we will adopt the convention
that a predicate called with a different number of arguments is a different predicate. If the symbol
ρ can be called with either one or two arguments, we will need two Lisp functions to implement
the two predicates. Following Prolog tradition, these will be called p / 1 and p /2.

The next step is to decide what the generated Lisp code should look like. It must unify
the head of each clause against the arguments, and if the unification succeeds, it must call the
predicates in the body. The difficult part is that the choice points have to be remembered. If
a call to a predicate in the first clause fails, we must be able to return to the second clause and
try again.

INTRODUCTION 389

This can be done by passing in a success continuation as an extra argument to
every predicate. This continuation represents the goals that remain unsolved, the
other-goal s argument of prove. For each clause in the predicate, if all the goals iri a
clause succeed, then we should call the success continuation. If a goal fails, we don't
do anything special; we just go on to the next clause. There is one complication: after
failing we have to undo any bindings made by uni fy I. Consider an example. The
clauses

(< - (l i kes Robin ca ts))
(< - (l i kes Sandy ?x) (l i kes ?x ca ts))
(< - (l i kes Kim ?x) (l i kes ?x Lee) (l i kes ?x Kim))

could be compiled into this:

(defun l i k e s / 2 (?a rg l ?arg2 cont)
F i r s t c lause:

(i f (and (un i fy ! ?a rg l 'Robin) (un i fy ! ?arg2 ' ca t s))
(funcal l cont))

(undo-bindings)
Second c lause:

(i f (un i fy ! ?a rg l 'Sandy)
(l i k e s / 2 ?arg2 'ca ts cont))

(undo-bindings)
Third c lause:

(i f (uni fy ! ?arg l 'Kim)
(l i k e s / 2 ?arg2 'Lee

#'(lambda () (l i k e s / 2 ?arg2 'Kim con t))))))

In the first clause, we just check the two arguments and, if the unifications succeed,
call the continuation directly, because the first clause has no body. In the second
clause, 1 i k e s / 2 is called recursively, to see if ? a r g 2 likes cats . If this succeeds, then
the original goal succeeds, and the continuation cont is called. In the third clause,
we have to call 1 i k e s / 2 recursively again, this time requesting that it check if ? a r g 2
likes Lee. If this check succeeds, then the continuation will be called. In this case,
the continuation involves another call to 1 i k e s / 2 , to check if ? a r g 2 likes Kim. If this
succeeds, then the original continuation, cont, will finally be called.

Recall that in the Prolog interpreter, we had to append the list of pending goals,
other-goal s , to the goals in the body of the clause. In the compiler, there is no need
to do an append. Instead, the continuation cont represents the other-goals, and the
body of the clause is represented by explicit calls to functions.

390 COMPILING LOGIC PROGRAMS

Note that the code for 1 i kes/2 given before has eUminated some unnecessary
calls to un i fy!. The most obvious implementation would have one call to un i fy 1 for
each argument. Thus, for the second clause, we would have the code:

(i f (and (uni fy ! ?a rg l 'Sandy) (uni fy l ?arg2 ?x))
(l i k e s / 2 ?x 'ca ts cont))

where we would need a suitable 1 e t binding for the variable ?x.

12.1 A Prolog Compiler
This section presents the compiler summarized in figure 12.1. At the top level is
the function prol og-compi 1 e, which takes a symbol, looks at the clauses defined for
that symbol, and groups the clauses by arity. Each symbol/arity is compiled into a
separate Lisp function by compi 1 e-predi cate.

(defun prolog-compile (symbol &optional
(c lauses (get-c lauses symbol)))

"Compile a symbol; make a separate function for each a r i t y . "
(unless (null c lauses)

(let ((a r i t y (re la t ion-ar i t y (clause-head (f i r s t c l auses)))))
; ; Compile the clauses with th i s a r i ty
(compile-predicate

symbol a r i ty (c lauses-wi th-ar i ty clauses # ' = a r i t y))
; ; Compile a l l the clauses with any other ar i ty
(prolog-compile

symbol (c lauses-wi th-ar i ty c lauses # ' / = a r i t y)))))

Three utility functions are included here:

(defun c lauses-wi th-ar i ty (c lauses test a r i t y)
"Return a l l c lauses whose head has given a r i t y . "
(f ind-a l l a r i ty clauses

:key #'(lambda (clause)
(re la t ion-ar i t y (clause-head c lause)))

r test tes t))
(defun re la t ion-ar i t y (re la t ion)

"The number of arguments to a re la t ion .
Example: (re la t ion-ar i t y ' (p a b c)) => 3"
(length (args re la t ion)))

(defun args (x) "The arguments of a re la t ion" (rest x))

The next step is to compile the clauses for a given predicate with a fixed arity into a

12.1 A PROLOG COMPILER 391

Top-Level Functions
? - Make a query, but compile everything first.

Special Variables
n r a i l * A list of all bindings made so far.

Data Types
var A box for a variable; can be destructively modified.

Major Functions
top- level-prove New version compiles everything first. ·
run-prolog Compile everything and call a Prolog function.
prOlog-compi1e-symbols Compile a list of Prolog symbols.
prolog-compile Compile a symbol; make a separate function for each arity.
compile-predicate Compile all the clauses for a given symbol/arity.
compile-clause Transform away the head and compile the resulting body.
compile-body Compile the body of a clause.
compile-call Compile a call to a Prolog predicate.
compile-arg Generate code for an argument to a goal in the body.
compile-unify Return code that tests if var and term unify.

Auxiliary Functions
c lauses-wi th-ar i ty Return all clauses whose head has given arity.
re la t ion-ar i ty The number of arguments to a relation.
args The arguments of a relation.
make-parameters Build a list of parameters.
make-predicate Build a symbol of the form name/ari ty.
make-= Build a unification relation.
def-prolog-compi1er-macro Define a compiler macro for Prolog.
prolog-compi1er-macro Fetch the compiler macro for a Prolog predicate.
has-var iab le-p Is there a variable anywhere in the expression x?
proper- l is tp Is X a proper (non-dotted) list?
maybe-add-undo-bindings Undo any bindings that need undoing.
bind-unbound-vars Add a let if needed.
make-anonymous Replace variables that are only used once with ?.
anonymous-variables-in A list of anonymous variables.
compile- i f Compile an IF form. No else-part allowed.
compile-unify-vari able Compile the unification of a var.
b ind-var iab les- in Bind all variables in exp to themselves.
fol low-binding Get the ultimate binding of var according to bindings.
bind-new-variables Extend bindings to include any unbound variables.
ignore Do nothing—ignore the arguments.

Previously Defined Fimctions
uni fy ! Destructive unification (see section 11.6).
undo-bindings! Use the trail to backtrack, undoing bindings.
binding-val Pick out the value part of a var/val binding.
symbol Create or find an interned symbol.
new-symbol Create a new uninterned symbol.
find-anywhere Does item occur anywhere in tree?

Figure 12.1: Glossary for the Prolog Compiler

392 COMPILING LOGIC PROGRAMS

Lisp function. For now, that will be done by compiling each clause indepently and
wrapping them in a 1 ambda with the right parameter list.

(defun compile-predicate (symbol a r i t y c lauses)
"Compile a l l the clauses for a given symbol/ar i ty
into a s ing le LISP funct ion. "
(le t ((predicate (make-predicate symbol a r i t y))

(parameters (make-parameters a r i t y)))
(compile

(eval
'(defun .predicate (,©parameters cont)

..(mapcar #*(lambda (clause)
(compile-clause parameters clause 'cont))

c l a u s e s))))))

(defun make-parameters (a r i t y)
"Return the l i s t (?a rg l ?arg2 . . . ? a r g - a r i t y) "
(loop for i from 1 to ar i ty

co l lect (new-symbol ' ? a r g i)))

(defun make-predicate (symbol a r i t y)
"Return the symbol: symbol/ar i ty"
(symbol symbol V a r i t y))

Now for the hard part: we must actually generate the code for a clause. Here again
is an example of the code desired for one clause. We'll start by setting as a target the
simple code:

(< - (l i kes Kim ?x) (l i kes ?x Lee) (l i kes ?x Kim))

(defun l i k e s / 2 (?a rg l ?arg2 cont)

(i f (and (un i fy ! ?a rg l *Kim) (un i fy ! ?arg2 ?x)
(l i k e s / 2 ?arg2 'Lee

#'(lambda () (l i k e s / 2 ?x 'K im))))
. . .)

but we'll also consider the possibility of upgrading to the improved code:

(defun l i k e s / 2 (?a rg l ?arg2 cont)

(i f (uni fy ! ?a rg l 'Kim)
(l i k e s / 2 ?arg2 'Lee

#'(lambda () (l i k e s / 2 ?arg2 'K im))))
. . .)

One approach would be to write two functions, compi 1 e-head and compi 1 e-body.

12.1 A PROLOG COMPILER 393

and then combine them into the code (i f head body). This approach could easily
generate the prior code. However, let's allow ourselves to think ahead a little. If we
eventually want to generate the improved code, we will need some communication
between the head and the body. We will have to know that the head decided not
to compile the unification of ?arg2 and ?x, but because of this, the body will have
to substitute ?arg2 for ?x. That means that the compi 1 e - head function conceptually
returns two values: the code for the head, and an indication of substitutions to
perform in the body. This could be handled by explicitly manipulating multiple
values, but it seems complicated.

An alternate approach is to eliminate compi 1 e - head and just write compi 1 e - body.
This is possible if we in effect do a source-code transformation on the clause. Instead
of treating the clause as:

« - (l i kes Kim ?x)
(l i kes ?x Lee) (l i kes ?x Kim))

we transform it to the equivalent:

(< - (l i kes ?a rg l ?arg2)
(= ?arg l Kim) (= ?arg2 ?x) (l i kes ?x Lee) (l i kes ?x Kim))

Now the arguments in the head of the clause match the arguments in the function
1 i kes /2 , so there is no need to generate any code for the head. This makes things
simpler by eliminating compi 1 e-head, and it is a better decomposition for another
reason: instead of adding optimizations to compi 1 e-head, we will add them to the
code in compi 1 e-body that handles =. That way, we can optimize calls that the user
makes to =, in addition to the calls introduced by the source-code transformation.

To get an overview, the calling sequence of functions will turn out to be as follows:

prolog-compile
compile-predicate

compile-clause
compile-body

compile-call
compile-arg
compile-unify

compile-arg

where each function calls the ones below it that are indented one level. We have al
ready defined the first two functions. Here thenisourfirstversionof compi 1 e -c l ause:

394 COMPILING LOGIC PROGRAMS

(defun compile-clause (parms clause cont)
"Transform away the head, and compile the resu l t ing body."
(compile-body

(nconc
(mapcar #'make-= parms (args (clause-head c lause)))
(clause-body c lause))

cont))

(defun make-= (x y) *(= .x . y))

The bulk of the work is in compi 1 e - body, which is a little more complicated. There are
three cases. If there is no body, we just call the continuation. If the body starts with
a call to =, we compile a call to uni f y ! . Otherwise, we compile a call to a function,
passing in the appropriate continuation.

However, it is worthwhile to think ahead at this point. If we want to treat =
specially now, we will probably want to treat other goals specially later. So instead
of explicitly checking for =, we will do a data-driven dispatch, looking for any pred
icate that has a prol og-compi 1 er-macro property attached to it. Like Lisp compiler
macros, the macro can decline to handle the goal. We will adopt the convenhon that
returning .-pass means the macro decided not to handle it, and thus it should be
compiled as a normal goal.

(defun compile-body (body cont)
"Compile the body of a c lause . "
(i f (null body)

Mfuncal l .cont)
(le t * ((goal (f i r s t body))

(macro (prolog-compiler-macro (predicate goa l)))
(macro-val (i f macro

(funcal l macro goal (rest body) cont))))
(i f (and macro (not (eq macro-val : pass)))

macro-val
(compile-cal 1

(make-predicate (predicate goal)
(re la t ion-ar i t y goa l))

(mapcar #'(lambda (arg) (compile-arg arg))
(args goa l))

(i f (null (rest body))
cont
'#'(lambda ()

.(compile-body (rest body) con t))))))))

(defun compile-call (predicate args cont)
"Compile a cal l to a prolog predicate."
' (.pred icate .@args .cont))

12.1 A PROLOG COMPILER 395

(defun prolog-compiler-macro (name)
"Fetch the compiler macro for a Prolog predicate."

Note NAME i s the raw name, not the name/arity
(get name 'prolog-compiler-macro))

(defmacro def-prolog-compi1er-macro (name a r g l i s t &body body)
"Define a compiler macro for Pro log . "
' (se t f (get ',name 'prolog-compiler-macro)

#'(lambda . a r g l i s t . .body)))

(def-prolog-compi1er-macro = (goal body cont)
(le t ((args (args goa l)))

(i f (/= (length args) 2)
.-pass
• (i f . (compile-unify (f i r s t args) (second args))

.(compile-body body con t)))))

(defun compile-unify (x y)
"Return code that tes ts i f var and term un i fy . "
' (un i f y ! .(compile-arg x) .(compile-arg y)))

All that remains is compi 1 e-arg, a function to compile the arguments to goals in the
body. There are three cases to consider, as shown in the compilation to the argument
of q below:

1 (< - (p ?x) (q ?x)) (q /1 ?x cont)
2 « - (p ?x) (q (f a b))) (q /1 ' (f a b) cont)
3 « - (p ?x) (q (f ?x b))) (q /1 (l i s t ' f ?x 'b) cont)

In case 1 , the argument is a variable, and it is compiled as is. In case 2 , the argument
is a constant expression (one without any variables) that compiles into a quoted
expression. In case 3 , the argument contains a variable, so we have to generate code
that builds up the expression. Case 3 is actually split into two in the list below: one
compiles into a call to 1 i s t , and the other a call to cons . It is important to remember
that the goal (q (f ?x b)) does not involve a call to the function f. Rather, it involves
the term (f ?x b) , which is just a list of three elements.

(defun compile-arg (arg)
"Generate code for an argument to a goal in the body."
(cond ((var iab le-p arg) arg)

((not (has-var iab le-p arg)) " . a r g)
((p roper - l i s tp arg)

' (l i s t ..(mapcar #'compile-arg a rg)))
(t ' (cons .(compile-arg (f i r s t arg))

.(compile-arg (rest a r g))))))

396 COMPILING LOGIC PROGRAMS

(defun has-var iab le-p (x)
" I s there a var iable anywhere in the expression x ? "
(f ind-i f-anywhere # 'var iab le -p x))

(defun proper- l is tp (x)
" I s X a proper (non-dotted) l i s t ? "
(or (null x)

(and (consp x) (p roper - l i s tp (res t x)))))

Let's see how it works. We will consider the following clauses:

(< - (l i kes Robin ca ts))
(< - (l i kes Sandy ?x) (l i kes ?x cats))
(< - (l i kes Kim ?x) (l i kes ?x Lee) (l i kes ?x Kim))

(< - (member ?item (?item . ? r e s t)))
(< - (member ?item (?x . ? r e s t)) (member Titem ? r e s t))

Here's what prol og-compi 1 e gives us:

(DEFUN LIKES/2 (7ARG1 ?ARG2 CONT)
(IF (UNIFY! ?ARG1 'ROBIN)

(IF (UNIFY! 7ARG2 'CATS)
(FUNCALL CONT)))

(IF (UNIFY! ?ARG1 'SANDY)
(IF (UNIFY! ?ARG2 ?X)

(L IKES/2 ?X 'CATS CONT)))
(IF (UNIFY! 7ARG1 'KIM)

(IF (UNIFY! ?ARG2 ?X)
(L IKES/2 ?X 'LEE (LAMBDA ()

(L IKES/2 ?X 'KIM CONT))))))

(DEFUN MEMBER/2 (7ARG1 7ARG2 CONT)
(IF (UNIFY! 7ARG1 7ITEM)

(IF (UNIFY! 7ARG2 (CONS 7ITEM 7REST))
(FUNCALL CONT)))

(IF (UNIFY! 7ARG1 7ITEM)
(IF (UNIFY! 7ARG2 (CONS 7X 7REST))

(MEMBER/2 7ITEM 7REST CONT))))

12.2 FIXING THE ERRORS IN THE COMPILER 397

12.2 Fixing the Errors in the Compiler

There are some problems in this version of the compiler:

• We forgot to undo the bindings after each call to uni f y ! .

• The definition of undo-bi ndi n g s ! defined previously requires as an argument
an index into the * t r a i 1 * array. So we will have to save the current top of the
trail when we enter each function.

• Local variables, such as ?x, were used without being introduced. They should
be bound to new variables.

Undoing the bindings is simple: we add a single line to compi le -pred icate ,
a call to the function maybe-add-undo-bindings. This function inserts a call to
undo-bi ndi n g s ! after every failure. If there is only one clause, no undoing is neces
sary, because the predicate higher up in the calling sequence will do it when it fails.
If there are multiple clauses, the function wraps the whole function body in a Ί et
that captures the initial value of the trail's fill pointer, so that the bindings can be
undone to the right point. Similarly, we can handle the unbound-variable problem
by wrapping a call to bind - unbound - va rs around each compiled clause:

(defun compile-predicate (symbol a r i ty c lauses)
"Compile al l the clauses for a given symbol/ar i ty
into a s ing le LISP funct ion. "
(let ((predicate (make-predicate symbol a r i t y))

(parameters (make-parameters a r i t y)))
(compile

(eval
'(defun .predicate (,©parameters cont)

(maybe-add-undo-bindings
(mapcar #*(lambda (clause)

(compile-clause parameters
clause 'cont))

c l a u s e s)))))))

(defun compile-clause (parms clause cont)
"Transform away the head, and compile the resul t ing body."
(bind-unbound-vars

parms
(compi1e-body

(nconc
(mapcar #'make-= parms (args (clause-head c lause)))
(clause-body c lause))

cont)))

398 COMPILING LOGIC PROGRAMS

(defun maybe-add-undo-bindings (compiled-exps)

"Undo any bindings that need undoing.

I f there are any, bind the t ra i l before we s ta r t . "

(i f (length=l compiled-exps)

compiled-exps

• ((le t ((o ld - t ra i l (f i l l - po in te r n r a i l *)))

, (f i r s t compiled-exps)

,@(loop for exp in (rest compiled-exps)

co l lect ' (undo-b ind ings! o l d - t r a i l)

co l lec t exp)))))

(defun bind-unbound-vars (parameters exp)

" I f there are any var iab les in exp (besides the parameters)

then bind them to new v a r s . "

(le t ((exp-vars (set-di f ference (va r iab les - in exp)

parameters)))

(i f exp-vars

' (l e t .(mapcar #'(lambda (var) * (.var (?)))

exp-vars)

,exp)

exp)))

With these improvements, here's the code we get for 1 i kes and member:

(DEFUN LIKES/2 (?ARG1 ?ARG2 CONT)

(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*)))
(IF (UNIFY! ?ARG1 'ROBIN)

(IF (UNIFY! ?ARG2 'CATS)
(FUNCALL CONT)))

(UNDO-BINDINGS! OLD-TRAIL)
(LET ((?X (?)))

(IF (UNIFY! ?ARG1 'SANDY)
(IF (UNIFY! ?ARG2 ?X)

(L IKES/2 ?X 'CATS CONT))))
(UNDO-BINDINGS! OLD-TRAIL)
(LET ((?X (?)))

(IF (UNIFY! ?ARG1 'KIM)
(IF (UNIFY! ?ARG2 ?X)

(L IKES/2 ?X 'LEE (LAMBDA ()
(L IKES/2 ?X 'KIM CONT))))))))

123 IMPROVING THE COMPILER 399

(DEFUN MEMBER/2 (?ARG1 ?ARG2 CONT)
(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*)))

(LET ((?ITEM (?))
(?RE$T (?)))

(IF (UNIFY! ?ARG1 ?ITEM)
(IF (UNIFY! ?ARG2 (CONS ?ITEM ?REST))

(FUNCALL CONT))))
(UNDO-BINDINGS! OLD-TRAIL)
(LET ((?X (?))

(?ITEM (?))
(?REST (?)))

(IF (UNIFY! ?ARG1 ?ITEM)
(IF (UNIFY! ?ARG2 (CONS ?X ?REST))

(MEMBER/2 ?ITEM ?REST CONT))))))

12.3 Improving the Compiler

This is fairly good, although there is still room for improvement. One minor improve
ment is to eliminate unneeded variables. For example, ? r e s t in the first clause of
member and ?x in the second clause are bound to new variables—the result of the (?)
call—and then only used once. The generated code could be made a little tighter by
just putting (?) inline, rather than binding it to a variable and then referencing that
variable. There are two parts to this change: updating compi 1 e - a r g to compile an
anonymous variable inline, and changing the < - macro so that it converts all variables
that only appear once in a clause into anonymous variables:

(defmacro < - (&rest clause)
"Add a clause to the data base. "
' (add-c lause '.(make-anonymous c lause)))

(defun compile-arg (arg)
"Generate code for an argument to a goal in the body."
(cond ((eq arg ' ?) ' (?))

((var iab le-p arg) arg)
((not (has-var iab le-p arg)) " , a r g)
((p roper - l i s tp arg)

• (l i s t ..(mapcar #'compile-arg a rg)))
(t ' (cons .(compile-arg (f i r s t arg))

.(compile-arg (rest a r g))))))
(defun make-anonymous (exp &optional

(anon-vars (anonymous-variables-in exp)))
"Replace var iables that are only used once with ? . "
(cond ((consp exp)

(reuse-cons (make-anonymous (f i r s t exp) anon-vars)

400 COMPILING LOGIC PROGRAMS

(make-anonymous (rest exp) anon-vars)
exp))

((member exp anon-vars) * ?)
(t exp)))

Finding anonymous variables is tricky. The following function keeps two lists: the
variables that have been seen once, and the variables that have been seen twice
or more. The local function wal k is then used to walk over the tree, recursively
considering the components of each cons cell and updating the two lists as each
variable is encountered. This use of local functions should be remembered, as well
as an alternative discussed in exercise 12.23 on page 428.

(defun anonymous-variables-in (tree)
"Return a l i s t of al l var iab les that occur only once in t ree. "
(let ((seen-once n i l)

(seen-more n i l))
(labels ((walk (x)

(cond
((var iab le-p x)
(cond ((member χ seen-once)

(set f seen-once (delete χ seen-once))
(push χ seen-more))

((member χ seen-more) n i l)
(t (push χ seen-once))))

((consp x)
(walk (f i r s t x))
(walk (rest x))))))

(walk tree)
seen-once)))

Now member compiles into this:

(DEFUN MEMBER/2 (?ARG1 ?ARG2 CONT)
(LET ((OLD-TRAIL (FILL-POINTER n R A I L *)))

(LET ((?ITEM (?)))
(IF (UNIFY! ?ARG1 ?ITEM)

(IF (UNIFY! ?ARG2 (CONS ?ITEM (?)))
(FUNCALL CONT))))

(UNDO-BINDINGS! OLD-TRAIL)
(LET ((?ITEM (?))

(?REST (?)))
(IF (UNIFY! ?ARG1 ?ITEM)

(IF (UNIFY! ?ARG2 (CONS (?) ?REST))
(MEMBER/2 ?ITEM ?REST CONT))))))

12.4 IMPROVING THE COMPILATION OF UNIFICATION 401

12.4 Improving the Compilation of Unification

Now we turn to the improvement of compi 1 e - un i f y . Recall that we want to eliminate
certain calls to uni f y ! so that, for example, the first clause of member:

(<- (member ?item (?item . ? r e s t)))

compiles into:

(LET ((?ITEM (?)))
(IF (UNIFY! ?ARG1 ?ITEM)

(IF (UNIFY! ?ARG2 (CONS ?ITEM (?)))
(FUNCALL CONT))))

when it could compile to the more efficient:

(IF (UNIFY! ?ARG2 (CONS ?ARG1 (?)))
(FUNCALL CONT))

Eliminating the unification in one goal has repercussions in other goals later on, so
we will need to keep track of expressions that have been unified together. We have
a design choice. Either compi 1 e - u n i f y can modify a global state variable, or it can
return multiple values. On the grounds that global variables are messy, we make the
second choice: compi 1 e- uni fy will take a binding list as an extra argument and will
return two values, the actual code and an updated binding list. We will expect that
other related functions will have to be modified to deal with these multiple values.

When compi l e - u n i f y is first called in our example clause, it is asked to unify
? a r g l and ? i t em. We want it to return no code (or more precisely, the trivially true
test, t). For the second value, it should return a new binding list, with ? i tem bound
to ? a r g l . That binding will be used to replace ? i tem with ?argl in subsequent code.

How do we know to bind ? i t em to ?argl rather than the other way around?
Because ?argl is already bound to something—the value passed in to member. We
don't know what this value is, but we can't ignore it. Thus, the initial binding list will
have to indicate that the parameters are bound to something. A simple convention
is to bind the parameters to themselves. Thus, the initial binding list will be:

((?argl . ?argl) (?arg2 . ?arg2))

We saw in the previous chapter (page 354) that binding a variable to itself can lead to
problems; we will have to be careful.

Besides eliminating unifications of new variables against parameters, there are
quite a few other improvements that can be made. For example, unifications involv-

402 COMPILING LOGIC PROGRAMS

ing only constants can be done at compile time. The call (= (f a) (f a)) always
succeeds, while (= 3 4) always fails. In addition, unification of two cons cells can
be broken into components at compile time: (= (f ?x) (f a)) reduces to (= ?x
a) and (= f f) , where the latter trivially succeeds. We can even do some occm-s
checking at compile time: (= ?x (f ?x)) should fail.

The following table lists these improvements, along with a breakdown for the
cases of unifying a bound (? a r g 1) or unbound (?x) variable agains another expression.
The first column is the unification call, the second is the generated code, and the third
is the bindings that will be added as a result of the call:

Unification Code Bindings
1 (= 3 3) t —
2 (= 3 4) n i l —
3 (= (f ?x) (?p 3)) t (? x . 3) (? p . f)
4 (= ? a r g l ?y) t (? y . ? a r g l)
5 (= ? a r g l ?a rg2) (u n i f y ! ? a r g l ?a rg2) (? a r g l . ?a rg2)
6 (= ? a r g l 3) (u n i f y ! ? a r g l 3) (? a r g l . 3)
7 (= ? a r g l (f ? y)) (u n i f y ! ? a r g l . . .) (?y . ? y)
8 (= ?x ?y) t (?x . ? y)
9 (= ?x 3) t (?x . 3)

10 (= ?x (f ? y)) (u n i f y ! ?x . . .) (? y . ? y)
11 (= ?x (f ? x)) n i l —
12 (= ?x ?) t -

From this table we can craft our new version of compi 1 e -uni fy. The first part
is fairly easy. It takes care of the first three cases in this table and makes stue
that compi 1 e -uni f y -var i abl e is called with a variable as the first argument for the
other cases.

(defun compile-unify (x y b indings)
"Return 2 va lues: code to test i f χ and y un i fy ,
and a new binding l i s t . "
(cond

Unify constants and conses: ; Case
((not (or (has-var iab le-p x) (has-var iab le-p y))) ; 1,2

(values (equal χ y) b ind ings))
((and (consp x) (consp y)) : 3
(mult ip le-value-bind (codel b ind ings l)

(compile-unify (f i r s t x) (f i r s t y) b indings)
(mult ip le-value-bind (code2 bindings2)

(compile-unify (rest x) (rest y) b ind ings l)
(values (compi le- i f codel code2) b ind ings2))))

Here χ or y i s a var iab le . Pick the r ight one:
((var iab le-p x) (compi1e-unify-variable χ y b ind ings))
(t (compile-unify-variab1e y χ b ind ings))))

7 2 . 4 IMPROVING THE COMPILATION OF UNIFICATION 403

(defun compile- i f (pred then-part)
"Compile a Lisp IF form. No e lse-par t al lowed."
(case pred

((t) then-part)
((n i l) n i l)
(otherwise * (i f ,pred . then-par t))))

The function compi 1 e - uni f y - va r i abl e following is one of the most complex we have
seen. For each argument, we see if it has a binding (the local variables xb and yb),
and then use the bindings to get the value of each argument (xl and y 1). Note that for
either an unbound variable or one bound to itself, χ will equal x l (and the same for y
andyl). If either of the pairs of values is not equal, we should use the new ones (xl or
y 1), and the clause commented deref does that. After that point, we just go through
the cases, one at a time. It turns out that it was easier to change the order slightly from
the preceding table, but each clause is commented with the corresponding number:

(defun compi le-unify-var i able (x y b indings)
"X i s a var iab le , and Y may be."
(le t * ((xb (fol low-binding χ b ind ings))

(x l (i f xb (cdr xb) x))
(yb (i f (var iable-p y) (fo l low-binding y b ind ings)))
(y l (i f yb (cdr yb) y)))

(cond ; Case:
((or (eq χ * ?) (eq y * ?)) (values t b ind ings)) ; 12
((not (and (equal χ x l) (equal y y l))) ; deref
(compile-unify x l y l b ind ings))

((find-anywhere x l y l) (values ni l b ind ings)) ; 11
((consp y l) ; 7.10

(values ' (un i fy l .x l .(compile-arg y l b ind ings))
(b ind-var iab les- in y l b ind ings)))

((not (nul l xb))
;.· i . e . X i s an ?arg var iable
(i f (and (var iable-p y l) (nul l yb))

(values ' t (extend-bindings y l x l b ind ings)) ; 4
(values ' (un i f y ! .x l ,(compile-arg y l b ind ings))

(extend-bindings x l y l b ind ings)))) ; 5.6
((not (null yb))
(compi le-uni fy-var iable y l x l b ind ings))

(t (values ' t (extend-bindings x l y l b i nd ings)))))) ; 8 .9

Take some time to understand just how this function works. Then go on to the
following auxiliary functions:

404 COMPILING LOGIC PROGRAMS

(defun b ind-var iab les- in (exp bindings)
"Bind al l var iables in exp to themselves, and add that to
bindings (except for var iab les already bound)."
(do l i s t (var (va r iab les - in exp))

(unless (get-binding var b indings)
(set f bindings (extend-bindings var var b ind ings))))

bindings)

(defun fol low-binding (var b indings)
"Get the ultimate binding of var according to b ind ings . "
(le t ((b (get-binding var b ind ings)))

(i f (eq (car b) (cdr b))
b
(or (fo l low-binding (cdr b) b indings)

b))))

Now we need to integrate the new compi 1 e - uni f y into the rest of the compiler. The
problem is that the new version takes an extra argument and returns an extra value,
so all the functions that call it need to be changed. Let's look again at the calling
sequence:

prolog-compile
compile-predicate

compile-clause
compile-body

compile-call
compile-arg

compile-unify
compile-arg

First, going downward, we see that compi 1 e-arg needs to take a binding Ust as an
argument, so that it can look up and substitute in the appropriate values. But it will
not alter the binding list, so it still returns one value:

(defun compile-arg (arg bindings)
"Generate code for an argument to a goal in the body."
(cond ((eq arg * ?) ' (?))

((var iab le-p arg)
(le t ((binding (get-binding arg b ind ings)))

(i f (and (not (null b inding))
(not (eq arg (binding-val b ind ing))))

(compile-arg (binding-val binding) b indings)
a rg)))

((not (f ind-i f-anywhere # 'va r iab le -p arg)) " . a r g)
((p roper - l i s tp arg)
• (l i s t ..(mapcar #*(lambda (a) (compile-arg a b ind ings))

12A IMPROVING THE COMPILATION OF UNIFICATION 405

arg)))
(t ' (cons ,(compile-arg (f i r s t arg) bindings)

.(compile-arg (rest arg) b ind ings)))))

Now, going upward, compi le -body needs to take a binding list and pass it on to
various functions:

(defun compile-body (body cont b indings)
"Compile the body of a c lause . "
(cond

((nul l body)
' (funcal l .cont))

(t (le t * ((goal (f i r s t body))
(macro (prolog-compiler-macro (predicate goa l)))
(macro-val (i f macro

(funcal l macro goal (rest body)
con tb ind ings))))

(i f (and macro (not (eq macro-val rpass)))
macro-val
(compile-cal1

(make-predicate (predicate goal)
(re la t ion-ar i t y goal))

(mapcar #*(lambda (arg)
(compile-arg arg b ind ings))

(args goa l))
(i f (null (rest body))

cont
'#'(lambda ()

.(compile-body
(rest body) cont
(bind-new-variables bindings g o a l))))))))))

The function bind-new-variables takes any variables mentioned in the goal that
have not been bound yet and binds these variables to themselves. This is because
the goal, whatever it is, may bind its arguments.

(defun bind-new-variables (bindings goal)
"Extend bindings to include any unbound var iab les in g o a l . "
(le t ((var iab les (remove-if #'(lambda (v) (assoc ν b ind ings))

(va r iab les - in goa l))))
(nconc (mapcar #*se l f -cons var iab les) b ind ings)))

(defun se l f -cons (x) (cons χ χ))

One of the functions that needs to be changed to accept a binding list is the compiler
macro for =:

406 COMPILING LOGIC PROGRAMS

(def-prolog-compiler-macro = (goal body cont bindings)
"Compile a goal which i s a cal l to = . "
(le t ((args (args goa l)))

(i f (/= (length args) 2)
:pass decline to handle th i s goal
(mult ip le-value-bind (codel b ind ings l)

(compile-unify (f i r s t args) (second args) b indings)
(compi le- i f

codel
(compile-body body cont b i n d i n g s l))))))

The last step upward is to change compi 1 e -c l ause so that it starts everything off by
passingin to comp i 1 e - body a binding list with all the parameters bound to themselves:

(defun compile-clause (parms clause cont)
"Transform away the head, and compile the resu l t ing body."
(bind-unbound-vars

parms
(compile-body

(nconc
(mapcar #*make-= parms (args (clause-head c lause)))
(clause-body c lause))

cont

(mapcar # ' se l f - cons parms))))

Finally, we can see the fruits of our efforts:
(DEFUN MEMBER/2 (?ARG1 ?ARG2 CONT)

(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*)))
(IF (UNIFYl ?ARG2 (CONS ?ARG1 (?)))

(FUNCALL CONT))
(UNDO-BINDINGS! OLD-TRAIL)
(LET ((?REST (?)))

(IF (UNIFY! ?ARG2 (CONS (?) ?REST))
(MEI^BER/2 ?ARG1 ?REST CONT)))))

(DEFUN LIKES/2 (?ARG1 ?ARG2 CONT)
(LET ((OLD-TRAIL (FILL-POINTER *TRAIL*)))

(IF (UNIFY! ?ARG1 'ROBIN)
(IF (UNIFY! ?ARG2 'CATS)

(FUNCALL CONT)))
(UNDO-BINDINGS! OLD-TRAIL)
(IF (UNIFY! ?ARG1 'SANDY)

(L IKES/2 ?ARG2 'CATS CONT))
(UNDO-BINDINGS! OLD-TRAIL)
(IF (UNIFY! ?ARG1 'KIM)

(L IKES/2 ?ARG2 'LEE (LAMBDA ()
(L IKES/2 ?ARG2 'KIM CONT))))))

12.5 FURTHER IMPROVEMENTS TO UNIFICATION 407

12.5 Further Improvements to Unification

Could compi le -un i fy be improved yet again? If we insist that it call u n i f y l , it
seems that it can't be made much better. However, we could improve it by in effect
compiling u n i f y ! . This is a key idea in the Warren Abstract Machine, or WAM,
which is the most commonly used model for Prolog compilers.

We call uni f y ! in four cases (5, 6, 7, and 10), and in each case the first argument
is a variable, and we know something about the second argument. But the first
thing uni f y ! does is redundantly test if the first argument is a variable. We could
eliminate unnecessary tests by calling more specialized functions rather than the
general-purpose function uni f y ! . Consider this call:

(uni fy ! ?arg2 (cons ?a rg l (?)))

If ?arg2 is an unbound variable, this code is appropriate. But if ?arg2 is a constant
atom, we should fail immediately, without allowing cons and ? to generate garbage.
We could change the test to:

(and (consp-or-var iable-p ?arg2)
(u n i f y - f i r s t ! ?arg2 ? a r g l)
(un i f y - res t ! ?arg2 (?)))

with suitable definitions for the functions referenced here. This change should
speed execution time and limit the amount of garbage generated. Of course, it makes
the generated code longer, so that could slow things down if the program ends up
spending too much time bringing the code to the processor.

[¿3 Exercise 12.1 [h] Write definitions for c o n s p - o r - v a r i a b l e - p , u n i f y - f i r s t l , and
uni f y - res t ! , and change the compiler to generate code like that outlined previously.
You might want to look at the function compi le - ru le in section 9.6, starting on
page 300. This function compiled a call to pat-match into individual tests; now we
want to do the same thing to uni f y ! . Run some benchmarks to compare the altered
compiler to the original version.

@ Exercise 12.2 [h] We can gain some more efficiency by keeping track of which
variables have been dereferenced and calling an appropriate unification function:
either one that dereferences the argument or one that assumes the argument has
already been dereferenced. Implement this approach.

@ Exercise 12.3 [m] What code is generated for (= (f (g ?x) ?y) (f ?y (?p a))) ?

408 COMPILING LOGIC PROGRAMS

What more efficient code represents the same unification? How easy is it to change
the compiler to get this more efficient result?

@ Exercise 12.4 [h] In retrospect, it seems that binding variables to themselves, as
in (?argl . ?a rg l) , was not such a good idea. It complicates the meaning of
bindings, and prohibits us from using existing tools. For example, I had to use
find-anywhere instead of occur-check for case 11, because occur-check expects
a noncircular binding list. But find-anywhere does not do as complete a job as
occur-check. Write a version of compi 1 e - uni fy that returns three values: the code,
a noncircular binding list, and a list of variables that are bound to unknown values.

@ Exercise 12.5 [h] An alternative to the previous exercise is not to use binding lists at
all. Instead, we could pass in a list of equivalence classes—that is, a list of lists, where
each sublist contains one or more elements that have been unified. In this approach,
the initial equivalence class Hst would be ((? a r g l) (? a r g 2)) . After unifying ?argl
with ? x , ? a r g 2 with ?y, and ?x with 4, the list would be ((4 ?argl ?x) (? a r g 2 ?y)) .
This assumes the convention that the canonical member of an equivalence class (the
one that will be substituted for all others) comes first. Implement this approach.
What advantages and disadvantages does it have?

12.6 The User Interface to the Compiler

The compiler can translate Prolog to Lisp, but that does us no good unless we can
conveniently arrange to compile the right Prolog relations and call the right Lisp
functions. In other words, we have to integrate the compiler with the < - and ?
macros. Surprisingly, we don't need to change these macros at all. Rather, we
will change the functions these macros call. When a new clause is entered, we will
enter the clause's predicate in the list *uncompi 1 ed*. This is a one-line addition to
add-c lause:

(defvar *uncompiled* ni l
"Prolog symbols that have not been compiled.")

(defun add-clause (clause)
"Add a clause to the data base, indexed by head's predicate."
; ; The predicate must be a non-variable symbol,
(le t ((pred (predicate (clause-head c lause))))

(assert (and (symbolp pred) (not (var iable-p pred))))
(pushnew pred *db-predicates*)
(pushnew pred *uncompiled*)
(set f (get pred ' c lauses)

12,6 THE USER INTERFACE TO THE COMPILER 409

(nconc (get-c lauses pred) (l i s t c lause)))
pred))

Now when a query is made, the ?- macro expands into a call to top-level - prove.
The Hst of goals in the query, along with the show-prol og-vars goal, is added as the
sole clause for the relation top -1 evel - query. Next, that query, along with any others
that are on the uncompiled list, are compiled. Finally, the newly compiled top-level
query function is called.

(defun top- level-prove (goals)
"Prove the l i s t of goals by compiling and ca l l i ng i t . "

F i r s t redefine top- level-query
(c lear-predicate ' top- level -query)
(let ((vars (delete * ? (va r iab les - in g o a l s))))

(add-clause *((top- level -query)
,©goals
(show-prolog-vars ,(mapcar #'symbol-name vars)

. v a r s))))
; ; Now run i t
(run-prolog ' top- leve l -query/0 # ' ignore)
(format t "~&No.")
(values))

(defun run-prolog (procedure cont)
"Run a O-ary prolog procedure with a given cont inuat ion."

F i r s t compile anything else that needs i t
(prolog-compi1e-symbols)
; ; Reset the t ra i l and the new var iable counter
(set f (f i l l - po in te r n r a i l *) 0)
(set f *var-counter* 0)
; ; F i na l l y , cal l the query
(catch ' top- level -prove

(funcall procedure cont)))

(defun prolog-compi1e-symbols (&optional (symbols *uncompiled*))
"Compile a l i s t of Prolog symbols.
By defaul t , the l i s t i s al l symbols that need i t . "
(mapc #'prolog-compile symbols)
(set f *uncompiled* (set-di f ference *uncompiled* symbols)))

(defun ignore (&rest args)
(declare (ignore args))
n i l)

Note that at the top level, we don't need the continuation to do anything. Arbitrarily,
we chose to pass in the function ignore, which is defined to ignore its arguments.

410 COMPILING LOGIC PROGRAMS

This function is useful in a variety of places; some programmers will proclaim it
inline and then use a call to i gnore in place of an ignore declaration:

(defun th i rd-arg (x y ζ)
(ignore χ y)
ζ)

The compiler's calling convention is different from the interpreter, so the primitives
need to be redefined. The old definition of the primitive show-prol og - va rs had three
parameters: the list of arguments to the goal, a binding list, and a list of pending
goals. The new definition o f s h o w - p r o l o g - v a r s / 2 also has three parameters, but that
is just a coincidence. The first two parameters are the two separate arguments to the
goal: a list of variable names and a list of variable values. The last parameter is a
continuation function. To continue, we call that function, but to fail, we throw to the
catch point set up in top-1 evel - prove.

(defun show-prolog-vars/2 (var-names vars cont)
"Display the var iab les , and prompt the user to see
i f we should continue. I f not, return to the top l e v e l . "
(i f (null vars)

(format t "~&Yes")
(loop for name in var-names

for var in vars do
(format t "~&~a = '^a" name (deref-exp va r))))

(i f (continue-p)
(funcall cont)
(throw ' top- level -prove n i l)))

(defun deref-exp (exp)
"Bui ld something equivalent to EXP with var iab les dereferenced."
(i f (atom (deref exp))

exp
(reuse-cons

(deref-exp (f i r s t exp))
(deref-exp (rest exp))
exp)))

With these definitions in place, we can invoke the compiler automatically just by
making a query with the ? - macro.

[¿] Exercise 12.6 [m] Suppose you define a predicate p, which calls q, and then define
q. In some implementations of Lisp, when you make a query like (? - (ρ ? x)) , you
may get a warning message like " f uncti on q /1 undef i ned" before getting the correct

12,7 BENCHMARKING THE COMPILER 411

answer. The problem is that each function is compiled separately, so warnings de
tected during the compilation of p /1 will be printed right away, even if the function
q/1 will be defined later. In ANSI Common Lisp there is a way to delay the printing
of warnings until a series of compilations are done: wrap the compilation with the
macro wi th - compi 1 at i on - uni t. Even if your implementation does not provide this
macro, it may provide the same functionality under a different name. Find out if
w i t h - c o m p i l a t i o n - u n i t is already defined in your implementation, or if it can be
defined.

12.7 Benchmarking the Compiler

Our compiled Prolog code runs the zebra puzzle in 17.4 seconds, a 16-fold speed-up
over the interpreted version, for a rate of 740 LIPS.

Another popular benchmark is Lisp's reverse function, which we can code as
the rev relation:

« - (rev () ()))

« - (rev (?x . ?a) ?b) (rev ?a ?c) (concat ?c (?x) ?b))

(<- (concat () ?1 ?1))
(<- (concat (?x . ?a) ?b (?x . ?c)) (concat ?a ?b ?c))

rev uses the relation concat, which stands for concatenation, (concat ?a ?b ? c) i s
true when ?a concatenated to ?b yields ?c. This relationlike name is preferred over
more procedural names like append. But rev is very similar to the following Lisp
definitions:

(defun rev (1)
(i f (null 1)

nil
(app (rev (rest 1))

(l i s t (f i rs t 1)))))

(defun app (x y)
(i f (null X)

y
(cons (f i rs t x)

(app (rest x) y))))

Both versions are inefficient. It is possible to write an iterative version of reverse
that does no extra consing and is tail-recursive:

412 COMPILING LOGIC PROGRAMS

(< - (i rev ?1 ? r) (i rev3 ?1 () ? r))
(< - (i revS (?x . ?1) ? s o - f a r ? r) (i revS ?1 (?x
(< - (i rev3 () ? r ? r))

? s o - f a r) ? r))

The Prolog i rev is equivalent to this Lisp program:

(defun irev (l i s t) (i rev2 l i s t n i l))

(defun irev2 (l i s t so - fa r)
(i f (consp l i s t)

(i rev2 (rest l i s t) (cons (f i r s t l i s t) so - f a r))
so - fa r))

The following table shows times in seconds to execute these routines on lists of length
20 and 100, for both Prolog and Lisp, both interpreted and compiled. (Only compiled
Lisp could execute rev on a 100-element list without running out of stack space.)
Times for the zebra puzzle are also included, although there is no Lisp version of
this program.

Interp. Comp. Interp. Comp.
Problem Prolog Prolog Speed-up Lisp Lisp
zebra 278.000 17.241 16 — —
rev 20 4.24 .208 20 .241 .0023
rev 100 — — — — .0614
irev 20 .22 .010 22 .028 .0005
irev 100 9.81 .054 181 .139 .0014

This benchmark is too small to be conclusive, but on these examples the Prolog
compiler is 16 to 181 times faster than the Prolog interpreter, slightly faster than
interpreted Lisp, but still 17 to 90 times slower than compiled Lisp. This suggests
that the Prolog interpreter cannot be used as a practical programming tool, but the
Prolog compiler can.

Before moving on, it is interesting to note that Prolog provides for optional argu
ments automatically. Although there is no special syntax for optional arguments, an
often-used convention is to have two versions of a relation, one with η arguments
and one with η - 1. A single clause for the η — 1 case provides the missing, and
therefore "optional," argument. In the following example, i rev /2 can be considered
as a version of i rev /3 where the missing optional argument is () .

(< - (i rev ?1 ? r) (i rev ?1 () ? r))
(< - (i rev (?x . ?1) ? s o - f a r ? r) (i rev ?1 (?x
(< - (i rev () ? r ? r))

? s o - f a r) ? r))

This is roughly equivalent to the following Lisp verison:

Ί2.8 ADDING MORE PRIMITIVES 413

(defun irev (l i s t Äoptional (so- fa r n i l))
(i f (consp l i s t)

(i rev (rest l i s t) (cons (f i r s t l i s t) so - fa r))
so - fa r))

12.8 Adding More Primitives

Just as a Lisp compiler needs machine instructions to do input/output, arithmetic,
and the like, so our Prolog system needs to be able to perform certain primitive actions.
For the Prolog interpreter, primitives were implemented by function symbols. When
the interpreter went to fetch a list of clauses, if it got a function instead, it called that
function, passing it the arguments to the current relation, the current bindings, and
a list of unsatisfied goals. For the Prolog compiler, primitives can be installed simply
by writing a Lisp function that respects the convention of taking a continuation as
the final argument and has a name of the form symbol/arity. For example, here's an
easy way to handle input and output:

(defun read/1 (exp cont)
(i f (un i fy ! exp (read))

(funcall cont)))

(defun wr i te /1 (exp cont)
(write (deref-exp exp) :pretty t)
(funcall cont))

Calling (w r i te ?x) will always succeed, so the continuation will always be called.
Similarly, one could use (read ?x) to read a value and unify it with ?x. If ?x is
unbound, this is the same as assigning the value. However, it is also possible to make
a call like (read (?x + ?y)) , which succeeds only if the input is a three-element list
with + in the middle. It is an easy extension to define read / 2 and wr i t e / 2 as relations
that indicate what stream to use. To make this useful, one would need to define
open/2 as a relation that takes a pathname as one argument and gives a stream back
as the other. Other optional arguments could also be supported, if desired.

The primitive nl outputs a newline:

(defun n l /0 (cont) (te rpr i) (funcal l cont))

We provided special support for the unification predicate, =. However, we could
have simplified the compiler greatly by having a simple definition for = / 2 :

414 COMPILING LOGIC PROGRAMS

(defun =/2 (?arg l ?arg2 cont)
(i f (uni fy ! ?a rg l ?arg2)

(funcall cont)))

In fact, if we give our compiler the single clause:

« - (= ?x ?x))

it produces just this code for the definition of = / 2. There are other equaUty predicates
to worry about. The predicate = = / 2 is more like equal in Lisp. It does no unification,
but instead tests if two structures are equal with regard to their elements. A variable
is considered equal only to itself. Here's an implementation:

(defun = / 2 (?arg l ?arg2 cont)
"Are the two arguments EQUAL with no un i f i ca t ion ,
but with dereferencing? I f s o , succeed."
(i f (deref-equal ?a rg l ?arg2)

(funcall cont)))

(defun deref-equal (x y)
"Are the two arguments EQUAL with no un i f i ca t ion ,
but with dereferencing?"
(or (eql (deref x) (deref y))

(and (consp x)
(consp y)
(deref-equal (f i r s t x) (f i r s t y))
(deref-equal (rest x) (rest y)))))

One of the most important primitives is cal 1 . Like f uncal 1 in Lisp, cal 1 allows us
to build up a goal and then try to prove it.

(defun cal 1/1 (goal cont)
"Try to prove goal by ca l l i ng i t . "
(deref goal)
(apply (make-predicate (f i r s t goal)

(length (args goa l)))
(append (args goal) (l i s t cont))))

This version of cal 1 will give a run-time error if the goal is not instantiated to a list
whose first element is a properly defined predicate; one might want to check for that,
and fail silently if there is no defined predicate. Here's an example of c a l l where the
goal is legal:

12.8 ADDING MORE PRIMITIVES 415

> (? - (= ?p member) (cal l (?p ?x (a b c))))
?P = MEMBER
?X = A;
?P = MEMBER
?X = B;
?P = MEMBER
?X = C;
No.

Now that we have ca 11, a lot of new things can be implemented. Here are the logical
connectives and and or:

« - (or ?a ?b) (cal l ?a))
« - (or ?a ?b) (cal l ?b))

(< - (and ?a ?b) (cal l ?a) (cal l ?b))

Note that these are only binary connectives, not the n-ary special forms used in Lisp.
Also, this definition negates most of the advantage of compilation. The goals inside
an and or or will be interpreted by cal 1, rather than being compiled.

We can also define not , or at least the normal Prolog not , which is quite distinct
from the logical not. In fact, in some dialects, not is written \ + , which is supposed to
be reminiscent of the logical symbol I/, that is, "can not be derived." The interpretation
is that if goal G can not be proved, then (not G) is true. Logically, there is a difference
between (not G) being true and being unknown, but ignoring that difference makes
Prolog a more practical programming language. See Lloyd 1987 for more on the
formal semantics of negation in Prolog.

Here's an implementation of n o t / L Since it has to manipulate the trail, and we
may have other predicates that will want to do the same, we'll package up what was
done in maybe-add-undo-b ind ings into the macro w i t h - u n d o - b i n d i n g s :

(defmacro with-undo-bindings (&body body)
"Undo bindings after each expression in body except the l a s t . "
(i f (length=l body)

(f i r s t body)
' (l e t ((o ld - t ra i l (f i l l - po in te r n r a i l *)))

. (f i r s t body)

.©(loop for exp in (rest body)
co l lect *(undo-bindings! o l d - t r a i l)
col lect exp))))

(defun not /1 (re la t ion cont)
"Negation by fa i l u re : I f you can ' t prove G. then (not G) t rue. "
; ; Either way. undo the b ind ings,
(with-undo-bindings

(c a l l / 1 re lat ion #'(lambda () (return-from not /1 n i l)))
(funcall cont)))

416 COMPILING LOGIC PROGRAMS

Here's an example where not works fine:

> (? - (member ?x (a b c)) (not (= ?x b)))
?X = A;

?X = C;
No.

Now see what happens when we simply reverse the order of the two goals:

> (? - (not (= ?x b)) (member ?x (a b c)))
No.

The first example succeeds unless ?x is bound to b. In the second example, ?x is
unbound at the start, so (= ?x b) succeeds, the not fails, and the member goal is never
reached. So our implementation of not has a consistent procedural interpretation,
but it is not equivalent to the declarative interpretation usually given to logical nega
tion. Normally, one would expect that a and c would be valid solutions to the query,
regardless of the order of the goals.

One of the fundamental differences between Prolog and Lisp is that Prolog is
relational: you can easily express individual relations. Lisp, on the other hand, is
good at expressing collections of things as lists. So far we don't have any way of
forming a collection of objects that satisfy a relation in Prolog. We can easily iterate
over the objects; we just can't gather them together. The primitive bagof is one way
of doing the collection. In general, (bagof ?x (p ?x) ?bag) unifies ?bag with a list
of all ?x's that satisfy (ρ ?x) . If there are no such ?x's, then the call to bagof fails. A
bagis an unordered collection with duplicates allowed. For example, the bag { a , 6, a}
is the same as the bag {a , a, 6} , but different from {a , 6} . Bags stands in contrast to
sets, which are unordered collections with no duplicates. The set {a , 6} is the same
as the set {6, a}. Here is an implementation of bagof:

(defun bagof/3 (exp goal resul t cont)
"Find al l so lu t ions to GOAL, and for each so lu t i on ,
co l lect the value of EXP into the l i s t RESULT."
; ; Ex: Assume (p 1) (p 2) (p 3) . Then:
; : (bagof ?x (p ?x) ?1) = > ?1 = (1 2 3)
(le t ((answers n i l))

(c a l l / 1 goal #'(lambda ()
(push (deref-copy exp) answers)))

(i f (and (not (nul l answers))

(un i fy ! resul t (nreverse answers)))

(funcal l cont))))

12.8 ADDING MORE PRIMITIVES 417

(defun deref-copy (exp)
"Copy the express ion, replacing var iab les with new ones.
The part without var iables can be returned as i s . "
(sub l i s (mapcar #'(lambda (var) (cons (deref var) (?))

(unique-f ind-anywhere-i f # ' va r -p exp))
exp))

Below we use bagof to collect a list of everyone Sandy likes. Note that the result is a
bag, not a set: Sandy appears more than once.

> (? - (bagof ?who (l i kes Sandy ?who) ?bag))
?WHO = SANDY
?BAG = (LEE KIM ROBIN SANDY CATS SANDY);
No.

In the next example, we form the bag of every list of length three that has A and Β as
members:

> (? - (bagof ?1 (and (length ?1 (1+ (1+ (1+ 0))))
(and (member a ?1) (member b ?1)))

?bag))
?L = (?5 ?8 ?11 ?68 ?66)
?BAG = ((A Β ?17) (A ?21 B) (B A ?31) (?38 A B) (B ?48 A) (?52 Β A))
No.

Those who are disappointed with a bag containing multiple versions of the same
answer may prefer the primitive setof, which does the same computation as bagof
but then discards the duplicates.

(defun se to f /3 (exp goal resul t cont)
"Find a l l unique so lu t ions to GOAL, and for each so lu t i on ,
co l lect the value of EXP into the l i s t RESULT."
; ; Ex: Assume (p 1) (p 2) (p 3) . Then:
; ; (setof ?x (p ?x) ?1) = > ?1 = (1 2 3)
(le t ((answers n i l))

(c a l l / 1 goal #'(lambda ()
(push (deref-copy exp) answers)))

(i f (and (not (null answers))
(un i fy ! resul t (delete-dupl icates

answers
: test #*deref-equal)))

(funcal l cont))))

Prolog supports arithmetic with the operator i s . For example, (I s ?x (+ ?y 1))
unifies ?x with the value of ?y plus one. This expression fails if ?y is unbound, and it

418 COMPILING LOGIC PROGRAMS

gives a run-time error if ?y is not a number. For our version of Prolog, we can support
not just arithmetic but any Lisp expression:

(defun i s / 2 (var exp cont)
Example: (i s ?x (+ 3 (* ?y (+ ?z 4))))
Or even: (i s (?x ?y ?x) (cons (f i r s t ?z) ?1))

(i f (and (not (f ind-i f-anywhere #*unbound-var-p exp))
(unify 1 var (eval (deref-exp exp))))

(funcall cont)))

(defun unbound-var-p (exp)
" I s EXP an unbound va r? "
(and (var-p exp) (not (bound-p exp))))

As an aside, we might as well give the Prolog programmer access to the function
unbound -var-p. The standard name for this predicate is va r / 1 :

(defun va r /1 (?a rg l cont)
"Succeeds i f ?a rg l i s an uninstant iated va r iab le . "
(i f (unbound-var-p ?a rg l)

(funcall cont)))

The i s primitive fails if any part of the second argument is unbound. However, there
are expressions with variables that can be solved, although not with a direct call to
eval. For example, the following goal could be solved by binding ?x to 2:

(solve (= 12 (* (+ ?x 1) 4)))

We might want to have more direct access to Lisp from Prolog. The problem with
i s is that it requires a check for unbound variables, and it calls eval to evaluate
arguments recursively. In some cases, we just want to get at Lisp's apply, without
going through the safety net provided by i s . The primitive l i s p does that. Needless
to say, 1 i sp is not a part of standard Prolog.

(defun l i s p / 2 (? resu l t exp cont)
"Apply (f i r s t exp) to (rest exp) , and return the resu l t . "
(i f (and (consp (deref exp))

(uni fy ! ? resu l t (apply (f i r s t exp) (rest exp))))
(funcall cont)))

[¿] Exercise 12.7 [m] Define the primitive s o l v e / 1 , which works like the function
sol ve used in student (page 225). Decide if it should take a single equation as
argument or a list of equations.

12.8 ADDING MORE PRIMITIVES 419

@ Exercise 12.8 [h] Assumewehadagoalof the form (solve (= 12 (* (+ ?x 1)
4))) . Rather than manipulate the equation when sol ve/1 is called at run time, we
might prefer to do part of the work at compile time, treating the call as if it were
(solve (= ?x 2)) . Write a Prolog compiler macro for sol ve. Notice that even when
you have defined a compiler macro, you still need the underlying primitive, because
the predicate might be invoked through a cal 1 / I. The same thing happens in Lisp:
even when you supply a compiler macro, you still need the actual function, in case
of a funca l l or apply.

@ Exercise 12.9 [h] Which of the predicates c a l l , and, or, not, or repeat could
benefit from compiler macros? Write compiler macros for those predicates that
could use one.

^ Exercise 12.10 [m] You might have noticed that ca 11 /1 is inefficient in two impor
tant ways. First, it calls make-predi cate, which must build a symbol by appending
strings and then look the string up in the Lisp symbol table. Alter make-predi cate
to store the predicate symbol the first time it is created, so it can do a faster lookup
on subsequent calls. The second inefficiency is the call to append. Change the whole
compiler so that the continuation argument comes first, not last, thus eliminating
the need for append in cal 1.

@ Exercise 12.11 [s] The primitive t rue / 0 always succeeds, and f a i 1 /O always fails.
Define these primitives. Hint: the first corresponds to a Common Lisp function, and
the second is a function already defined in this chapter.

t¿J Exercise 12.12 [s] Would it be possible to write = = / 2 as a list of clauses rather than
as a primitive?

t¿3 Exercise 12.13 [m] Write a version of deref - copy that traverses the argument ex
pression only once.

420 COMPILING LOGIC PROGRAMS

12.9 The Cut
In Lisp, it is possible to write programs that backtrack explicitly, although it can
be awkward when there are more than one or two backtrack points. In Prolog,
backtracking is automatic and implicit, but we don't yet know of any way to avoid
backtracking. There are two reasons why a Prolog programmer might want to disable
backtracking. First, keeping track of the backtrack points takes up time and space.
A programmer who knows that a certain problem has only one solution should be
able to speed up the computation by telling the program not to consider the other
possible branches. Second, sometimes a simple logical specification of a problem
will yield redundant solutions, or even some unintended solutions. It may be that
simply pruning the search space to eliminate some backtracking will yield only
the desired answers, while restructuring the program to give all and only the right
answers would be more difficult. Here's an example. Suppose we wanted to define
a predicate, max/3, which holds when the third argument is the maximum of the
first two arguments, where the first two arguments will always be instantiated to
numbers. The straightforward definition is:

(< - (max ?x ?y ?x) (>= ?x ? y))
« - (max ?x ?y ?y) « ?x ? y))

Declaratively, this is correct, but procedurally it is a waste of time to compute the <
relation if the >= has succeeded: in that case the < can never succeed. The cut symbol,
written !, can be used to stop the wasteful computation. We could write:

(< - (max ?x ?y ?x) (>= ?x ?y) !)
(< - (max ?x ?y ? y))

The cut in the first clause says that if the first clause succeeds, then no other clauses
will be considered. So now the second clause can not be interpreted on its own.
Rather, it is interpreted as "if the first clause fails, then the max of two numbers is the
second one."

In general, a cut can occur anywhere in the body of a clause, not just at the end.
There is no good declarative interpretation of a cut, but the procedural interpretation
is two-fold. First, when a cut is "executed" as a goal, it always succeeds. But in
addition to succeeding, it sets up a fence that cannot be crossed by subsequent
backtracking. The cut serves to cut off backtracking both from goals to the right of
the cut (in the same clause) and from clauses below the cut (in the same predicate).
Let's look at a more abstract example:

(<- (p) (q) (r) ! (s) (t))
« - (p) is))

12,9 THE CUT 421

In processing the first clause of p, backtracking can occur freely while attempting
to solve q and r. Once r is solved, the cut is encountered. From that point on,
backtracking can occur freely while solving s and t, but Prolog will never backtrack
past the cut into r, nor will the second clause be considered. On the other hand, if
q or Γ failed (before the cut is encountered), then Prolog would go on to the second
clause.

Now that the intent of the cut is clear, let's think of how it should be implemented.
We'll look at a slightly more complex predicate, one with variables and multiple cuts:

« - (p ? x a) 1 (q ? x))

(< - (p ? x b) (Γ ? x) ! (s ? x))

We have to arrange it so that as soon as we backtrack into a cut, no more goals
are considered. In the first clause, when q / 1 fails, we want to return from p /2
immediately, rather than considering the second clause. Similarly, the first time s / 1
fails, we want to return from p /2 , rather than going on to consider other solutions to
r / 1 . Thus, we want code that looks something like this:

(defun p/2 (argl arg2 cont)

(le t ((o ld - t ra i l (f i l 1-pointer n r a i l *)))

(i f (un i fy ! arg2 'a)

(progn (q / 1 argl cont)

(return-from p/2 n i l)))

(undo-bindings! o l d - t r a i l)

(i f (uni fy ! arg2 'b)

(r / 1 argl #'(lambda ()

(progn (s / 1 argl cont)

(return-from p/2 n i l)))))))

We can get this code by making a single change to compi 1 e - body: when the first goal
in a body (or what remains of the body) is the cut symbol, then we should generate a
progn that contains the code for the rest of the body, followed by a r e tu rn - f r om the
predicate being compiled. Unfortunately, the name of the predicate is not available
to compi 1 e-body. We could change c o m p i l e - c l a u s e and compi 1 e-body to take the
predicate name as an extra argument, or we could bind the predicate as a special
variable in compi 1 e -pred i cate. I choose the latter:

(defvar ^predicate* ni l

"The Prolog predicate current ly being compiled")

422 COMPILING LOGIC PROGRAMS

(defun compile-predicate (symbol a r i t y c lauses)
"Compile a l l the clauses for a given symbol/ar i ty
into a s ing le LISP funct ion. "
(let ((^predicate* (make-predicate symbol a r i t y))

(parameters (make-parameters a r i t y)))
(compile

(eval
'(defun ,*predicate* (.©parameters cont)

(maybe-add-undo-bindings
(mapcar #*(lambda (c lause)

(compile-clause parameters
clause *cont))

c l a u s e s)))))))

(defun compile-body (body cont b indings)
"Compile the body of a c lause . "
(cond

((nul l body)
' (funcal l .cont))

((eq (f i r s t body) Ί)
' (progn .(compile-body (rest body) cont b indings)

(return-from .*predicate* n i l)))
(t (le t * ((goal (f i r s t body))

(macro (prolog-compiler-macro (predicate goa l)))
(macro-val (i f macro

(funcal l macro goal (rest body)
con tb ind ings))))

(i f (and macro (not (eq macro-val .-pass)))
macro-val
' (. (make-predicate (predicate goal)

(re la t ion-ar i t y goa l))
.©(mapcar #'(lambda (arg)

(compile-arg arg b ind ings))
(args goa l))

. (i f (nul l (rest body))
cont
'#*(lambda ()

.(compile-body
(rest body) cont
(bind-new-variables bindings g o a l))))))))))

@ Exercise 12.14 [m] Given the definitions below, figure out what a call to t e s t - cut
will do, and what it will write:

(< - (test -cut) (p a) (p b) ! (p c) (p d))
(< - (test -cut) (p e))

12.9 THE CUT 423

« - (ρ ?x) (write (?x 1)))
(< - (p ?x) (write (?x 2)))

Another way to use the cut is in a repeat/fail loop. The predicate repeat is defined
with the following two clauses:

(< - (repeat))
(< - (repeat) (repeat))

An alternate definition as a primitive is:

(defun repeat/0 (cont)
(loop (funcal l cont)))

Unfortunately, repeat is one of the most abused predicates. Several Prolog books
present programs like this:

(< - (main)
(write "He l lo . ")
(repeat)
(write "Command: ")
(read ?command)
(process ?command)
(= ?command ex i t)
(write "Good bye. "))

The intent is that commands are read one at a time, and then processed. For each
command except ex i t , process takes the appropriate action and then fails. This
causes a backtrack to the repeat goal, and a new command is read and processed.
When the command is ex i t, the procedure returns.

There are two reasons why this is a poor program. First, it violates the principle of
referential transparency. Things that look alike are supposed to be alike, regardless
of the context in which they are used. But here there is no way to tell that four of the six
goals in the body comprise a loop, and the other goals are outside the loop. Second,
it violates the principle of abstraction. A predicate should be understandable as a
separate unit. But here the predicate process can only be understood by considering
the context in which it is called: a context that requires it to fail after processing each
command. As Richard O'Keefe 1990 points out, the correct way to write this clause
is as follows:

424 COMPILING LOGIC PROGRAMS

(< - (main)
(write "He l lo . ")
(repeat)

(write "Command: ")
(read ?command)
(process ?command)
(or (= ?command ex i t) (f a i l))

(write "Good bye . "))

The indentation clearly indicates the limits of the repeat loop. The loop is terminated
by an explicit test and is followed by a cut, so that a calling program won't accidently
backtrack into the loop after it has exited. Personally, I prefer a language like Lisp,
where the parentheses make constructs like loops explicit and indentation can be
done automatically. But O'Keefe shows that well-structured readable programs can
be written in Prolog.

The if-then and if-then-else constructions can easily be written as clauses. Note
that the if-then-else uses a cut to commit to the then part if the test is satisfied.

(< - (i f ? tes t ?then) (i f ?then ?e lse (f a i l)))

(< - (i f ? tes t ?then ?e lse)
(cal l ? tes t)

(cal l ?then))

(< - (i f ? tes t ?then ?e lse)
(cal l ?e l se))

The cut can be used to implement the nonlogical not. The following two clauses are
often given before as the definition of not. Our compiler succesfuUy turns these two
clauses into exactly the same code as was given before for the primitive n o t / 1 :

(< - (not ?p) (cal l ?p) I (f a i l))
(< - (not ?p))

12.10 '^ear Prolog
The Prolog-In-Lisp system developed in this chapter uses Lisp syntax because it is
intended to be embedded in a Lisp system. Other Prolog implementations using
Lisp syntax include micro-Prolog, Symbolics Prolog, and LMI Prolog.

12.10 ''REAr PROLOG 425

However, the majority of Prolog systems use a syntax closer to traditional math
ematical notation. The following table compares the syntax of "standard" Prolog to
the syntax of Prolog-In-Lisp. While there is currently an international committee
working on standardizing Prolog, the final report has not yet been released, so dif
ferent dialects may have slightly different syntax. However, most implementations
follow the notation summarized here. They derive from the Prolog developed at the
University of Edinburgh for the DEC-10 by David H. D. Warren and his colleagues.
The names for the primitives in the last section are also taken from Edinburgh Prolog.

Prolog Prolog-In-Lisp
atom lower const
variable Upper ?var
anonymous - ?
goal p(Var,const) (p ?var const)
rule p(X) q (X) . « - (p ?x) (q ?x))
fact p (a) . (< - (p a))
query ? - p (X) . (? - (p ?x))
list [a . b . c] (a b c)
cons [a 1 Rest] (a . ? r e s t)
nil [] ()
and p (X) , q(X) (and (p ?x) (q ?x))
or p (X) : q(X) (or (p ?x) (q ?x))
not \ + p(X) (not (p ?x))

We have adopted Lisp's bias toward lists; terms are built out of atoms, variables,
and conses of other terms. In real Prolog cons cells are provided, but terms are
usually built out of structures, not lists. The Prolog term p(a,b) corresponds to the
Lisp vector #(p/2 a b) , not the list (ρ a b). A minority of Prolog implementations
use structure sharing. In this approach, every non-atomic term is represented by
a skeleton that contains place holders for variables and a header that points to the
skeleton and also contains the variables that will fill the place holders. With structure
sharing, making a copy is easy: just copy the header, regardless of the size of the
skeleton. However, manipulating terms is complicated by the need to keep track of
both skeleton and header. See Boyer and Moore 1972 for more on structure sharing.

Another major difference is that real Prolog uses the equivalent of failure contin
uations, not success continuations. No actual continuation, in the sense of a closure,
is built. Instead, when a choice is made, the address of the code for the next choice
is pushed on a stack. Upon failure, the next choice is popped off the stack. This is
reminiscent of the backtracking approach using Scheme's cal 1 / c c facility outlined
on page 772.

426 COMPILING LOGIC PROGRAMS

t¿l Exercise 12.15 [m] Assuming an approach using a stack of failure continuations
instead of success continuations, show what the code for ρ and member would look
like. Note that you need not pass failure continuations around; you can just push
them onto a stack that top-1 evel - prove will invoke. How would the cut be imple
mented? Did we make the right choice in implementing our compiler with success
continuations, or would failure continuations have been better?

12.11 History and References

As described in chapter 11, the idea of logic programming was fairly well understood
by the mid-1970s. But because the implementations of that time were slow, logic
programming did not catch on. It was the Prolog compiler for the DEC-10 that made
logic programming a serious alternative to Lisp and other general-purpose languages.
The compiler was developed in 1977 by David H. D. Warren with Fernando Pereira
and Luis Pereira. See the paper by Warren (1979) and by all three (1977).

Unfortunately, David H. D. Warren's pioneering work on compiling Prolog has
never been published in a widely accessible form. His main contribution was the
description of the Warren Abstract Machine (WAM), an instruction set for compiled
Prolog. Most existing compilers use this instruction set, or a slight modification
of it. This can be done either through byte-code interpretation or through macro-
expansion to native machine instructions. Ait-Kaci 1991 provides a good tutorial on
the WAM, much less terse than the original (Warren 1983). The compiler presented in
this chapter does not use the WAM. Instead, it is modeled after Mark Stickel's (1988)
theorem prover. A similar compiler is briefly sketched by Jacques Cohen 1985.

12.12 Exercises

@ Exercise 12.16 [m] Change the Prolog compiler to allow implicit c a l l s . That is, if
a goal is not a cons cell headed by a predicate, compile it as if it were a cal 1. The
clause:

« - (p ?x ?y) (?x c) ?y)

should be compiled as if it were:

(<- (p ?x ?y) (call (?x c)) (call ?y))

12.12 EXERCISES 427

@ Exercise 12.17 [h] Here are some standard Prolog primitives:

• get /1 Read a single character and unify it with the argument.

• put/1 Print a single character.

• nonvar/1, / = , /==Theopposi tesof var, = a n d = = , respectively.

• i nteger/1 True if the argument is an integer.

• atom/1 True if the argument is a symbol (like Lisp's symbol p).

• atomi c/1 True if the argument is a number or symbol (like Lisp's atom).

· < , > , = < , > = Arithmetic comparison; succeeds when the arguments are both
instantiated to numbers and the comparison is true.

• l i s t i n g / 0 Print out the clauses for all defined predicates.

• 1 i s t i ng/1 Print out the clauses for the argument predicate.

Implement these predicates. In each case, decide if the predicate should be
implemented as a primitive or a list of clauses, and if it should have a compiler
macro.

There are some naming conflicts that need to be resolved. Terms like atom have
one meaning in Prolog and another in Lisp. Also, in Prolog the normal notation is \ =
and \ = = , not / = and / = = . For Prolog-In-Lisp, you need to decide which notations to
use: Prolog's or Lisp's.

[¿3 Exercise 12.18 [s] In Lisp, we are used to writing n-ary calls like (< 1 η 1 0) o r (=
χ y ζ) . Write compiler macros that expand n-ary calls into a series of binary calls.
Forexample, (< 1 η 10) should expand into (and (< 1 n) (< η 10)) .

@ Exercise 12.19 [m] One feature of Lisp that is absent in Prolog is the quote mech
anism. Is there a use for quote? If so, implement it; if not, explain why it is not
needed.

[¿3 Exercise 12.20 [h] Write a tracing mechanism for Prolog. Add procedures ρ -1 r a ce
and p-untrace to trace and untrace Prolog predicates. Add code to the compiler to
generate calls to a printing procedure for goals that are traced. In Lisp, we have to
trace procedures when they are called and when they return. In Prolog, there are
four cases to consider: the call, successful completion, backtrack into subsequent
clauses, and failure with no more clauses. We will call these four cases cal 1, exi t.

428 COMPILING LOGIC PROGRAMS

redo, and f ai 1 , respectively. If we traced member, we would expect tracing output to
look something like this:

> (? - (member ?x (a b c d)) (f a i l))
CALL MEMBER: ? 1 (A Β C D)
EXIT MEMBER: A (A Β C D)
REDO MEMBER: ? 1 (A Β C D)

CALL MEMBER: 11 (B C D)
EXIT MEMBER: Β (B C D)
REDO MEMBER: ? 1 (B C D)

CALL MEMBER: 11 (C D)
EXIT MEMBER: C (C D)
REDO MEMBER: ? 1 (C D)

CALL MEMBER: 11 (D)
EXIT MEMBER: D (D)
REDO MEMBER: ? 1 (D)

CALL MEMBER: 11 NIL
REDO MEMBER: 11 NIL
FAIL MEMBER: 11 NIL

FAIL MEMBER: 11 (D)
FAIL MEMBER: 11 (C D)

FAIL MEMBER: 11 (B C D)
FAIL MEMBER: ? 1 (A Β C D)

No.

@ Exercise 12.21 [m] Some Lisp systems are very slow at compiling functions. KCL
is an example; it compiles by translating to C and then calling the C compiler and
assembler. In KCL it is best to compile only code that is completely debugged, and
run interpreted while developing a program.

Alter the Prolog compiler so that calling the Lisp compiler is optional. In all cases,
Prolog functions are translated into Lisp, but they are only compiled to machine
language when a variable is set.

@ Exercise 12.22 [d] Some Prolog systems provide the predicate freeze to "freeze" a
goal until its variables are instantiated. For example, the goal (freeze χ (> χ 0))
is interpreted as follows: if x is instantiated, then just evaluate the goal (> χ 0) , and
succeed or fail depending on the result. However, if χ is unbound, then succeed and
continue the computation, but remember the goal (> χ 0) and evaluate it as soon as
X becomes instantiated. Implement freeze.

@ Exercise 12.23 [m] Write a recursive version of anonymous - va r i abl es - 1 η that does
not use a local function.

12.13 ANSWERS 429

12.13 Answers

Answer 12.6 Here 's a version that works for Texas Instruments and Lucid imple
mentations:

(defmacro with-compilat ion-unit (options &body body)
"Do the body, but delay compiler warnings unt i l the end."

This i s defined in Common Lisp the Language, 2nd ed.
*(. (read-t ime-case

#+TI * compi1 er:compi1er-warni ngs-context-bi nd
#+Lucid *with-deferred-warnings

'progn)
. .body))

(defun prolog-compile-symbols (&optional (symbols *uncompiled*))
"Compile a l i s t of Prolog symbols.
By defaul t , the l i s t i s a l l symbols that need i t . "
(with-compilat ion-unit ()

(mapc #*prolog-compile symbols)
(set f *uncompiled* (set-d i f ference *uncompiled* symbols))))

Answer 12.9 Macros for and and or are very important, since these are commonly
used. The macro for and is trivial:

(def-prolog-compiler-macro and (goal body cont b indings)
(compile-body (append (args goal) body) cont b ind ings))

The macro for or is trickier:

(def-prolog-compiler-macro or (goal body cont b indings)
(let ((d is juncts (args goa l)))

(case (length d is juncts)
(0 f a i l)
(1 (compile-body (cons (f i r s t d is juncts) body) cont b ind ings))
(t (le t ((fn (gensym " F ")))

' (f l e t ((, f n () ,(compile-body body cont b ind ings)))
.,(maybe-add-undo-bindings

(loop for g in d is juncts co l lect
(compile-body (l i s t g) * # ' , f n

b i n d i n g s)))))))))

430 COMPILING LOGIC PROGRAMS

Answer 12.11 t rue /0 is f uncal 1 : when a goal succeeds, we call the continuation,
fa i 1 /O is i gnore: when a goal fails, we ignore the continuation. We could also define
compiler macros for these primitives:

(def-prolog-compi1er-macro true (goal body cont b indings)
(compile-body body cont b ind ings))

(def-prolog-compiler-macro fa i l (goal body cont b indings)
(declare (ignore goal body cont b ind ings))
n i l)

Answer 12.13

(defun deref-copy (exp)
"Bui ld a copy of the express ion, which may have var iab les .
The part without var iables can be returned as i s . "
(le t ((v a r - a l i s t n i l))

(labels
((walk (exp)

(deref exp)
(cond ((consp exp)

(reuse-cons (walk (f i r s t exp))
(walk (rest exp))
exp))

((var-p exp)
(le t ((entry (assoc exp v a r - a l i s t)))

(i f (not (null entry))
(cdr entry)
(le t ((var-copy (?)))

(push (cons exp var-copy) v a r - a l i s t)
var -copy))))

(t exp))))
(walk exp))))

12.13 ANSWERS 431

Answer 12.14 In the first clause of t e s t - cut, all four calls to ρ will succeed via the
first clause of p. Then backtracking will occur over the calls to (ρ c) and (ρ d). All
four combinations of 1 and 2 succeed. After that, backtracking would normally go
back to the call to (p b) . But the cut prevents this, and the whole (t e s t - c u t) goal
fails, without ever considering the second clause. Here's the actual output:

(? - (tes t -cut))
(A 1)(B 1)(C 1)(D 1)
Yes;
(D 2)
Yes;
(C 2)(D 1)
Yes;
(D 2)
Yes;
No.

Answer 12.17 Forexample:

(defun >/2 (x y cont)
(i f (and (numberp (deref x)) (numberp (deref y)) (> χ y))

(funcall cont)))

(defun numberp/1 (x cont)
(i f (numberp (deref x))

(funcall cont)))

Answer 12.19 Lisp uses quote in two ways: to distinguish a symbol from the value
of the variable represented by that symbol, and to distinguish a literal list from the
value that would be returned by evaluating a function call. The first distinction Prolog
makes by a lexical convention: variables begin with a question mark in our Prolog,
and they are capitalized in real Prolog. The second distinction is not necessary
because Prolog is relational rather than functional. An expression is a goal if it is a
member of the body of a clause, and is a literal if it is an argument to a goal.

432 COMPILING LOGIC PROGRAMS

Answer 12.20 Hint: Here's how member could be augmented with calls to a pro
cedure, p r o ! og - t r a ce , which will print information about the four kinds of tracing
events:

(defun member/2 (?a rg l ?arg2 cont)
(le t ((o ld - t ra i l (f i l l - po in te r n r a i l *))

(exi t -cont #*(lambda ()
(prolog-trace 'ex i t 'member ?a rg l ?arg2)
(funcal l cont))))

(prolog-trace ' ca l l 'member ?a rg l ?arg2)
(i f (un i fy ! ?arg2 (cons ?a rg l (?)))

(funcal l ex i t -cont))
(undo-bindings! o l d - t r a i l)
(prolog-trace 'redo 'member ?a rg l ?arg2)
(le t ((? r e s t (?)))

(i f (un i fy ! ?arg2 (cons (?) ? r e s t))
(member/2 ?a rg l ? res t ex i t -cont)))

(prolog-trace ' f a i l 'member ?a rg l ?a rg2)))

The definition of pro l og - t r a c e is:

(defvar *pro log- t race- indent* 0)

(defun prolog-trace (kind predicate &rest args)
(i f (member kind ' (ca l l redo))

(incf *pro log- t race- indent* 3))
(format t " ~ r v r a ~a:~{ ~a~}"

pro log- t race- indent kind predicate args)
(i f (member kind ' (f a i l ex i t))

(decf *pro log- t race- indent* 3)))

12.13 ANSWERS 433

Answer 12.23

(defun anonymous-variables-in (tree)
"Return a l i s t of al l var iables that occur only once in t ree."
(values (anon-vars- in tree ni l n i l)))

(defun anon-vars- in (tree seen-once seen-more)
"Walk the data structure TREE, returning a l i s t of var iab les
seen once, and a l i s t of var iables seen more than once."

(cond
((consp tree)
(mult ip le-value-bind (new-seen-once new-seen-more)

(anon-vars- in (f i r s t tree) seen-once seen-more)
(anon-vars- in (rest tree) new-seen-once new-seen-more)))

((not (var iable-p t ree)) (values seen-once seen-more))
((member tree seen-once)

(values (delete tree seen-once) (cons tree seen-more)))
((member tree seen-more)

(values seen-once seen-more))
(t (values (cons tree seen-once) seen-more))))

CHAPTER 73

Object-Oriented
Programming

r I 1 he programs in this book cover a wide range of problems. It is only natural that a
I wide range of programming styles have been introduced to attack these problems. One

JL style not yet covered that has gained popularity in recent years is called object-oriented
programming. To understand what object-oriented programming entails, we need to place it in
the context of other styles.

Historically, the first computer programs were written in an imperative programming style. A
program was construed as a series of instructions, where each instruction performs some action:
changing the value of a memory location, printing a result, and so forth. Assembly language is
an example of an imperative language.

As experience (and ambition) grew, programmers looked for ways of controlling the complex
ity of programs. The invention of subroutines marked the algorithmic or procedural programming
style, a subclass of the imperative style. Subroutines are helpful for two reasons: breaking
up the problem into small pieces makes each piece easier to understand, and it also makes it
possible to reuse pieces. Examples of procedural languages are FORTRAN, C, Pascal, and Lisp
with se t f .

Ί3.1 OBJECT-ORIENTED PROGRAMMING 435

Subroutines are still dependent on global state, so they are not completely sep
arate pieces. The use of a large number of global variables has been criticized as a
factor that makes it difficult to develop and maintain large programs. To eliminate
this problem, the functional programming style insists that functions access only the
parameters that are passed to them, and always return the same result for the same
inputs. Functional programs have the advantage of being mathematically clean—it
is easy to prove properties about them. However, some applications are more natu
rally seen as taking action rather than calculating functional values, and are therefore
unnatural to program in a functional style. Examples of functional languages are FP
and Lisp without se t f .

In contrast to imperative languages are declarative languages, which attempt to
express "what to do" rather than "how to do it." One type of declarative programming
is rule-based programming, where a set of rules states how to transform a problem
into a solution. Examples of rule-based systems are ELIZA and STUDENT.

An important kind of declarative programming is logic programming, where axioms
are used to describe constraints, and computation is done by a constructive proof of
a goal. An example of logic language is Prolog.

Object-oriented programming is another way to tame the problem of global state.
Instead of prohibiting global state (as functional programming does), object-oriented
programming breaks up the unruly mass of global state and encapsulates it into small,
manageable pieces, or objects. This chapter covers the object-oriented approach.

13,1 Object-Oriented Programming
Object-oriented programming turns the world of computing on its side: instead
of viewing a program primarily as a set of actions which manipulate objects, it is
viewed as a set of objects that are manipulated by actions. The state of each object
and the actions that manipulate that state are defined once and for all when the
object is created. This can lead to modular, robust systems that are easy to use and
extend. It also can make systems correspond more closely to the "real world," which
we humans perceive more easily as being made up of objects rather than actions.
Examples of object-oriented languages are Simula, C++, and CLOS, the Common
Lisp Object System. This chapter will first introduce object-oriented programming
in general, and then concentrate on the Common Lisp Object System.

Many people are promoting object-oriented programming as the solution to the
software development problem, but it is hard to get people to agree on just what
object-orientation means. Peter Wegner 1987 proposes the following formula as a
definition:

Object-orientation = Objects + Classes + Inheritance

436 OBJECT-ORIENTED PROGRAMMING

Briefly, objects are modules that encapsulate some data and operations on that data.
The idea of information /z/dm^—insulating the representation of that data from opera
tions outside of the object—is an important part of this concept. Classes are groups
of similar objects with identical behavior. Objects are said to be instances of classes.
Inheritance is a means of defining new classes as variants of existing classes. The new
class inherits the behavior of the parent class, and the programmer need only specify
how the new class is different.

The object-oriented style brings with it a new vocabulary, which is summarized in
the following glossary. Each term will be explained in more detail when it comes up.

class: A group of similar objects with identical behavior.
class variable: A variable shared by all members of a class.
delegation: Passing a message from an object to one of its components.
generic function: A function that accepts different types or classes of

arguments.
inheritance: A means of defining new classes as variants of existing

classes.
instance: An instance of a class is an object.
instance variable: A variable encapsulated within an object.
message: A name for an action. Equivalent to generic function.
method: A means of handling a message for a particular class.
multimethod: A method that depends on more than one argument.
multiple inheritance: Inheritance from more than one parent class.
object: An encapsulation of local state and behavior.

13.2 Objects
Object-oriented programming, by definition, is concerned with objects. Any datum
that can be stored in computer memory can be thought of as an object. Thus, the
number 3, the atom x, and the string "hel 1 o" are all objects. Usually, however, the
term object is used to denote a more complex object, as we shall see.

Of course, all programming is concerned with objects, and with procedures
operating on those objects. Writing a program to solve a particular problem will
necessarily involve writing definitions for both objects and procedures. What dis
tinguishes object-oriented programming is that the primary way of decomposing the
problem into modules is based on the objects rather than on the procedures. The
difference can best be seen with an example. Here is a simple program to create bank
accounts and keep track of withdrawals, deposits, and accumulation of interest.
First, the program is written in traditional procedural style:

(defstruct account
(name " ") (balance 0.00) (in terest - ra te .06))

13,2 OBJECTS 437

(defun account-withdraw (account amt)
"Make a withdrawal from th is account."
(i f (<= amt (account-balance account))

(decf (account-balance account) amt)
' i nsu f f i c ien t - funds))

(defun account-deposit (account amt)
"Make a deposit to th is account."
(incf (account-balance account) amt))

(defun account- interest (account)
"Accumulate in terest in th i s account."
(incf (account-balance account)

(* (account- interest-rate account)
(account-balance account))))

We can create new bank accounts with make-a ccount and modify them with
account-wi thdraw, account-deposi t , and account- i n terest . This is a simple prob
lem, and this simple solution suffices. Problems appear when we change the spec
ification of the problem, or when we envision ways that this implementation could
be inadvertently used in error. For example, suppose a programmer looks at the
account structure and decides to use (decf (account -balance account)) directly
instead of going through the account-wi thdraw function. This could lead to negative
account balances, which were not intended. Or suppose that we want to create a
new kind of account, where only a certain maximum amount can be withdrawn at
one time. There would be no way to ensure that account-withdraw would not be
applied to this new, limited account.

The problem is that once we have created an account, we have no control over
what actions are applied to it. The object-oriented style is designed to provide that
control. Here is the same program written in object-oriented style (using plain Lisp):

(defun new-account (name &optional (balance 0.00)
(in terest - ra te .06))

"Create a new account that knows the fol lowing messages:"
#'(lambda (message)

(case message
(withdraw #*(lambda (amt)

(i f (<= amt balance)
(decf balance amt)
• insu f f i c ien t - funds)))

(deposit #'(lambda (amt) (inc f balance amt)))
(balance #'(lambda () balance))
(name #'(lambda () name))
(in terest #*(lambda ()

(incf balance
(* in terest - ra te ba lance)))))))

438 OBJECT-ORIENTED PROGRAMMING

The function new-account creates account objects, which are implemented as clo
sures that encapsulate three variables: the name, balance, and interest rate of the
account. An account object also encapsulates functions to handle the five messages
to which the object can respond. An account object can do only one thing: receive a
message and return the appropriate function to execute that message. For example,
if you pass the message wi thdraw to an account object, it will return a function that,
when applied to a single argument (the amount to withdraw), will perform the with
drawal action. This function is called the method that implements the message. The
advantage of this approach is that account objects are completely encapsulated; the
information corresponding to the name, balance, and interest rate is only accessible
through the five messages. We have a guarantee that no other code can manipulate
the information in the account in any other way.^

The function get - method finds the method that implements a message for a given
object. The function send gets the method and applies it to a list of arguments. The
name send comes from the Flavors object-oriented system, which is discussed in the
history section (page 456).

(defun get-method (object message)
"Return the method that implements message for th is object."
(funcall object message))

(defun send (object message &rest args)
"Get the function to implement the message,
and apply the function to the a r g s . "
(apply (get-method object message) a rgs))

Here is an example of the use of new- account and send:

> (set f acct (new-account " J . Random Customer" 1000.00)) =^
#<CLOSURE 23652465>

> (send acct 'withdraw 500.00) 500.0

> (send acct 'deposi t 123.45) => 623.45

> (send acct 'name) ^ " J . Random Customer"

> (send acct 'balance) =^ 623.45

^More accurately, we have a guarantee that there is no way to get at the inside of a closure
using portable Common Lisp code. Particular implementations may provide debugging tools
for getting at this hidden information, such as i ηspect. So closures are not perfect at hiding
information from these tools. Of course, no information-hiding method will be guaranteed
against such covert channels—even with the most sophisticated software security measures,
it is always possible to, say, wipe a magnet over the computer's disks and alter sensitive data.

13.3 GENERIC FUNCTIONS 439

13.3 Generic Functions

The send syntax is awkward, as it is different from the normal Lisp function-calling
syntax, and it doesn't fit in with the other Lisp tools. For example, we might like to
say (ma pea Γ ' ba 1 anee accounts), but with messages we would have to write that as:

(mapcar #*(lambda (acct) (send acct 'balance)) accounts)

We can fix this problem by deiining generic functions that find the right method to
execute a message. For example, we could define:

(defun withdraw (object &rest args)
"Define withdraw as a generic function on objects . "
(apply (get-method object 'withdraw) args))

and then write (withdraw acct χ) instead of (send acct 'withdraw x) . The
function wi thdraw is generic because it not only works on account objects but also
works on any other class of object that handles the wi thdraw message. For example,
we might have a totally unrelated class, army, which also implements a withdraw
method. Then we could say (send 5th-army 'withdraw) or (withdraw 5th-army)
and have the correct method executed. So object-oriented programming eliminates
many problems with name clashes that arise in conventional programs.

Many of the built-in Common Lisp functions can be considered generic functions,
in that they operate on different types of data. For example, sqrt does one thing
when passed an integer and quite another when passed an imaginary number. The
sequence functions (like f indordelete) operate on lists, vectors, or strings. These
functions are not implemented like wi thd raw, but they still act like generic functions.^

13.4 Classes
It is possible to write macros to make the object-oriented style easier to read and
write. The macro def i ne - cl ass defines a class with its associated message-handling
methods. It also defines a generic function for each message. Finally, it allows the
programmer to make a distinction between variables that are associated with each
object and those that are associated with a class and are shared by all members of the
class. For example, you might want to have all instances of the class account share
the same interest rate, but you wouldn't want them to share the same balance.

^There is a technical sense of "generic function" that is used within CLOS. These functions
are not generic according to this technical sense.

440 OBJECT-ORIENTED PROGRAMMING

(defmacro def ine-c lass (c lass i ns t - va rs c l ass - va rs &body methods)
"Define a c lass for object-oriented programming."

Define constructor and generic funct ions for methods
' (l e t , c l a s s - v a r s

(mapcar # 'ensure-gener ic- fn \ (mapcar # ' f i r s t methods))
(defun . c l ass , i ns t - va rs

#*(lambda (message)
(case message

,©(mapcar #'make-clause methods))))))

(defun make-clause (c lause)
"Translate a message from def ine-c lass into a case c lause . "
' (. (f i r s t clause) #'(lambda .(second clause) . . (r es t2 c lause))))

(defun ensure-generic- fn (message)
"Define an object-oriented dispatch function for a message,
unless i t has already been defined as one."
(unless (gener ic- fn-p message)

(let ((fn #'(lambda (object &rest args)
(apply (get-method object message) a r g s))))

(set f (symbol-function message) fn)
(set f (get message *generic- fn) f n))))

(defun gener ic- fn-p (fn-name)
" I s th i s a generic funct ion?"
(and (fboundp fn-name)

(eq (get fn-name 'gener ic - fn) (symbol-function fn-name))))

Now we define the class account with this macro. We make i n t e r e s t - rate a class
variable, one that is shared by all accounts:

(def ine-c lass account (name Äoptional (balance 0.00))
((in teres t - ra te .06))

(withdraw (amt) (i f (<= amt balance)
(decf balance amt)
' i nsu f f i c ien t - funds))

(deposit (amt) (incf balance amt))
(balance () balance)
(name () name)

(in terest () (incf balance (* in terest - rate balance))))

Here w e use the generic functions defined by this macro:

> (set f acct2 (account "A. User" 2000.00)) #<CL0SURE 24003064>

> (deposit acct2 42.00) =^ 2042.0

> (in terest acct2) 2164.52

13.5 DELEGATION 44ί_

> (balance acct2) ^ 2164.52

> (balance acct) =^ 623.45

In this last line, the generic function bal anee is applied to acct , an object that was
created before we even defined the account class and the function balance. But
bal anee still works properly on this object, because it obeys the message-passing
protocol.

13.5 Delegation
Suppose we want to create a new kind of account, one that requires a password for
each action. We can define a new class, password-account, that has two message
clauses. The first clause allows for changing the password (if you have the original
password), and the second is an otherwi se clause, which checks the password given
and, if it is correct, passes the rest of the arguments on to the account that is being
protected by the password.

The definition of password-account takes advantage of the internal details of
d e f i n e - c l a s s in two ways: it makes use of the fact that otherwise can be used
as a catch-all clause in a case form, and it makes use of the fact that the dispatch
variable is called message. Usually, it is not a good idea to rely on details about the
implementation of a macro, and soon we will see cleaner ways of defining classes.
But for now, this simple approach works:

(def ine-c lass password-account (password acct) ()
(change-password (pass new-pass)

(i f (equal pass password)
(set f password new-pass)
'wrong-password))

(otherwise (pass &rest args)
(i f (equal pass password)

(apply message acct args)
'wrong-password)))

Now we see how the class password-account can be used to provide protection for
an existing account:

(set f acct3 (password-account "secret" acct2)) => #<CLOSURE 33427277>
> (balance acct3 "secret") => 2164.52
> (withdraw acct3 "guess" 2000.00) =^ WRONG-PASSWORD
> (withdraw acct3 "secret" 2000.00) 164.52

Now let's try one more example. Suppose we want to have a new class of account

442 OBJECT-ORIENTED PROGRAMMING

where only a limited amount of money can be withdrawn at any time. We could
define the class 1 i mi ted - account:

(def ine-c lass l imited-account (l imi t acct) ()
(withdraw (amt)

(i f (> amt l imi t)
'over - l im i t
(withdraw acct amt)))

(otherwise (&rest args)
(apply message acct a rgs)))

This definition redefines the wi t hd raw message to check if the limit is exceeded before
passing on the message, and it uses the otherwi se clause simply to pass on all other
messages unchanged. In the following example, we set up an account with both a
password and a limit:

> (set f acct4 (password-account "pass"
(l imited-account 100.00

(account "A. Thr i f ty Spender" 500.00))))
#<CLOSURE 34136775>

> (withdraw acct4 "pass" 200.00) ^ OVER-LIMIT

> (withdraw acct4 "pass" 20.00) => 480.0

> (withdraw acct4 "guess" 20.00) =^ WRONG-PASSWORD

Note that functions like wi thdraw are still simple generic functions that just find the
right method and apply it to the arguments. The trick is that each class defines a differ
ent way to handle the withdraw message. Calling wi thdraw with acct4 as argument
results in the following flow of control. First, the method in the password-account
class checks that the password is correct. If it is, it calls the method from the
1 i mi ted-account class. If the limit is not exceeded, we finally call the method from
the account class, which decrements the balance. Passing control to the method of
a component is called delegation.

The advantage of the object-oriented style is that we can introduce a new class
by writing one definition that is localized and does not require changing any existing
code. If we had written this in traditional procedural style, we would end up with
functions like the following:

(defun withdraw (acct amt &optional pass)
(cond ((and (typep acct 'password-account)

(not (equal pass (account-password acc t))))
'wrong-password)

((and (typep acct ' l imited-account)

13.6 INHERITANCE 443

(> amt (account- l imit account)))
'over - l im i t)

((> amt balance)
' i nsu f f i c ien t - funds)

(t (decf balance amt))))

There is nothing wrong with this, as an individual function. The problem is that
when the bank decides to offer a new kind of account, we will have to change this
function, along with all the other functions that implement actions. The "definition"
of the new account is scattered rather than localized, and altering a bunch of existing
functions is usually more error prone than writing a new class definition.

13.6 Inheritance

In the following table, data types (classes) are listed across the horizontal axis, and
functions (messages) are listed up and down the vertical axis. A complete program
needs to fill in all the boxes, but the question is how to organize the process of filling
them in. In the traditional procedural style, we write function definitions that fill in
a row at a time. In the object-oriented style, we write class definitions that fill in a
column at a time. A third style, the data-dnven or generic style, fills in only one box at
a time.

account l i m i t e d -
account

password-
account

name object
depos i t oriented
withdraw function oriented
balance
i n t e r e s t generic

In this table there is no particular organization to either axis; both messages and
classes are listed in random order. This ignores the fact that classes are organized hi
erarchically: both Hmited-account and password-account are subclasses of account.
This was implicit in the definition of the classes, because both 1 i mi ted - account and
password-account contain accounts as components and delegate messages to those
components. But it would be cleaner to make this relationship explicit.

The defstruct mechanism does allow for just this kind of explicit inheritance. If
we had defined account as a structure, then we could define 1 i mi ted - account with:

444 OBJECT-ORIENTED PROGRAMMING

(defstruct (l imited-account (: inc lude account)) l im i t)

Two things are needed to provide an inheritance facility for classes. First, we should
modify d e f i n e - c l a s s so that it takes the name of the class to inherit from as the
second argument. This will signal that the new class will inherit all the instance
variables, class variables, and methods from the parent class. The new class can, of
course, define new variables and methods, or it can shadow the parent's variables and
methods. In the form below, we define 1 i ml ted - account to be a subclass of account
that adds a new instance variable, 11 mi t , and redefines the wi thdraw method so that
it checks for amounts that are over the limit. If the amount is acceptable, then it uses
the function cal 1 -next-method (not yet defined) to get at the withdraw method for
the parent class, account.

(def ine-c lass l imited-account account (l im i t) ()
(withdraw (amt)

(i f (> amt l imi t)
O v e r - l i m i t
(cal l -next-method))))

If inheritance is a good thing, then multiple inheritance is an even better thing. For
example, assuming we have defined the classes 1 i mi ted - account and
password - account, it is very convenient to define the following class, which inherits
from both of them:

(def ine-c lass l imited-account-with-password
(password-account 1 i mi ted-account))

Notice that this new class adds no new variables or methods. All it does is combine
the functionality of two parent classes into one.

[¿3 Exercise 13.1 [d] Define a version of def i ne-cl a s s that handles inheritance and
cal l -next -method.

[¿3 Exercise 13.2 [d] Define a version of def i ne-cl a s s that handles multiple inheri
tance.

13.7 GLOS: THE COMMON LISP OBJECT SYSTEM 445

13.7 GLOS: The Common Lisp Object System

So far, we have developed an object-oriented programming system using a macro,
def ine-class , and a protocol for implementing objects as closures. There have
been many proposals for adding object-oriented features to Lisp, some similar to
our approach, some quite different. Recently, one approach has been approved to
become an official part of Common Lisp, so we will abandon our ad hoc approach
and devote the rest of this chapter to CLOS, the Common Lisp Object System. The
correspondence between our system and CLOS is summarized here:

our system CLOS
def ine-class defclass
methods defined in class defmethod
class-name make-instance
call-next-method call-next-method
ensure-generic-fn ensure-generic-function

Like most object-oriented systems, CLOS is primarily concerned with defining
classes and methods for them, and in creating instances of the classes. In CLOS the
macro def c lass defines a class, defmethod defines a method, and make-instance
creates an instance of a class—an object. The general form of the macro def cl ass is:

(def cl ass class-name (superclass...) (slot-specifier...) optional-class-option...)

The class-options are rarely used, def cl ass can be used to define the class account:

(defclass account ()
((name :initarg -.name :reader name)
(balance linitarg rbalance linitform 0.00 raccessor balance)
(interest-rate :allocation :class :initform .06

:reader interest-rate)))

In the definition of account, we see that the Ust of superclasses is empty, because
account does not inherit from any classes. There are three slot specifiers, for the
name, bal anee, and i n teres t - rate slots. Each slot name can be followed by optional
keyword/value pairs defining how the slot is used. The name slot has an : i ni targ
option, which says that the name can be specified when a new account is created
with make-instance. The :reader slot creates a method called name to get at the
current value of the slot.

The balance slot has three options: another : in i targ , saying that the balance
can be specified when a new account is made; an rinitform, which says that if
the balance is not specified, it defaults to 0.00, and an raccessor, which creates a

446 OBJECT-ORIENTED PROGRAMMING

method for getting at the slot's value just as : reader does, and also creates a method
for updating the slot with se t f .

The i n teres t - rate slot has an : i ni t f orm option to give it a defauh value and an
rail ocati on option to say that this slot is part of the class, not of each instance of the
class.

Here we see the creation of an object, and the application of the automatically
defined methods to it.

> (set f a l (make-instance 'account chalanee 5000.00

:name "Fred")) #<ACCOUNT 26726272>

> (name a l) ^ "Fred"

> (balance a l) 5000.0

> (in terest - ra te a l) ^ 0.06

CLOS differs from most object-oriented systems in that methods are defined sepa
rately from classes. To define a method (besides the ones defined automatically by
: reader, :writer, or :accessor options) we use the defmethod macro. It is similar
to defun in form:

ióefmethoómethod-name {parameter..:) body...)

Required parameters to a defmethod can be of the form (var class), meaning that
this is a method that applies only to arguments of that class. Here is the method for
withdrawing from an account. Note that CLOS does not have a notion of instance
variable, only instance slot. So we have to use the method (bal ance acc t) rather
than the instance variable bal anee:

(defmethod withdraw ((acct account) amt)
(i f (< amt (balance acct))

(decf (balance acct) amt)
' i nsuf f i ci ent- funds))

With CLOS it is easy to define a 1 imited-account as a subclass of account, and to
define the wi thd raw method for 11 mi ted - accounts:

(defc lass l imited-account (account)
((l im i t : i n i ta rg i l imi t -.reader l im i t)))

(defmethod withdraw ((acct l imited-account) amt)
(i f (> amt (l imi t acct))

Ove r - l im i t
(cal l-next-method)))

13.7 CLOS: THE COMMON LISP OBJECT SYSTEM 447

Note the use of cal 1 -next-method to invoke the withdraw method for the account
class. Also note that all the other methods for accounts automatically work on
instances of the class limited-account, because it is defined to inherit from account. In
the following example, we show that the name method is inherited, that the wi thdraw
method for 1 i mi ted-account is invoked first, and that the withdraw method for
account is invoked by the cal 1 -next-method function:

> (set f a2 (make-instance ' l imited-account
:name "A. Thr i f ty Spender"
:balance 500.00 : l imi t 100.00)) ^

#<LIMITED-ACCOUNT 24155343>

> (name a2) ^ "A. Thr i f ty Spender"

> (withdraw a2 200.00) ^ OVER-LIMIT

> (withdraw a2 20.00) 480.0

In general, there may be several methods appropriate to a given message. In that case,
all the appropriate methods are gathered together and sorted, most specific first. The
most specific method is then called. That is why the method for 1 i mi ted - account is
called first rather than the method for account. The function cal 1 -next-method can
be used within the body of a method to call the next most specific method.

The complete story is actually even more complicated than this. As one example
of the complication, consider the class audi ted-a ccount, which prints and keeps
a trail of all deposits and withdrawals. It could be defined as follows using a new
feature of C L O S , : before and : a f t e r methods:

(defc lass audited-account (account)
((aud i t - t ra i l : in i t form ni l :accessor aud i t - t r a i l)))

(defmethod withdraw ibefore ((acct audited-account) amt)
(push (pr int '(withdrawing .amt))

(aud i t - t ra i l acct)))

(defmethod withdraw rafter ((acct audited-account) amt)
(push (pr int '(withdrawal (.amt) done))

(audi t - t ra i l acct)))

Now a call to withdraw with a audi ted-account as the first argument yields three
applicable methods: the primary method from account and the : before and ra f ter
methods. In general, there might be several of each kind of method. In that case,
all the : before methods are called in order, most specific first. Then the most
specific primary method is called. It may choose to invoke cal 1 - next-method to
get at the other methods. (It is an error for a : before or : a f t e r method to use
cal 1 -next-method.) Finally, all the ra f ter methods are called, least specific first.

448 OBJECT-ORIENTED PROGRAMMING

The values from the : before and : a f ter methods are ignored, and the value from
the primary method is returned. Here is an example:

> (set f a3 (make-instance 'audited-account .-balance 1000.00))
#<AUDITED-ACCOUNT 33555607>

> (withdraw a3 100.00)
(WITHDRAWING 100.0)
(WITHDRAWAL (100.0) DONE)
900.0

> (audi t - t ra i l a3)
((WITHDRAWAL (100.0) DONE) (WITHDRAWING 100.0))

> (set f (aud i t - t ra i l a3) n i l)
NIL

The last interaction shows the biggest flaw in CLOS: it fails to encapsulate informa
tion. In order to make the audi t - t r a i 1 accessible to the wi thdraw methods, we had
to give it accessor methods. We would like to encapsulate the writer function for
audi t - t ra i l so that it can only be used with deposit and withdraw. But once the
writer function is defined it can be used anywhere, so an unscrupulous outsider can
destroy the audit trail, setting it to nil or anything else.

13.8 A CLOS Example: Searching Tools

CLOS is most appropriate whenever there are several types that share related behav
ior. A good example of an application that fits this description is the set of searching
tools defined in section 6.4. There we defined functions for breadth-first, depth-
first, and best-first search, as well as tree- and graph-based search. We also defined
functions to search in particular domains, such as planning a route between cities.

If we had written the tools in a straightforward procedural style, we would have
ended up with dozens of similar functions. Instead, we used higher-order functions
to control the complexity. In this section, we see how CLOS can be used to break up
the complexity in a slightly different fashion.

We begin by defining the class of search problems. Problems will be classified
according to their domain (route planning, etc.), their topology (tree or graph) and
their search strategy (breadth-first or depth-first, etc.). Each combination of these
features results in a new class of problem. This makes it easy for the user to add a new
class to represent a new domain, or a new search strategy. The basic class, probl em,
contains a single-instance variable to hold the unexplored states of the problem.

13.8 A CLOS EXAMPLE: SEARCHING TOOLS 449

(defc lass problem ()
((s ta tes l in i ta rg estates :accessor problem-states)))

The function searcher is similar to the function tree-search of section 6 . 4 . The
main difference is that searcher uses generic functions instead of passing around
functional arguments.

(defmethod searcher ((prob problem))
"Find a state that solves the search problem."
(cond ((no-s ta tes-p prob) f a i l)

((goal -p prob) (current-state prob))
(t (let ((current (pop-state prob)))

(set f (problem-states prob)
(problem-combiner

prob

(problem-successors prob current)
(problem-states prob))))

(searcher prob))))

searcher does not assume that the problem states are organized in a list; rather, it
uses the generic function no-states-p to test if there are any states, pop-state to
remove and return the first state, and current - s t a t e to access the first state. For the
basic probl em class, we will in fact implement the states as a list, but another class of
problem is free to use another representation.

(defmethod current-state ((prob problem))
"The current state i s the f i r s t of the possib le s t a tes . "
(f i r s t (problem-states prob)))

(defmethod pop-state ((prob problem))
"Remove and return the current s ta te . "
(pop (problem-states prob)))

(defmethod no-states-p ((prob problem))
"Are there any more unexplored s ta tes? "
(null (problem-states prob)))

In t ree - sea rch, we included a statement to print debugging information. We can do
that here, too, but we can hide it in a separate method so as not to clutter up the main
definition of searcher. It is a :before method because we want to see the output
before carrying out the operation.

450 OBJECT-ORIENTED PROGRAMMING

(defmethod searcher .-before ((prob problem))
(dbg 'search "~&;; Search: ~a" (problem-states prob)))

The generic functions that remain to be defined are goal -p, probl em-combi ner, and
probl em-successors. We will address goal -p first, by recognizing that for many
problems we will be searching for a state that is eql to a specified goal state. We
define the class eql -probl em to refer to such problems, and specify goal -p for that
class. Note that we make it possible to specify the goal when a problem is created,
but not to change the goal:

(defc lass eql-problem (problem)
((goal : i n i ta rg :goal :reader problem-goal)))

(defmethod goal-p ((prob eql-problem))
(eql (current-state prob) (problem-goal prob)))

Now we are ready to specify two search strategies: depth-first search and
breadth-first search. We define problem classes for each strategy and specify the
probl em- combi ner function:

(defc lass dfs-problem (problem) ()
(:documentation "Depth- f i rs t search problem."))

(defc lass bfs-problem (problem) ()
(:documentation "Breadth- f i rs t search problem."))

(defmethod problem-combiner ((prob dfs-problem) new old)
"Depth- f i rs t search looks at new states f i r s t . "
(append new o ld))

(defmethod problem-combiner ((prob bfs-problem) new old)
"Depth- f i rs t search looks at old states f i r s t . "
(append old new))

While this code will be sufficient for our purposes, it is less than ideal, because it
breaks an information-hiding barrier. It treats the set of old states as a list, which is the
default for the ρ r obi em class but is not necessarily the implementation that every class
will use. It would have been cleaner to define generic functions add - sta t es - to - end
and add-states-to-front and then define them with append in the default class.
But Lisp provides such nice list-manipulation primitives that it is difficult to avoid
the temptation of using them directly.

Of course, the user who defines a new implementation for probl em-states
could just redefine probl em- combi ner for the offending classes, but this is precisely
what object-oriented programming is designed to avoid: specializing one abstrac
tion (states) should not force us to change anything in another abstraction (search
strategy).

13.8 A CLOS EXAMPLE: SEARCHING TOOLS 451

The last step is to define a class that represents a particular domain, and define
problem-successors for that domain. As the first example, consider the simple
binary tree search from section 6.4. Naturally, this gets represented as a class:

(defc lass binary-tree-problem (problem) ())

(defmethod problem-successors ((prob binary-tree-problem) state)
(le t ((n (* 2 s ta te)))

(l i s t η (+ η 1))))

Now suppose we want to solve a binary-tree problem with breadth-first search,
searching for a particular goal. Simply create a class that mixes in
binary-tree-problem, eql-problem and bfs-problem, create an instance of that
class, and call searcher on that instance:

(defc lass binary-tree-eql-bfs-problem
(binary-tree-problem eql-problem bfs-problem) ())

> (set f pi (make-instance 'b inary- t ree-eql-bfs-problem
is tates ' (1) :goal 12))

#<BINARY-TREE-EQL-BFS-PROBLEM 26725536>

> (searcher p i)
Search: (1)
Search: (2 3)
Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:
Search:

(3 4
(4 5
(5 6
(6 7
(7 8
(8 9

5)
6 7)
7 8 9)
8 9 10 11)
9 10 11 12 13)
10 11 12 13 14 15)

(9 10 11 12 13 14 15 16 17)
(10 11 12 13 14 15 16 17 18 19)
(11 12 13 14 15 16 17 18 19 20 21)
(12 13 14 15 16 17 18 19 20 21 22 23)

12

Best-First Search

It should be clear how to proceed to define best-first search: define a class to represent
best-first search problems, and then define the necessary methods for that class.
Since the search strategy only affects the order in which states are explored, the only
method necessary will be for probl em- combi ner.

452 OBJECT-ORIENTED PROGRAMMING

(defc lass best-problem (problem) 0
(.•documentation "A B e s t - f i r s t search problem."))

(defmethod problem-combiner ((prob best-problem) new old)
"Bes t - f i r s t search sor ts new and old according to c o s t - f n . "
(sor t (append new old) # ' <

:key #'(lambda (state) (cost - fn prob s ta te))))

This introduces the new function cost - f n; naturally it will be a generic function. The
following is a cos t - f η that is reasonable for any eq 1 - ρ rob 1 em dealing with numbers,
but it is expected that most domains will specialize this function.

(defmethod cost - fn ((prob eql-problem) state)
(abs (- state (problem-goal prob))))

Beam search is a modification of best-first search where all but the best b states are
thrown away on each iteration. A beam search problem is represented by a class
where the instance variable beam-width holds the parameter b. If this nil, then full
best-first search is done. Beam search is implemented by an : a round method on
problem-combiner. It calls the next method to get the list of states produced by
best-first search, and then extracts the first 6 elements.

(defc lass beam-problem (problem)
((beam-width : i n i ta rg :beam-width : in i t form ni l

:reader problem-beam-width)))

(defmethod problem-combiner raround ((prob beam-problem) new old)
(le t ((combined (cal l-next-method)))

(subseq combined 0 (min (problem-beam-width prob)
(length combined)))))

Now we apply beam search to the binary-tree problem. As usual, we have to make
up another class to represent this type of problem:

(defc lass binary-tree-eql-best-beam-problem
(binary-tree-problem eql-problem best-problem beam-problem)
())

> (set f p3 (make-instance 'binary-tree-eql-best-beam-problem
rstates ' (1) :goal 12 :beam-width 3))

#<BINARY-TREE-EQL-BEST-BEAM-PROBLEM 27523251>

> (searcher p3)
Search: (1)
Search: (3 2)
Search: (7 6 2)
Search: (14 15 6)
Search: (15 6 28)

13.8 A CLOS EXAMPLE: SEARCHING TOOLS 453

Search: (6 28 30)
Search: (12 13 28)

12

So far the case for CLOS has not been compelling. The code in this section duplicates
the functionality of code in section 6.4, but the CLOS code tends to be more verbose,
and it is somewhat disturbing that we had to make up so many long class names.
However, this verbosity leads to flexibility, and it is easier to extend the CLOS code by
adding new specialized classes. It is useful to make a distinction between the systems
programmer and the applications programmer. The systems programmer would
supply a library of classes like dfs-problem and generic functions like searcher.
The applications programmer then just picks what is needed from the library. From
the following we see that it is not too difficult to pick out the right code to define a
trip-planning searcher. Compare this with the definition of t r i ρ on page 198 to see
if you prefer CLOS in this case. The main difference is that here we say that the cost
function is a i r-di stance and the successors are the nei ghbors by defining methods;
in t r i ρ we did it by passing parameters. The latter is a little more succint, but the
former may be more clear, especially as the number of parameters grows.

(defc lass tr ip-problem (binary-tree-eql-best-beam-problem)
((beam-width : in i t form 1)))

(defmethod cost - fn ((prob tr ip-problem) c i ty)
(a i r -d is tance (problem-goal prob) c i t y))

(defmethod problem-successors ((prob tr ip-problem) c i ty)
(neighbors c i t y))

With the definitions in place, it is easy to use the searching tool:

> (set f p4 (make-instance ' t r ip-problem
estates (l i s t (c i ty 'new-york))
:goal (c i ty ' san - f ranc i sco)))

#<TRIP-PRÜBLEM 31572426>

> (searcher p4)
Search: ((NEW-YORK 73.58 40.47))
Search: ((PITTSBURG 79.57 40.27))
Search: ((CHICAGO 87.37 41 .5))
Search: ((KANSAS-CITY 94.35 39.06))
Search: ((DENVER 105.0 39.45))

; ; Search: ((FLAGSTAFF 111.41 35.13))
Search: ((RENO 119.49 39.3))

; : Search: ((SAN-FRANCISCO 122.26 37.47))
(SAN-FRANCISCO 122.26 37.47)

454 OBIECT-ORIENTED PROGRAMMING

13.9 Is CLOS Object-Oriented?
There is some argument whether CLOS is really object-oriented at all. The arguments
are:

CLOS IS an object-oriented system because it provides all three of the main criteria
for object-orientation: objects with internal state, classes of objects with specialized
behavior for each class, and inheritance between classes.

CLOS is not an object-oriented system because it does not provide modular
objects with information-hiding. In the audi ted-account example, we would like to
encapsulate the audi t - t ra i l instance variable so that only the withdraw methods
can change it. But because methods are written separately from class definitions,
we could not do that. Instead, we had to define an accessor for audi t - t r a i 1. That
enabled us to write the withdraw methods, but it also made it possible for anyone
else to alter the audit trail as well.

CLOS is more general than an object-oriented system because it allows for methods
that specialize on more than one argument. In true object-oriented systems, methods
are associated with objects of a particular class. This association is lexically obvious
(and the message-passing metaphor is clear) when we write the methods inside the
definition of the class, asinourdef i ne-cl ass macro. The message-passing metaphor
is still apparent when we write generic functions that dispatch on the class of their
first argument, which is how we've been using CLOS so far.

But CLOS methods can dispatch on the class of any required argument, or any
combination of them. Consider the following definition of cone, which is like append
except that it works for vectors as well as lists. Rather than writing cone using
conditional statements, we can use the multimethod dispatch capabilities of CLOS
to define the four cases: (1) the first argument is nil, (2) the second argument is nil,
(3) both arguments are lists, and (4) both arguments are vectors. Notice that if one of
the arguments is nil there will be two applicable methods, but the method for nul 1
will be used because the class nul 1 is more specific than the class l i s t .

(defmethod cone ((x nu l l) y) y)

(defmethod cone (x (y nu l l)) x)

(defmethod cone ((x l i s t) (y l i s t))
(cons (f i r s t x) (cone (rest x) y)))

(defmethod cone ((x vector) (y vector))
(let ((vect (make-array (+ (length x) (length y)))))

(replace vect x)
(replace vect y rs tar t l (length x))))

13.10 ADVANTAGES OF OBJECT-ORIENTED PROGRAMMING 455

Here we see that this definition works:

> (cone ni l ' (a b c)) =^ (A Β C)

> (cone ' (a b c) n i l) =^ (A Β C)

> (cone ' (a b c) ' (d e f)) (A Β C D Ε F)

> (cone '#(a b e) '#(d e f)) =^ #(A Β C D Ε F)

It works, but one might well ask: where are the objects? The metaphor of passing a
message to an object does not apply here, unless we consider the object to be the list
of arguments, rather than a single privileged argument.

It is striking that this style of method definition is very similar to the style used
in Prolog. As another example, compare the following two definitions of 1 en, a
relation/function to compute the length of a list:

CLOS %% Prolog
(defmethod len ((x nu l l)) 0) l en (C] . 0) .

(defmethod len ((x eons)) len([X IL] .N1) : -
(+ 1 (len (rest x)))) l en (L .N) . Nl i s N+1.

13.10 Advantages of Object-Oriented
Programming

Bertrand Meyer, in his book on the object-oriented language Eiffel (1988), lists five
qualities that contribute to software quality:

• Correctness. Clearly, a correct program is of the upmost importance.

• Robustness. Programs should continue to function in a reasonable manner even
for input that is beyond the original specifications.

• Extendability. Programs should be easy to modify when the specifications
change.

• Reusability. Program components should be easy to transport to new programs,
thus amortizing the cost of software development over several projects.

• Compatibility. Programs should interface well with other programs. For exam
ple, a spreadsheet program should not only manipulate numbers correctly but
also be compatible with word processing programs, so that spreadsheets can
easily be included in documents.

456 OBJECT-ORIENTED PROGRAMMING

Here we list how the object-oriented approach in general and CLOS in particular
can effect these measures of quality:

• Conectness. Correctness is usually achieved in two stages: correctness of
individual modules and correctness of the whole system. The object-oriented
approach makes it easier to prove correctness for modules, since they are
clearly defined, and it may make it easier to analyze interactions between
modules, since the interface is strictly limited. CLOS does not provide for
information-hiding the way other systems do.

• Robustness. Generic functions make it possible for a function to accept, at run
time, a class of argument that the programmer did not anticipate at compile
time. This is particularly true in CLOS, because multiple inheritance makes it
feasible to write default methods that can be used by a wide range of classes.

• Extendability. Object-oriented systems with inheritance make it easy to define
new classes that are slight variants on existing ones. Again, CLOS's multiple
inheritance makes extensions even easier than in single-inheritance systems.

• Reusability. This is the area where the object-oriented style makes the biggest
contribution. Instead of writing each new program from scratch, object-
oriented programmers can look over a library of classes, and either reuse
existing classes as is, or specialize an existing class through inheritance. Large
libraries of CLOS classes have not emerged yet. Perhaps they will when the
language is more established.

• Compatibility. The more programs use standard components, the more they will
be able to communicate with each other. Thus, an object-oriented program will
probably be compatible with other programs developed from the same library
of classes.

13.11 History and References
The first object-oriented language was Simula, which was designed by Ole-Johan
Dahl and Krysten Nygaard (1966, Nygaard and Dahl 1981) as an extension of Algol 60.
It is still in use today, mostly in Norway and Sweden. Simula provides the ability to
define classes with single inheritance. Methods can be inherited from a superclass
or overridden by a subclass. It also provides coroutines, class instances that execute
continuously, saving local state in instance variables but periodically pausing to let
other coroutines run. Although Simula is a general-purpose language, it provides
special support for simulation, as the name implies. The built-in class s imul a t i o n
allows a programmer to keep track of simulated time while running a set of processes
as coroutines.

13.11 HISTORY AND REFERENCES 457

In 1969 Alan Kay was a graduate student at the University of Utah. He became
aware of Simula and realized that the object-oriented style was well suited to his
research in graphics (Kay 1969). A few years later, at Xerox, he joined with Adele
Goldberg and Daniel Ingalls to develop the Smalltalk language (see Goldberg and
Robinson 1983). While Simula can be viewed as an attempt to add object-oriented
features to strongly typed Algol 60, Smalltalk can be seen as an attempt to use the
dynamic, loosely typed features of Lisp, but with methods and objects replacing
functions and s-expressions. In Simula, objects existed alongside traditional data
types like numbers and strings; in Smalltalk, every datum is an object. This gave
Smalltalk the feel of an integrated Lisp environment, where the user can inspect, copy,
or edit any part of the environment. In fact, it was not the object-oriented features of
Smalltalk per se that have made a lasting impression but rather the then-innovative
idea that every user would have a large graphical display and could interact with the
system using a mouse and menus rather than by typing commands.

Guy Steele's LAMBDA: The Ultimate Declarative (1976a and b) was perhaps the
first paper to demonstrate how object-oriented programming can be done in Lisp. As
the title suggests, it was all done using 1 ambda, in a similar way to our def i ne-cl ass
example. Steele summarized the approach with the equation "Actors = Closures
(mod Syntax)," refering to Carl Hewitt's "Actors" object-oriented formalism.

In 1979, the MIT Lisp Machine group developed the Flavors system based on this
approach but offering considerable extensions (Cannon 1980, Weinreb 1980, Moon
et al. 1983). "Flavor" was a popular jargon word for "type" or "kind" at MIT, so it was
natural that it became the term for what we call classes.

The Flavor system was the first to support multiple inheritance. Other languages
shunned multiple inheritance because it was too dynamic. With single inheritance,
each instance variable and method could be assigned a unique offset number, and
looking up a variable or method was therefore trivial. But with multiple inheritance,
these computations had to be done at run time. The Lisp tradition enabled pro
grammers to accept this dynamic computation, when other languages would not.
Once it was accepted, the MIT group soon came to embrace it. They developed
complex protocols for combining different flavors into new ones. The concept of
mix-ins was developed by programmers who frequented Steve's Ice Cream parlor in
nearby Davis Square. Steve's offered a list of ice cream flavors every day but also
offered to create new flavors—dynamically—by mixing in various cookies, candies,
or fruit, at the request of the individual customer. For example, Steve's did not have
chocolate-chip ice cream on the menu, but you could always order vanilla ice cream
with chocolate chips mixed in.^

This kind of "flavor hacking" appealed to the MIT Lisp Machine group, who

^Flavor fans will be happy to know that Steve's Ice Cream is now sold nationally in the
United States. Alas, it is not possible to create flavors dynamically. Also, be warned that
Steve's was bought out by his Teal Square rival, Joey's. The original Steve retired from the
business for years, then came back with a new line of stores under his last name, Harrell.

458 OBJECT-ORIENTED PROGRAMMING

adopted the metaphor for their object-oriented programming system. All flavors
inherited from the top-most flavor in the hierarchy: vanilla. In the window system, for
example, the flavor basi c-wi ndow was defined to support the minimal functionality
of all windows, and then new flavors of window were defined by combining mix-in
flavors such as scrol l -bar-mixin, label -mixin, and border-mixin. These mix-in
flavors were used only to define other flavors. Just as you couldn't go into Steve's and
order "crushed Heath bars, hold the ice cream," there was a mechanism to prohibit
instantiation of mix-ins.

A complicated repetoire of method combinations was developed. The default
method combination on Flavors was similar to CLOS: first do all the : before meth
ods, then the most specific primary method, then the : a f ter methods. But it was
possible to combine methods in other ways as well. For example, consider the
i ns i de - wi dth method, which returns the width in pixels of the usuable portion of a
window. A programmer could specify that the combined method for i nsi de-wi dth
was to be computed by calling all applicable methods and summing them. Then an
inside-width method for the basic-window flavor would be defined to return the
width of the full window, and each mix-in would have a simple method to say how
much of the width it consumed. For example, if borders are 8 pixels wide and scroll
bars are 12 pixels wide, then the i nsi de-wi dth method for border-mi xi η returns -8
andscrol l -bar-mixinreturns -12. Thenany window, no matter how many mix-ins
it is composed of, automatically computes the proper inside width.

In 1981, Symbolics came out with a more efficient implementation of Flavors.
Objects were no longer just closures. They were still funcallable, but there was
additional hardware support that distinguished them from other functions. After a
few years Symbolics abandoned the (send object message) syntax in favor of a new
syntax based on generic functions. This system was known as New Flavors. It had a
strong influence on the eventual CLOS design.

The other strong influence on CLOS was the CommonLoops system developed
at Xerox PARC. (See Bobrow 1982, Bobrow et al. 1986, Stefik and Bobrow 1986.)
CommonLoops continued the New Flavors trend away from message passing by
introducing multimethods: methods that specialize on more than one argument.

As of summer 1991, CLOS itself is in a state of limbo. It was legitimitized by its
appearance in Common Lisp the Language, 2d edition, but it is not yet official, and an
important part, the metaobject protocol, is not yet complete. A tutorial on CLOS is
Keenel989.

We have seen how easy it is to build an object-oriented system on top of Lisp,
using 1 ambda as the primary tool. An interesting alternative is to build Lisp on top of
an object-oriented system. That is the approach taken in the Oaklisp system of Lang
and Perlmutter (1988). Instead of defining methods using 1 ambda as the primitive,
OakHsp has add-method as a primitive and defines 1 ambda as a macro that adds a
method to an anonymous, empty operation.

Of course, object-oriented systems are thriving outside the Lisp world. With the

13,12 EXERCISES 459

success of UNIX-based workstations, C has become one of the most widely available
programming languages. C is a fairly low-level language, so there have been several
attempts to use it as a kind of portable assembly language. The most succesful of
these attempts is C++, a language developed by Bjarne Stroustrup of AT&T Bell Labs
(Stroustrup 1986). C++ provides a number of extensions, including the ability to
define classes. However, as an add-on to an existing language, it does not provide as
many features as the other languages discussed here. Crucially, it does not provide
garbage collection, nor does it support fully generic functions.

Eiffel (Meyer 1988) is an attempt to define an object-oriented system from the
ground up rather than tacking it on to an existing language. Eiffel supports multiple
inheritance and garbage collection and a limited amount of dynamic dispatching.

So-called modern languages like Ada and Modula support information-hiding
through generic functions and classes, but they do not provide inheritance, and thus
can not be classified as true object-oriented languages.

Despite these other languages, the Lisp-based object-oriented systems are the
only ones since Smalltalk to introduce important new concepts: multiple inheritance
and method combination from Flavors, and multimethods from CommonLoops.

13.12 Exercises

@ Exercise 13.3 [m] Implement deposit and in te res t methods for the account class
using CLOS.

@ Exercise 13.4 [m] Implement the password-account class using CLOS. Can it be
done as cleanly with inheritance as it was done with delegation? Or should you use
delegation within CLOS?

@ Exercise 13.5 [h] Implement graph searching, search paths, and A* searching as
classes in CLOS.

@ Exercise 13.6 [h] Implement a priority queue to hold the states of a problem. In
stead of a list, the probl em-states will be a vector of lists, each initially null. Each
new state will have a priority (determined by the generic function priori ty) which
must be an integer between zero and the length of the vector, where zero indicates the
highest priority. A new state with priority ρ is pushed onto element ρ of the vector,
and the state to be explored next is the first state in the first nonempty position. As
stated in the text, some of the previously defined methods made the unwarranted
assumption that probl em-states would always hold a Hst. Change these methods.

CHAPTER 14
Knowledge Representation
and Reasoning

Knowledge itself is power.
-Francis Bacon (Ί 561-1626)

The power resides in the knowledge.
—Edward Feigenbaum

Stanford University Heuristic Programming Project

Knowledge is Knowledge, and vice versa.
—Tee shirt

Stanford University Heuristic Programming Project

In the 1960s, much of AI concentrated on search techniques. In particular, a lot of w^ork v^as
concerned with theorem proving: stating a problem as a small set of axioms and searching for
a proof of the problem. The implicit assumption was that the power resided in the inference

mechanism-if we could just find the right search technique, then all our problems would be
solved, and all our theorems would be proved.

INTRODUCTION 461

Starting in the 1970s, this began to change. The theorem-proving approach failed
to live up to its promise. AI workers slowly began to realize that they were not going
to solve NP-hard problems by conung up with a clever inference algorithm. The
general inferencing mechanisms that worked on toy examples just did not scale up
when the problem size went into the thousands (or sometimes even into the dozens).

The expert-system approach offered an alternative. The key to solving hard prob
lems was seen to be the acquisition of special-case rules to break the problem into
easier problems. According to Feigenbaum, the lesson learned from expert systems
like MYCIN (which we will see in chapter 16) is that the choice of inferencing mech
anism is not as important as having the right knowledge. In this view it doesn't
matter very much if MYCIN uses forward- or backward-chaining, or if it uses certainty
factors, probabilities, or fuzzy set theory. What matters crucially is that we know
Pseudomonas is a gram-negative, rod-shaped organism that can infect patients with
compromised immune systems. In other words, the key problem is acquiring and
representing knowledge.

While the expert system approach had some successes, it also had failiu-es, and
researchers were interested in learning the limits of this new technology and under
standing exactly how it works. Many found it troublesome that the meaning of the
knowledge used in some systems was never clearly defined. For example, does the
assertion (color appl e red) mean that a particular apple is red, that all apples are
red, or that some/most apples are red? The field of knowledge representation concen
trated on providing clear semantics for such representations, as well as providing
algorithms for manipulating the knowledge. Much of the emphasis was on finding a
good trade-off between expressiveness and efficiency. An efficient language is one for
which all queries (or at least the average query) can be answered quickly. If we want
to guarantee that queries will be answered quickly, then we have to limit what can
be expressed in the language.

In the late 1980s, a series of results shed doubt on the hopes of finding an efficient
language with any reasonable degree of expressiveness at all. Using mathematical
techniques based on worst-case analysis, it was shown that even seemingly trivial
languages were intractable—in the worst case, it would take an exponential amount of
time to answer a simple query.

Thus, in the 1990s the emphasis has shifted to knowledge representation and reason
ing, a field that encompasses both the expressiveness and efficiency of languages but
recognizes that the average case is more important than the worst case. No amount
of knowledge can help solve an intractable problem in the worse case, but in practice
the worst case rarely occurs.

462 KNOWLEDGE REPRESENTATION AND REASONING

14.1 A Taxonomy of Representation Languages
AI researchers have investigated hundreds of knowledge representation languages,
trying to find languages that are convenient, expressive, and efficient. The languages
can be classified into four groups, depending on what the basic unit of representation
is. Here are the four categories, with some examples:

• Logical Formulae (Prolog)

• Networks (semantic nets, conceptual graphs)

• Objects (scripts, frames)

• Procedures (Lisp, production systems)

We have already dealt with logic-based languages like Prolog.
Network-based languages can be seen as a syntactic variation on logical languages.

A link L between nodes A and Β is just another way of expressing the logical rela
tion B), The difference is that network-based languages take their links more
seriously: they are intended to be implemented directly by pointers in the computer,
and inference is done by traversing these pointers. So placing a link L between A
and Β not only asserts that L(A, B) is true, but it also says something about how the
knowledge base is to be searched.

Object-oriented languages can also be seen as syntactic variants of predicate cal
culus. Here is a statement in a typical slot-filler frame language:

(a person
(name = Jan)
(age = 32))

This is equivalent to the logical formula:

3 p: person(p) Λ name(p,Jan) Λ age(p,32)

The frame notation has the advantage of being easier to read, in some people's
opinion. However, the frame notation is less expressive. There is no way to say that
the person's name is either Jan or John, or that the person's age is not 34. In predicate
calculus, of course, such statements can be easily made.

Finally, procedural languages are to be contrasted with representation languages:
procedural languages compute answers without explicit representation of knowl
edge.

There are also hybrid representation languages that use different methods to
encode different kinds of knowledge. The KL-ONE family of languages uses both
logical formulae and objects arranged into a network, for example. Many frame

14.2 PREDICATE CALCULUS AND ITS PROBLEMS 463

languages allow procedural attachment, a technique that uses arbitrary procedures to
compute values for expressions that are inconvenient or impossible to express in the
frame language itself.

14.2 Predicate Calculus and its Problems
So far, many of our representations have been based on predicate calculus, a notation
with a distinguished position in AI: it serves as the universal standard by which other
representations are defined and evaluated. The previous section gave an example
expression from a frame language. The frame language may have many merits in
terms of the ease of use of its syntax or the efficiency of its internal representation of
data. However, to understand what expressions in the language mean, there must be
a clear definition. More often than not, that definition is given in terms of predicate
calculus.

A predicate calculus representation assumes a universe of individuals, with re
lations and functions on those individuals, and sentences formed by combining
relations with the logical connectives and, or, and not. Philosophers and psycholo
gists will argue the question of how appropriate predicate calculus is as a model of
human thought, but one point stands clear: predicate calculus is sufficient to repre
sent anything that can be represented in a digital computer. This is easy to show:
assuming the computer's memory has η bits, and the equation hi = 1 means that bit
i is on, then the entire state of the computer is represented by a conjunction such as:

(6o = 0) Λ (6i = 0) Λ (62 = 1) Λ . . . Λ {bn = 0)

Once we can represent a state of the computer, it becomes possible to represent
any computer program in predicate calculus as a set of axioms that map one state onto
another. Thus, predicate calculus is shown to be a sufficientlangaage for representing
anything that goes on inside a computer—it can be used as a tool for analyzing any
program from the outside.

This does not prove that predicate calculus is an appropriate tool for all applica
tions. There are good reasons why we may want to represent knowledge in a form
that is quite different from predicate calculus, and manipulate the knowledge with
procedures that are quite different from logical inference. But we should still be able
to describe our system in terms of predicate calculus axioms, and prove theorems
about it. To do any less is to be sloppy. For example, we may want to manipulate
numbers inside the computer by using the arithmetic instructions that are built into
the CPU rather than by manipulating predicate calculus axioms, but when we write
a square-root routine, it had better satisfy the axiom:

y/x = y=^yxy = x

464 KNOWLEDGE REPRESENTATION AND REASONING

Predicate calculus also serves another purpose: as a tool that can be used by a
program rather than on a program. All programs need to manipulate data, and some
programs will manipulate data that is considered to be in predicate calculus notation.
It is this use that we will be concerned with.

Predicate calculus makes it easy to start writing down facts about a domain. But
the most straightforward version of predicate calculus suffers from a number of
serious limitations:

• Decidability—^ven a set of axioms and a goal, it may be that neither the goal nor
its negation can be derived from the axioms.

• Tractability—even when a goal is provable, it may take too long to find the proof
using the available inferencing mechanisms.

• Uncertainty—it can be inconvenient to deal with relations that are probable to a
degree but not known to be definitely true or false.

• Monotonicity—in pure predicate calculus, once a theorem is proved, it is true
forever. But we would like a way to derive tentative theorems that rely on
assumptions, and be able to retract them when the assumptions prove false.

• Consistency—pure predicate calculus admits no contradictions. If by accident
both Ρ and -«Ρ are derived, then any theorem can be proved. In effect, a single
contradiction corrupts the entire data base.

• Omniscience—it can be difficult to distinguish what is provable from what should
be proved. This can lead to the unfounded assumption that an agent believes
all the consequences of the facts it knows.

• Expressiveness—the first-order predicate calculus makes it awkward to talk
about certain things, such as the relations and propositions of the language
itself.

The view held predominantly today is that it is best to approach these problems
with a dual attack that is both within and outside of predicate calculus. It is considered
a good idea to invent new notations to address the problems—both for convenience
and to facilitate special-purpose reasoners that are more efficient than a general-
purpose theorem prover. However, it is also important to define scrupulously the
meaning of the new notation in terms of familiar predicate-calculus notation. As
Drew McDermott put it, "No notation without denotation!" (1978).

In this chapter we show how new notations (and their corresponding meanings)
can be used to extend an existing representation and reasoning system. Prolog is
chosen as the language to extend. This is not meant as an endorsement for Prolog as
the ultimate knowledge representation language. Rather, it is meant solely to give us
a clear and familiar foundation from which to build.

14.3 A LOGICAL LANGUAGE: PROLOG 465

14.3 A Logical Language: Prolog

Prolog has been proposed as the answer to the problem of programming in logic. Why
isn't it accepted as the universal representation language? Probably because Prolog
is a compromise between a representation language and a programming language.
Given two specifications that are logically equivalent, one can be an efficient Prolog
program, while the other is not. Kowalski's famous equation "algonthm = logic +
control" expresses the limits of logic alone: logic = algorithm - control Many problems
(especially in AI) have large or infinite search spaces, and if Prolog is not given some
advice on how to search that space, it will not come up with the answer in any
reasonable length of time.

Prolog's problems fall into three classes. First, in order to make the language
efficient, its expressiveness was restricted. It is not possible to assert that a person's
name is either Jan or John in Prolog (although it is possible to ask if the person's
name is one of those). Similarly, it is not possible to assert that a fact is false;
Prolog does not distinguish between false and unknown. Second, Prolog's inference
mechanism is neither sound nor complete. Because it does not check for circular
unification, it can give incorrect answers, and because it searches depth-first it can
miss correct answers. Third, Prolog has no good way of adding control information
to the underlying logic, making it inefficient on certain problems.

14.4 Problems with Prolog's Expressiveness

If Prolog is programming in logic, it is not the full predicate logic we are familiar with.
The main problem is that Prolog can't express certain kinds of indefinite facts. It can
represent definite facts: the capital of Rhode Island is Providence. It can represent
conjunctions of facts: the capital of Rhode Island is Providence and the capital of
California is Sacramento. But it can not represent disjunctions or negations: that the
capital of California is not Los Angeles, or that the capital of New York is either New
York City or Albany. We could try this:

(< - (not (capital LA CA)))
« - (or (capital Albany NY) (capital NYC NY)))

but note that these last two facts concern the relation not and or , not the relation
c a p i t a l . Thus, they will not be considered when we ask a query about c a p i t a l . For
tunately, the assertion "Either NYC or Albany is the capital of NY" can be rephrased
as two assertions: "Albany is the capital of NY if NYC is not" and "NYC is the capital
of NY if Albany is not:"

466 KNOWLEDGE REPRESENTATION AND REASONING

(< - (capital Albany NY) (not (capital NYC NY)))
(< - (capital NYC NY) (not (capital Albany NY)))

Unfortunately, Prolog's not is different from logic's not. When Prolog answers "no"
to a query, it means the query cannot be proven from the known facts. If everything
is known, then the query must be false, but if there are facts that are not known, the
query may in fact be true. This is hardly surprising; we can't expect a program to
come up with answers using knowledge it doesn't have. But in this case, it causes
problems. Given the previous two clauses and the query (capi ta l ?c NY) , Prolog
will go into an infinite loop. If we remove the first clause, Prolog would fail to prove
that Albany is the capital, and hence conclude that NYC is. If we remove the second
clause, the opposite conclusion would be drawn.

The problem is that Prolog equates "not proven" with "false." Prolog makes what
is called the closed world assumption—it assumes that it knows everything that is true.
The closed world assumption is reasonable for most programs, because the program
mer does know all the relevant information. But for knowledge representation in
general, we would like a system that does not make the closed world assumption
and has three ways to answer a query: "yes," "no," or "unknown." In this example,
we would not be able to conclude that the capital of NY is or is not NYC, hence we
would not be able to conclude anything about Albany.

As another example, consider the clauses:

(< - (damned) (do))
(< - (damned) (not (do)))

With these rules, the query (? (damned)) should logically be answered "yes."
Furthermore, it should be possible to conclude (damned) without even investigating
if (do) is provable or not. What Prolog does is first try to prove (do) . If this succeeds,
then (damned) is proved. Either way, Prolog then tries again to prove (do) , and this
time if the proof fails, then (damned) is proved. So Prolog is doing the same proof
twice, when it is unnecessary to do the proof at all. Introducing negation wrecks
havoc on the simple Prolog evaluation scheme. It is no longer sufficient to consider
a single clause at a time. Rather, multiple clauses must be considered together if we
want to derive all the right answers.

Robert Moore 1982 gives a good example of the power of disjunctive reasoning.
His problem concerned three colored blocks, but we will update it to deal with three
countries. Suppose that a certain Eastern European country, E, has just decided if it
will remain under communist rule or become a democracy, but we do not know the
outcome of the decision. Ε is situated between the democracy D and the communist
country C:

I D 1̂ É 1̂ c I

14A PROBLEMS WITH PROLOG'S EXPRESSIVENESS 467

The question is: Is there a communist country next to a democracy? Moore points
out that the answer is "yes," but discovering this requires reasoning by cases. If Ε is
a democracy then it is next to C and the answer is yes. But if Ε is communist then
it is next to D and the answer is still yes. Since those are the only two possibilities,
the answer must be yes in any case. Logical reasoning gives us the right answer, but
Prolog can not. We can describe the problem with the following seven assertions
and one query, but Prolog can not deal with the or in the final assertion.

(< - (next-to D E)) (< - (next-to Ε D))
(< - (next-to Ε Ο) (< - (next-to C E))
(< - (democracy D)) (< - (communist O)
(< - (or (democracy E) (communist E)))

(? - (next-to ?A ?B) (democracy ?A) (communist ?B))

We have seen that Prolog is not very good at representing disjunctions and negations.
It also has difficulty representing existentials. Consider the following statement in
English, logic, and Prolog:

Jan likes everyone.
V X person(x) => likesQan,x)
(< - (l i kes Jan ?x) (person ?x))

The Prolog translation is faithful. But there is no good translation for "Jan likes
someone." The closest we can get is:

Jan likes someone.
3 X person(x) =^ likesQan,x)
(< - (l i kes Jan p D)
(< - (person p D)

Here we have invented a new symbol, pi, to represent the unknown person that Jan
likes, and have asserted that pi is a person. Notice that pi is a constant, not a variable.
This use of a constant to represent a specific but unknown entity is called a Skolem
constant, after the logician Thoralf Skolem (1887-1963). The intent is that pi may be
equal to some other person that we know about. If we find out that Adrian is the
person Jan likes, then in logic we can just add the assertion pi = Adrian. But that does
not work in Prolog, because Prolog implicitly uses the unique name assumption—d\\
atoms represent distinct individuals.

A Skolem constant is really just a special case of a Skolem function—an unknown
entity that depends on one or more variable. For example, to represent "Everyone
likes someone" we could use:

468 KNOWLEDGE REPRESENTATION AND REASONING

Everyone likes someone.
V 2/ 3 X person(3:) =^ likes (y, x)
(< - (l i kes ?y (p2 ? y)))
(< - (person (p2 ? y)))

Here ρ2 is a Skolem function that depends on the variable ?y. In other words,
everyone likes some person, but not necessarily the same person.

14.5 Problems with Predicate Calculus's
Expressiveness

In the previous section we saw that Prolog has traded some expressiveness for
efficiency. This section explores the limits of predicate calculus's expressiveness.

Suppose we want to assert that lions, tigers, and bears are kinds of animals. In
predicate calculus or in Prolog we could write an impHcation for each case:

(< - (animal ?x) (l i on ?x))
(< - (animal ?x) (t iger ?x))
(< - (animal ?x) (bear ?x))

These implications allow us to prove that any known lion, tiger, or bear is in fact
an animal. However, they do not allow us to answer the question "What kinds of
animals are there?" It is not hard to imagine extending Prolog so that the query

(? - (< - (animal ?x) ?propos i t ion))

would be legal. However, this happens not to be valid Prolog, and it is not even
valid first-order predicate calculus (or FOPC). In FOPC the variables must range over
constants in the language, not over relations or propositions. Higher-order predicate
calculus removes this limitation, but it has a more complicated proof theory.

It is not even clear what the values of ?propos i t i on should be in the query above.
Surely (1 ion ?x) would be a valid answer, but so would (animal ?x) , (or (t i g e r
?x) (bea r ? x)) , and an infinite number of other propositions. Perhaps we should
have two types of queries, one that asks about "kinds," and another that asks about
propositions.

There are other questions that we might want to ask about relations. Just as it is
useful to declare the types of parameters to a Lisp function, it can be useful to declare
the types of the parameters of a relation, and later query those types. For example,
we might say that the 1 i kes relation holds between a person and an object.

In general, a sentence in the predicate calculus that uses a relation or sentence as
a term is called a higher-order sentence. There are some quite subtle problems that

14.6 PROBLEMS WITH COMPLETENESS 469

come into play when we start to allow higher-order expressions. Allowing sentences
in the calculus to talk about the truth of other sentences can lead to a paradox: is the
sentence "This sentence is false" true or false?

Predicate calculus is defined in terms of a universe of individuals and their
properties and relations. Thus it is well suited for a model of the world that picks out
individuals and categorizes them—a person here, a building there, a sidewalk between
them. But how well does predicate calculus fare in a world of continuous substances?
Consider a body of water consisting of an indefinite number of subconstituents that
are all water, with some of the water evaporating into the air and rising to form clouds.
It is not at all obvious how to define the individuals here. However, Patrick Hayes
has shown that when the proper choices are made, predicate calculus can describe
this kind of situation quite well. The details are in Hayes 1985.

The need to define categories is a more difficult problem. Predicate calculus
works very well for crisp, mathematical categories: χ is a triangle if and only if χ is
a polygon with three sides. Unfortunately, most categories that humans deal with
in everyday life are not defined so rigorously. The category friend refers to someone
you have mostly positive feelings for, whom you can usually trust, and so on. This
"definition" is not a set of necessary and sufficient conditions but rather is an open-
ended list of ill-defined qualities that are highly correlated with the category friend.
We have a prototype for what an ideal friend should be, but no clear-cut boundaries
that separate friend from, say, acquaintance. Furthermore, the boundaries seem to
vary from one situation to another: a person you describe as a good friend in your
work place might be only an acquaintance in the context of your home life.

There are versions of predicate calculus that admit quantifiers like "most" in
addition to "for all" and "there exists," and there have been attempts to define
prototypes and measure distances from them. However, there is no consensus on
the way to approach this problem.

14.6 Problems with Completeness

Because Prolog searches depth-first, it can get caught in one branch of the search
space and never examine the other branches. This problem can show up, for example,
in trying to define a commutative relation, like si bl i ng:

(< - (s i b l i ng lee kirn))
« - (s i b l i ng ?x ?y) (s i b l i ng ?y ?x))

With these clauses, we expect to be able to conclude that Lee is Kim's sibling, and
Kim is Lee's. Let's see what happens:

470 KNOWLEDGE REPRESENTATION AND REASONING

> (? - (s i b l i ng ?x ?y))
?X = LEE
?Y = KIM;
?X = KIM
?Y = LEE;
?X = LEE
?Y = KIM;
?X = KIM
?Y = LEE.
No.

We get the expected conclusions, but they are deduced repeatedly, because the
commutative clause for siblings is applied over and over again. This is annoying, but
not critical. Far worse is when we ask (? - (s ib l ing fred ? x)) . This query loops
forever. Happily, this particular type of example has an easy fix: just introduce two
predicates, one for data-base level facts, and one at the level of axioms and queries:

(< - (s i b l i ng - fac t lee kim))
(< - (s i b l i ng ?x ?y) (s i b l i ng - fac t ?x ? y))
(< - (s i b l i ng ?x ?y) (s i b l i ng - fac t ?y ? x))

Another fix would be to change the interpreter to fail when a repeated goal was de
tected. This was the approach taken in G P S . However, even if we eliminated repeated
goals, Prolog can still get stuck in one branch of a depth-first search. Consider the
example:

(<- (natural 0))
(<- (natural (1-·- ?n)) (natural ?n))

These rules define the natural numbers (the non-negative integers). We can use
the rules either to confirm queries like (natural (1+ (1-»- (1-·- 0)))) or to generate
the natural numbers, as in the query (natural ?n). So far, everything is fine. But
suppose we wanted to define all the integers. One approach would be this:

(<- (integer 0))
(<- (integer ?n) (integer (1+ ? n)))
(<- (integer a+ ?n)) (integer ?n))

These rules say that 0 is an integer, and any η is an integer if η - f 1 is, and η -h 1 is
if η is. While these rules are correct in a logical sense, they don't work as a Prolog
program. Asking (integer x) will result in an endless series of ever-increasing
queries: (integer (1+ x)), (integer (1+ (1+ and so on. Each goal is
different, so no check can stop the recursion.

14,6 PROBLEMS WITH COMPLETENESS 471

The occurs check may or may not introduce problems into Prolog, depending on
your interpretation of infinite trees. Most Prolog systems do not do the occurs check.
The reasoning is that unifying a variable with some value is the Prolog equivalent of
assigning a value to a variable, and programmers expect such a basic operation to be
fast. With the occurs check turned off, it will in fact be fast. With checking on, it
takes time proportional to the size of the value, which is deemed unacceptable.

With occurs checking off, the programmer gets the benefit of fast unification but
can run into problems with circular structures. Consider the following clauses:

(< - (parent ?x (mother-of ? x)))

(< - (parent ?x (father-of ? x)))

These clauses say that, for any person, the mother of that person and the father of
that person are parents of that person. Now let us ask if there is a person who is his
or her own parent:

> (? (parent ?y ? y))

?Y = [Abort]

The system has found an answer, where ?y = (mother-of ?y). The answer can't be
printed, though, because deref (or subst-bindings in the interpreter) goes into an
infinite loop trying to figure out what ?y is. Without the printing, there would be no
infinite loop:

(< - (se l f -parent) (parent ?y ? y))

> (? (se l f -parent))

Yes;

Yes;

No.

The sel f-parent query succeeds twice, once with the mother clause and once with
the father clause. Has Prolog done the right thing here? It depends on your interpre
tation of infinite circular trees. If you accept them as valid objects, then the answer
is consistent. If you don't, then leaving out the occurs check makes Prolog unsound:
it can come up with incorrect answers.

The same problem comes up if we ask if there are any sets that include themselves
as members. The query (member ?set ? se t) will succeed, but we will not be able to
print the value of ?set .

472 KNOWLEDGE REPRESENTATION AND REASONING

14.7 Problems with Efficiency: Indexing

Our Prolog compiler is designed to handle "programlike" predicates—predicates
with a small number of rules, perhaps with complex bodies. The compiler does
much worse on "tablelike" predicates-predicates with a large number of simple
facts. Consider the predicate pb, which encodes phone-book facts in the form:

(pb (name Jan Doe) (num 415 555 1212))

Suppose we have a few thousand entries of this kind. A typical query for this data
base would be:

(pb (name Jan Doe) ?num)

It would be inefficient to search through the facts linearly, matching each one against
the query. It would also be inefficient to recompile the whole pb /2 predicate every
time a new entry is added. But that is just what our compiler does.

The solutions to the three problems—expressiveness, completeness, and index-
ing-will be considered in reverse order, so that the most difficult one, expressiveness,
will come last.

14.8 A Solution to the Indexing Problem

A better solution to the phone-book problem is to index each phone-book entry in
some kind of table that makes it easy to add, delete, and retrieve entries. That is what
we will do in this section. We will develop an extension of the trie or discrimination
tree data structure built in section 10.5 (page 344).

Making a discrimination tree for Prolog facts is complicated by the presence of
variables in both the facts and the query. Either facts with variables in them will have
to be indexed in several places, or queries with variables will have to look in several
places, or both. We also have to decide if the discrimination tree itself will handle
variable binding, or if it will just return candidate matches which are then checked by
some other process. It is not clear what to store in the discrimination tree: copies of
the fact, functions that can be passed continuations, or something else. More design
choices will come up as we proceed.

It is difficult to make design choices when we don't know exactly how the system
will be used. We don't know what typical facts will look like, nor typical queries.
Therefore, we will design a fairly abstract tool, forgetting for the moment that it will
be used to index Prolog facts.

14,8 A SOLUTION TO THE INDEXING PROBLEM 473

We will address the problem of a discrimination tree where both the keys and
queries are predicate structures with wild cards. A wild card is a variable, but with
the understanding thatjhere is no variable binding; each instance of a variable can
match anything. A predicate structure is a list whose first element is a nonvariable
symbol. The discrimination tree supports three operations:

• i ndex—add a key/value pair to the tree

• fetch—find all values that potentially match a given key

• uni ndex—remove all key/value pairs that match a given key

To appreciate the problems, we need an example. Suppose we have the following
six keys to index. For simplicity, the value of each key will be the key itself:

1 (p a b)
2 (p a c)
3 (p a ?x)
4 (p b c)
5 (p b (f c))
6 (p a (f . ?x))

Now assume the query (ρ ?y c) . This should match keys 2, 3, and 4. How could
we efficiently arrive at this set? One idea is to list the key/value pairs under every
atom that they contain. Thus, all six would be listed under the atom p, while 2,
4, and 5 would be listed under the atom c. A unification check could eliminate 5,
but we still would be missing 3. Key 3 (and every key with a variable in it) could
potentially contain the atom c. So to get the right answers under this approach,
we will need to index every key that contains a variable under every atom—not an
appealing situation.

An alternative is to create indices based on both atoms and their position. So now
we would be retrieving all the keys that have a c in the second argument position: 2
and 4, plus the keys that have a variable as the second argument: 3. This approach
seems to work much better, at least for the example shown. To create the index, we
essentially superimpose the list structure of all the keys on top of each other, to arrive
at one big discrimination tree. At each position in the tree, we create an index of the
keys that have either an atom or a variable at that position. Figure 14.1 shows the
discrimination tree for the six keys.

Consider the query (ρ ?y c) . Either the ρ or the c could be used as an index.
The ρ in the predicate position retrieves all six keys. But the c in the second argument
position retrieves only three keys: 2 and 4, which are indexed under c itself, and 3,
which is indexed under the variable in that position.

Now consider the query (ρ ?y (f ? z)) . Again, the ρ serves as an index to all
six keys. The f serves as an index to only three keys: the 5 and 6, which are indexed

474 KNOWLEDGE REPRESENTATION AND REASONING

Ρ
(Ρ A Β)
(PAC)
(PA?)
(PBC)
(Ρ 8 (FC))
(Ρ A (F.?))

A

(Ρ A Β)
(PAC)
(PA?)
(Ρ A (F.?))

Β
(PBC)
(Ρ Β (FC))

(Ρ A (F.?))
Ο
(Ρ Β (FC))

(Ρ Β (F C))
(PA(F.?))

Β

(Ρ Α Β)

C
(PAC)
(PBC)
?

(PA?)

Figure 14.1: Discrimination Tree with Six Keys

directly under f in that position, and 3, which is indexed under the variable in a
position along the path that lead to f. In general, all the keys indexed under variables
along the path must be considered.

The retrieval mechanism can overretrieve. Given the query (ρ a (f ?x)) , t he
atom ρ will again retrieve all six keys, the atom a retrieves 1 ,2 ,3 , and 6, and f again
retrieves 5, 6, and 3. So f retrieves the shortest list, and hence it will be used to
determine the final result. But key 5 is (ρ b (f c)) , which does not match the query
(pa (f ? x)) .

We could eliminate this problem by intersecting all the lists instead of just taking
the shortest list. It is perhaps feasible to do the intersection using bit vectors, but
probably too slow and wasteful of space to do it using lists. Even if we did intersect
keys, we would still overretrieve, for two reasons. First, we don't use η i 1 as an index,
so we are ignoring the difference between (f ?x) and (f . ?x) . Second, we are
using wild-card semantics, so the query (ρ ?x ?x) would retrieve all six keys, when

14.8 A SOLUTION TO THE INDEXING PROBLEM 475

it should only retrieve three. Because of these problems, we make a design choice:
we will first build a data base retrieval function that retrieves potential matches, and
later worry about the unification process that will eliminate mismatches.

We are ready for a more complete specification of the indexing strategy:

• The value will be indexed under each non-nil nonvariable atom in the key, with
a separate index for each position. For example, given the preceding data base,
the atom a in the first argument position would index values 1,2,3, and 6, while
the atom b in the second argument position would index value 4 and 5. The
atom ρ in the predicate position would index all six values.

In addition, we will maintain a separate index for variables at each position. For
example, value 3 would be stored under the index "variable in second argument
position."

• "Position" does not refer solely to the linear position in the top-level list. For
example, value 5 would be indexed under atom f in the caaddr position.

• It follows that a key with η atoms will be indexed in η different ways.

For retrieval, the strategy is:

• For each non-nil nonvariable atom in the retrieval key, generate a list of possible
matches. Choose the shortest such list.

• Each list of possible matches will have to be augmented with the values indexed
under a variable at every position "above." For example, f in the ca add r position
retrieves value 5, but it also must retrieve value 3, because the third key has a
variable in the caddr position, and caddr is "above" caaddr.

• The discrimination tree may return values that are not valid matches. The
purpose of the discrimination tree is to reduce the number of values we will
have to unify against, not to determine the exact set of matches.

It is important that the retrieval function execute quickly. If it is slow, we might
just as well match against every key in the table linearly. Therefore, we will take
care to implement each part efficiently. Note that we will have to compare the length
of lists to choose the shortest possibility. Of course, it is trivial to compare lengths
using 1 ength , but 1 ength requires traversing the whole list. We can do better if we
store the length of the list explicitly. A list with its length will be called an nl 1 s t .
It will be implemented as a cons cell containing the number of elements and a list
of the elements themselves. An alternative would be to use extensible vectors with
fill pointers.

476 KNOWLEDGE REPRESENTATION AND REASONING

An n l i s t i s implemented as a (count . elements) pa i r :
(defun make-empty-nlist ()

"Create a new, empty n l i s t . "
(cons 0 n i l))

(defun n l i s t - n (x) "The number of elements in an n l i s t . " (ca rx))
(defun n l i s t - l i s t (x) "The elements in an n l i s t . " (cdr x))

(defun n l i s t -push (item n l i s t)
"Add a new element to an n l i s t . "
(inc f (car n l i s t))
(push item (cdr n l i s t))
n l i s t)

Now we need a place to store these nlists. We will build the data base out of
discrimination tree nodes called dtree nodes. Each dtree node has a field to hold
the variable index, the atom indices, and pointers to two subnodes, one for the f i r s t
and one for the rest . We implement dtrees as vectors for efficiency, and because we
will never need a dtree-ρ predicate.

(defstruct (dtree (:type vector))
(f i r s t n i l) (rest n i l) (atoms n i l) (var (make-empty-nl ist)))

A separate dtree will be stored for each predicate. Since the predicates must be
symbols, it is possible to store the dtrees on the predicate's property list. In most
implementations, this will be faster than alternatives such as hash tables.

(let ((predicates n i l))

(defun get-dtree (predicate)
"Fetch (or make) the dtree for th i s predicate."
(cond ((get predicate 'd t ree))

(t (push predicate predicates)
(set f (get predicate 'dtree) (make-dtree)))))

(defun c lear-dtrees ()
"Remove al l the dtrees for a l l the predicates."
(do l i s t (predicate predicates)

(set f (get predicate 'dtree) n i l))
(set f predicates n i l)))

The function i ndex takes a relation as key and stores it in the dtree for the predicate
of the relation. It calls dtree - i ndex to do all the work of storing a value under the
proper indices for the key in the proper dtree node.

The atom indices are stored in an association Ust. Property lists would not
work, because they are searched using eq and atoms can be numbers, which are not

14.8 A SOLUTION TO THE INDEXING PROBLEM 477

necessarily eq. Association lists are searched using eql by default. An alternative
would be to use hash tables for the index, or even to use a scheme that starts with
association lists and switches to a hash table when the number of entries gets large. I
use 1 ookup to look up the value of a key in a property list. This function, and its s e t f
method, are defined on page 896.

(defun index (key)
"Store key in a dtree node. Key must be (predicate . a r g s) ;
i t i s stored in the predicate 's dt ree."
(dtree-index key key (get-dtree (predicate key))))

(defun dtree-index (key value dtree)
"Index value under a l l atoms of key in dt ree."
(cond

((consp key) ; index on both f i r s t and rest
(dtree-index (f i r s t key) value

(or (d t ree- f i r s t dtree)
(set f (d t ree- f i r s t dtree) (make-dtree))))

(dtree-index (rest key) value
(or (dtree-rest dtree)

(set f (dtree-rest dtree) (make-dtree)))))
((nul l key)) ; don' t index on ni l
((var iab le-p key) ; index a var iable

(n l i s t -push value (dtree-var dt ree)))
(t Make sure there i s an n l i s t for t h i s atom, and add to i t

(n l i s t -push value (lookup-atom key d t ree)))))

(defun lookup-atom (atom dtree)
"Return (or create) the n l i s t for th i s atom in dtree."
(or (lookup atom (dtree-atoms dtree))

(let ((new (make-empty-nl ist)))
(push (cons atom new) (dtree-atoms dtree))
new)))

Now we define a function to test the indexing routine. Compare the output with
figure 14.1.

(defun test- index ()
(le t ((props ' ((p a b) (p a c) (p a ?x) (p b c)

(p b (f c)) (p a (f . ? x)))))
(c lear-dt rees)
(mapc #*index props)
(write (l i s t props (get-dtree 'ρ))

i c i r c le t rarray t :pretty t)
(va lues)))

478 KNOWLEDGE REPRESENTATION AND REASONING

> (test- index)
((#1=(P A B)

#2=(P A C)
#3=(P A ?X)
#4=(P Β C)
#5=(P Β (F O)
#6=(P A (F . ? X)))

#(#(NIL NIL (P (6 #6# #5# #4# #3# #2# # !#)) (0))
#(#(NIL NIL (B (2 #5# #4#) A (4 #6# #3# #2# # !#)) (0))

#(#(#(NIL NIL (F (2 #6# #5#)) (0))
#(#(NIL NIL (C (1 #5#)) (0))

#(NIL NIL NIL (0)) NIL (1 #6#))
(C (2 #4# #2#) Β (1 # !#))
(1 #3#))

#(NIL NIL NIL (0))
NIL (0))

NIL (0))
NIL (0)))

The next step is to fetch matches from the dtree data base. The function fetch takes
a query, which must be a valid relation, as its argument, and returns a list of possible
matches. It calls dtree-fetch to do the work:

(defun fetch (query)
"Return a l i s t of buckets potent ia l ly matching the query,
which must be a re lat ion of form (predicate . a r g s) . "
(dtree-fetch query (get-dtree (predicate query))

n i l 0 n i l most-posi t ive-f ixnum))

dtree-fetch must be passed the query and the dtree, of course, but it is also passed
four additional arguments. First, we have to accumulate matches indexed under
variables as we are searching through the dtree. So two arguments are used to pass
the actual matches and a count of their total number. Second, we want dtree - fetch
to return the shortest possible index, so we pass it the shortest answer found so far,
and the size of the shortest answer. That way, as it is making its way down the tree,
accumulating values indexed under variables, it can be continually comparing the
size of the evolving answer with the best answer found so far.

We could use nlists to pass around count/values pairs, but nlists only support a
push operation, where one new item is added. We need to append together lists of
values coming from the variable indices with values indexed under an atom. Append
is expensive, so instead we make a list-of-lists and keep the count in a separate
variable. When we are done, dtree-fetch and hence fetch does a multiple-value
return, yielding the list-of-lists and the total count.

14.8 A SOLUTION TO THE INDEXING PROBLEM 479

There are four cases to consider in dtree-fetch. If the dtree is null or the query
pattern is either null or a variable, then nothing will be indexed, so we should just
return the best answer found so far. Otherwise, we bind var-η and var-1 i s t to
the count and list-of-lists of variable matches found so far, including at the current
node. If the count var-η is greater than the best count so far, then there is no
sense continuing, and we return the best answer found. Otherwise we look at the
query pattern. If it is an atom, we use dtree-atom-f etch to return either the current
index (along with the accumulated variable index) or the accumulated best answer,
whichever is shorter. If the query is a cons, then we use dtree-fetch on the first
part of the cons, yielding a new best answer, which is passed along to the call of
dtree-fetch on the rest of the cons.

(defun dtree-fetch (pat dtree v a r - l i s t - i n var -n - in b e s t - l i s t best-n)
"Return two va lues: a l i s t - o f - l i s t s of poss ib le matches to pat.
and the number of elements in the l i s t - o f - l i s t s . "
(i f (or (null dtree) (null pat) (var iable-p pat))

(values b e s t - l i s t best-n)
(le t * ((v a r - n l i s t (dtree-var dtree))

(var-n (+ var -n - in (n l i s t - n v a r - n l i s t)))
(v a r - l i s t (i f (null (n l i s t - l i s t v a r - n l i s t))

var-1 i s t - i η
(cons (n l i s t - l i s t v a r - n l i s t)

v a r - l i s t - i n))))
(cond

((>= var-n best-n) (values b e s t - l i s t best-n))
((atom pat) (dtree-atom-fetch pat dtree v a r - l i s t var-n

b e s t - l i s t best-n))
(t (mult ip le-value-bind (l i s t l n l)

(dtree-fetch (f i r s t pat) (d t ree- f i r s t dtree)
v a r - l i s t var-n b e s t - l i s t best-n)

(dtree-fetch (rest pat) (dtree-rest dtree)
v a r - l i s t var-n l i s t l n l)))))))

(defun dtree-atom-fetch (atom dtree v a r - l i s t var-n b e s t - l i s t best-n)
"Return the answers indexed at th i s atom (along with the v a r s) ,
or return the previous best answer, i f i t i s better."
(le t ((atom-nl is t (lookup atom (dtree-atoms dt ree))))

(cond
((or (null atom-nl ist) (null (n l i s t - l i s t a tom-n l is t)))

(values v a r - l i s t var -n))
((and atom-nl ist (< (incf var-n (n l i s t - n atom-nl is t)) best -n))

(values (cons (n l i s t - l i s t atom-nl ist) v a r - l i s t) var -n))
(t (values b e s t - l i s t bes t -n)))))

Here we see a call to fetch on the data base created by t e s t - i ndex. It returns two
values: a list-of-lists of facts, and the total number of facts, three.

480 KNOWLEDGE REPRESENTATION AND REASONING

> (fetch ' (ρ ? c))
(((Ρ Β Ο (Ρ A Ο)

((Ρ Α ?Χ)))
3

Now let's stop and see what we have accomplished. The functions fetch and
dtree-fetch fulfill their contract of returning potential matches. However, we still
need to integrate the dtree facility with Prolog. We need to go through the potential
matches and determine which candidates are actual matches. For simplicity we will
use the version of u η i f y with binding lists defined in section 11.2. (It is also possible to
construct a more efficient version that uses the compiler and the destructive function
unifyl.)

The function mapc- re t r i eve calls fetch to get a Ust-of-Usts of potential matches
and then calls uni fy to see if the match is a true one. If the match is true, it calls
the supplied function with the binding list that represents the unification as the
argument, mapc-retri eve is proclaimed inl ine so that functions passed to it can
also be compiled in place.

(proclaim ' (i n l i n e mapc-retr ieve))

(defun mapc-retrieve (fn query)
"For every fact that matches the query,
apply the function to the binding l i s t . "
(do l i s t (bucket (fetch query))

(do l i s t (answer bucket)
(let ((b indings (unify query answer)))

(unless (eq bindings f a i l)
(funcal l fn b ind ings))))))

There are many ways to use this retriever. The function re t r i eve returns a list of the
matching binding hsts, and re t r i eve-matches substitutes each binding hst into the
original query so that the result is a list of expressions that unify with the query.

(defun retr ieve (query)
"Find al l facts that match query. Return a l i s t of b ind ings . "
(le t ((answers n i l))

(mapc-retrieve #'(lambda (b indings) (push bindings answers))
query)

answers))

(defun retrieve-matches (query)
"Find al l facts that match query.
Return a l i s t of expressions that match the query."
(mapcar #'(lambda (b indings) (subst -b ind ings bindings query))

(retr ieve query)))

14.8 A SOLUTION TO THE INDEXING PROBLEM 481

There is one further complication to consider. Recall that in our original Prolog
interpreter, the function prove had to rename the variables in each clause as it
retrieved it from the data base. This was to insure that there was no conflict between
the variables in the query and the variables in the clause. We could do that in
re t r ieve. However, if we assume that the expressions indexed in discrimination
trees are tablelike rather than rulelike and thus are not recursive, then we can get
away with renaming the variables only once, when they are entered into the data
base. This is done by changing i ndex:

(defun index (key)
"Store key in a dtree node. Key must be (predicate . a r g s) ;
i t i s stored in the predicate 's dt ree."
(dtree-index key (rename-variables key) ; store unique vars

(get-dtree (predicate key))))

With the new i ndex in place, and after calling t e s t - i ndex to rebuild the data base,
we are now ready to test the retrieval mechanism:

> (fetch ' (p ?x c))
(((P Β C) (P A O)

((P A 7X3408)))
3

> (retr ieve ' (p ?x c))
(((7X3408 . C) (7X . A))

((7X . A))
((7X . B)))

> (retrieve-matches ' (p 7x c))
((P A C) (P A C) (P Β Ο)

> (retrieve-matches *(p 7x (7fn c)))
((P A (7FN O) (P A (F O) (P Β (F C)))

Actually, it is better to use mapc- re t r ieve when possible, since it doesn't cons up
answers the way re t r ieve and retrieve-matches do. The macro query-bind is
provided as a nice interface to mapc - re t r i eve. The macro takes as arguments a list of
variables to bind, a query, and one or more forms to apply to each retrieved answer.
Within this list of forms, the variables will be bound to the values that satisfy the
query. The syntax was chosen to be the same as mul t i pi e - va 1 ue - bi nd. Here we see
a typical use of query - bi nd, its result, and its macro-expansion:

482 KNOWLEDGE REPRESENTATION AND REASONING

> (query-bind (?x ? fn) ' (p ?x (? fn c))
(format t "~&P holds between ~a and ~a of c . " ?x ? f n)) =Φ

Ρ holds between Β and F of c.
Ρ holds between A and F of c.
Ρ holds between A and ?FN of c.
NIL

= (mapc-retrieve
#'(lambda (#:bindings6369)

(let ((?x (subst -b ind ings #:bindings6369 ' ? χ))
(? fn (subst -b ind ings #:bindings6369 ' ? f n)))

(format t "~&P holds between ~a and ~a of c . " ?x ? f n)))
' (p ?x (? fn c)))

Here is the implementation:

(defmacro query-bind (var iab les query &body body)
"Execute the body for each match to the query.
Within the body, bind each va r iab le . "
(le t * ((b indings (gensym "BINDINGS"))

(vars-and-va ls
(mapcar

#'(lambda (var)
(l i s t var ' (subs t -b ind ings .b indings ' , v a r)))

va r iab les)))
' (mapc-retr ieve

#'(lambda (.b ind ings)
(le t ,vars -and-va ls

.©body))
.query)))

14.9 A Solution to the Completeness Problem

We saw in chapter 6 that iterative deepening is an efficient way to cover a search
space without falling into an infinite loop. Iterative deepening can also be used to
guide the search in Prolog. It will insiu-e that all valid answers are found eventually,
but it won't turn an infinite search space into a finite one.

In the interpreter, iterative deepening is implemented by passing an extra argu
ment to prove and prove-a 11 to indicate the depth remaining to be searched. When
that argument is zero, the search is cut off, and the proof fails. On the next iteration
the bounds will be increased and the proof may succeed. If the search is never cut off
by a depth bound, then there is no reason to go on to the next iteration, because all

14.9 A SOLUTION TO THE COMPLETENESS PROBLEM 483

proofs have already been found. The special variable *sea r ch - cut - off* keeps track
of this.

(defvar *search-cut -o f f * ni l "Has the search been stopped?")

(defun prove-al l (goals bindings depth)

"Find a so lut ion to the conjunction of g o a l s . "

This version just passes the depth on to PROVE,

(cond ((eq bindings f a i l) f a i l)

((nul l goals) b indings)

(t (prove (f i r s t goals) bindings (rest goals) depth))))

(defun prove (goal bindings other-goals depth)

"Return a l i s t of poss ib le so lu t ions to g o a l . "

: ; Check i f the depth bound has been exceeded

(i f (= depth 0)

(progn (set f *search-cut -o f f * t)

f a i l)

(let ((c lauses (get-c lauses (predicate goa l))))

(i f (l i s t p c lauses)

(some

#'(lambda (clause)

(le t ((new-clause (rename-variables c lause)))

(prove-al1

(append (clause-body new-clause) o ther-goals)

(unify goal (clause-head new-clause) b indings)

(- depth 1))))

c lauses)

The predicate 's "c lauses" can be an atom:

; ; a pr imit ive function to cal l

(funcal l c lauses (res t goal) bindings

other-goals depth)))))

prove and ρ rove - a 11 now implement search cutoff, but we need something to control
the iterative deepening of the search. First we define parameters to control the
iteration: one for the initial depth, one for the maximum depth, and one for the
increment between iterations. Setting the initial and increment values to one will
make the results come out in strict breadth-first order, but will duplicate more effort
than a slightly larger value.

484 KNOWLEDGE REPRESENTATION AND REASONING

(defparameter *depth-star t* 5
"The depth of the f i r s t round of i te ra t ive search . ")

(defparameter *depth- incr* 5
"Increase each i terat ion of the search by th i s amount.")

(defparameter *depth-max* most-posit ive-f ixnum
"The deepest we wi l l ever search . ")

A new version of top - l eve l - prove will be used to control the iteration. It calls
prove-al 1 for all depths from the starting depth to the maximum depth, increasing
by the increment. However, it only proceeds to the next iteration if the search was
cut off at some point in the previous iteration.

(defun top- level-prove (goals)
(le t ((a l l - g o a l s

*(,©goals (show-prolog-vars ,@(var iab les- in g o a l s)))))
(loop for depth from *depth-star t* to *depth-max* by *depth- incr*

while (le t ((*search-cut -o f f * n i l))
(prove-al l a l l - g o a l s no-bindings depth)
*search-cu t -o f f *)))

(format t "~&No.")
(va lues))

There is one final complication. When we increase the depth of search, we may
find some new proofs, but we will also find all the old proofs that were found on the
previous iteration. We can modify show-prol o g - v a r s to only print proofs that are
found with a depth less than the increment—that is, those that were not found on the
previous iteration.

(defun show-prolog-vars (vars bindings other-goals depth)
"Pr int each var iable with i t s binding.
Then ask the user i f more so lu t ions are des i red . "
(i f (> depth *depth- incr*)

fa i l
(progn

(i f (null vars)
(format t "~&Yes")
(do l i s t (var vars)

(format t "~&~a = ~a" var
(subst-b indings bindings va r))))

(i f (continue-p)
fa i l
(prove-al l other-goals bindings depth)))))

To test that this works, try setting *depth-max* to 5 and running the following
assertions and query. The infinite loop is avoided, and the first four solutions
are found.

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 485

(< - (natural 0))
(< - (natural (1+ ?n)) (natural ?n))

> (? - (natural ?n))
?N = 0;
?N = (1+ 0) ;
?N = (1+ (1+ 0)) ;
?N = (1+ (1+ (1+ 0))) ;
No.

14.10 Solutions to the Expressiveness Problems
In this section we present solutions to three of the limitations described above:

• Treatment of (limited) higher-order predications.

• Introduction of a frame-based syntax.

• Support for possible worlds, negation, and disjunction.

We also introduce a way to attach functions to predicates to do forward-chaining
and error detection, and we discuss ways to extend unification to handle Skolem
constants and other problems.

Higher-Order Predications

First we will tackle the problem of answering questions like "What kinds of animals
are there?" Paradoxically, the key to allowing more expressiveness in this case is to
invent a new, more limited language and insist that all assertions and queries are
made in that language. That way, queries that would have been higher-order in the
original language become first-order in the restricted language.

The language admits three types of objects: categones, relations, and individuals.
A category corresponds to a one-place predicate, a relation to a two-place predicate,
and an individual to constant, or zero-place predicate. Statements in the language
musthaveoneof five primitive operators: sub, r e l , i n d . v a l , and and. They have
the following form:

(sub subcategorysupercategory)
(rel relation domain-category range-category)
(i nd individual category)
(val relation individual value)
(and assertion...)

486 KNOWLEDGE REPRESENTATION AND REASONING

The following table gives some examples, along with English translations:

(sub dog animal) Dog is a kind of animal.

(rel birthday animal date) The birthday relation holds between each animal
and some date.

(ind fido dog) The individual Fido is categorized as a dog.
(val birthday fido july-1) The birthday of Fido is July-1.
(and AB) Both A and Bare true.

For those who feel more comfortable with predicate calculus, the following table
gives the formal definition of each primitive. The most complicated definition is for
rel . The form (rel RAB) means that every R holds between an individual of A
and an individual of B, and furthermore that every individual of A participates in at
least one R relation.

(sub AB) V a : : A (x) D

(rel RAB) "rfx^y: R{x,y) D A{x) A B{y)
A\/xA{x) D 3y : R{x, y)

(ind IC) C{I)
(val RIV) R{I,V)
(and P Q . . .) PAQ.,.

Queries in the language, not surprisingly, have the same form as assertions,
except that they may contain variables as well as constants. Thus, to find out what
kinds of animals there are, use the query (sub ?kind animal). To find out what
individual animals there are, use the query (ind ?x animal). To find out what
individual animals of what kinds there are, use:

(and (sub ?kind animal) (ind ?x ?k ind))

The implemention of this new language can be based directly on the previous im
plementation of dtrees. Each assertion is stored as a fact in a dtree, except that
the components of an and assertion are stored separately. The function add-fact
does this:

(defun add-fact (fact)
"Add the fact to the data base. "
(i f (eq (predicate fact) 'and)

(mapc #*add-fact (args fac t))
(index fac t)))

Querying this new data base consists of querying the dtree just as before, but with
a special case for conjunctive (and) queries. Conceptually, the function to do this,
re tr i eve-fact, should be as simple as the following:

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 487

(defun retr ieve- fact (query)
"Find al l facts that match query. Return a l i s t of b ind ings.
Warning!! th is version i s incomplete."
(i f (eq (predicate query) 'and)

(retr ieve-conjunct ion (args query))
(retr ieve query b ind ings)))

Unfortunately, there are some complications. Think about what must be done in
re t r ieve -con junct ion . It is passed a list of conjuncts and must return a list of
binding lists, where each binding list satisfies the query. For example, to find out
what people were born on July 1st, we could use the query:

(and (val birthday ?p ju ly -1) (ind ?p person))

re t r i eve -con junc t ion could solve this problem by first calling r e t r i e v e - f a c t on
(val b i r thday ?p j u l y - 1) . Once that is done, there is only one conjunct remaining,
but in general there could be several, so we need to call ret r i eve - con j unct i on recur
sively with two arguments: theremainingconjuncts,andtheresultthat r e t r i e v e - f a c t
gave for the first solution. Since r e t r i e v e - f a c t returns a list of binding lists, it will
be easiest if r e t r i eve-conjunct i on accepts such a list as its second argument. Fur
thermore, when it comes time to call r e t r i eve - f a c t on the second conjunct, we will
want to respect the bindings set up by the first conjunct. So r e t r i eve - fact must
accept a binding list as its second argument. Thus we have:

(defun ret r ieve- fact (query &optional (bindings no-b indings))
"Find al l facts that match query. Return a l i s t of b ind ings . "
(i f (eq (predicate query) 'and)

(retr ieve-conjunct ion (args query) (l i s t b ind ings))
(retr ieve query b ind ings)))

(defun retr ieve-conjunct ion (conjuncts b i n d i n g s - l i s t s)
"Return a l i s t of binding l i s t s sa t i s f y ing the conjuncts."
(mapcan

#'(lambda (bindings)
(cond ((eq bindings f a i l) n i l)

((nul l conjuncts) (l i s t b ind ings))
(t (retr ieve-conjunct ion

(rest conjuncts)
(re t r ieve- fact

(subst-b indings bindings (f i r s t conjuncts))
b ind ings)))))

b i n d i n g s - l i s t s))

Notice that re t r ieve and therefore mapc-retr ieve now also must accept a binding
list. The changes to them are shown in the following. In each case the extra argument

488 KNOWLEDGE REPRESENTATION AND REASONING

is made optional so that previously written functions that call these functions without
passing in the extra argument will still work.

(defun mapc-retrieve (fn query Äoptional (bindings no-b ind ings))
"For every fact that matches the query,
apply the function to the binding l i s t . "
(do l i s t (bucket (fetch query))

(do l i s t (answer bucket)
(le t ((new-bindings (unify query answer b ind ings)))

(unless (eq new-bindings f a i l)
(funcal l fn new-bind ings))))))

(defun retr ieve (query Äoptional (bindings no-b ind ings))
"Find al l facts that match query. Return a l i s t of b ind ings . "
(let ((answers n i l))

(mapc-retrieve #'(lambda (b indings) (push bindings ansviers))
query bindings)

answers))

Now add - f a c t and ret r i eve - f a c t comprise all we need to implement the language.
Here is a short example where a d d - f a c t is used to add facts about bears and dogs,
both as individuals and as species:

> (add-fact *(sub dog animal)) =^ Τ
> (add-fact ' (sub bear animal)) =^ Τ
> (add-fact ' (i nd Fido dog)) =^ Τ
> (add-fact ' (i nd Yogi bear)) Τ
> (add-fact ' (va l color Yogi brown)) => Τ
> (add-fact ' (va l color Fido golden)) Τ
> (add-fact ' (va l latin-name bear urs idae)) => Τ
> (add-fact ' (va l latin-name dog can i s - f am i l i a r i s)) => Τ

Now r e t r i e v e - fac t is used to answer three questions: What kinds of animals are
there? What are the Latin names of each kind of animal? and What are the colors of
each individual bear?

> (re t r ieve- fact ' (sub ?kind animal))
(((?KIND . DOG))

((?KIND . BEAR)))

> (ret r ieve- fact '(and (sub ?kind animal)
(val latin-name ?kind ? l a t i n)))

(((7LATIN . CANIS-FAMILIARIS) (7KIND . DOG))
((7LATIN . URSIDAE) (7KIND . BEAR)))

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 489

> (ret r ieve- fact '(and (ind ?x bear) (val color ?x ? c)))
(((?C . BROWN) (?X . YOGI)))

Improvements

There are quite a few improvements that can be made to this system. One direction
is to provide different kinds of answers to queries. The following two functions
are similar to r e t r i eve-matches in that they return lists of solutions that match the
query, rather than lists of possible bindings:

(defun retr ieve-bagof (query)
"Find al l facts that match query.
Return a l i s t of queries with bindings f i l l e d i n . "
(mapcar #'(lambda (b indings) (subst -b ind ings bindings query))

(ret r ieve- fact query)))

(defun ret r ieve-setof (query)
"Find al l facts that match query.
Return a l i s t of unique queries with bindings f i l l e d i n . "
(remove-duplicates (retr ieve-bagof query) : test # 'equal))

Another direction to take is to provide better error checking. The current system
does not complain if a fact or query is ill-formed. It also relies on the user to input all
facts, even those that could be derived automatically from the semantics of existing
facts. Forexample, the semantics of sub imply that if (sub bear animal) and (sub
po la r -bear bear) are true, then (s u b p o l a r - b e a r animal) must also be true. This
kind of implication can be handled in two ways. The typical Prolog approach would
be to write rules that derive the additional sub facts by backward-chaining. Then
every query would have to check if there were rules to run. The alternative is to use
a forward-chaining approach, which caches each new sub fact by adding it to the data
base. This latter alternative takes more storage, but because it avoids rederiving the
same facts over and over again, it tends to be faster.

The following version of a d d - f a c t does error checking, and it automatically
caches facts that can be derived from existing facts. Both of these things are done by
a set of functions that are attached to the primitive operators. It is done in a data-
driven style to make it easier to add new primitives, should that become necessary.

The function a d d - f a c t checks that each argument to a primitive relation is a
nonvariable atom, and it also calls f a c t - p r e s e n t - p to check if the fact is already
present in the data base. If not, it indexes the fact and calls run -a t tached- f η to do
additional checking and caching:

(defparameter ^pr imi t ives* ' (and sub ind rel va l))

490 KNOWLEDGE REPRESENTATION AND REASONING

(defun add-fact (fact)
"Add the fact to the data base. "
(cond ((eq (predicate fact) *and)

(mapc #*add-fact (args fac t)))
((or (not (every #*atom (args fac t)))

(some # 'var iab le -p (args fact))
(not (member (predicate fact) *p r im i t i ves*)))

(error "111-formed fact : ~a" fac t))
((not (fact-present-p fac t))
(index fact)

(run-attached-fn fac t)))

t)

(defun fact-present-p (fact)

" I s th is fact present in the data base?"

(retr ieve fac t))

The attached functions are stored on the operator's property list under the indicator
a t t ached - f n :

(defun run-attached-fn (fact)
"Run the function associated with the predicate of th i s fac t . "
(apply (get (predicate fact) 'at tached-fn) (args fac t)))

(defmacro def-attached-fn (pred args &body body)
"Define the attached function for a pr imi t ive . "
' (se t f (get ' .pred 'attached-fn)

#'(lambda ,args . .body)))

The attached functions for i nd and val are fairly simple. If w e know (sub bear
ani ma l) , then when (i nd Yogi bea r) is asserted, w e have to also assert (i nd Yog i
an ima l) . Similarly, the values in a val assertion must be individuals of the categories
in the relation's re l assertion. That is, if (re l b i r thday animal da te) is a fact and
(va l b i r t hday Lee j u 1 y - l) is added, then we can conclude (i n d Lee an ima l) and
(i n d j u l y - 1 da te) . The followingfunctions add the appropriate facts:

(def-attached-fn ind (indiv idual category)
Cache facts about inheri ted categories

(query-bind (?super) ' (sub .category ?super)
(add-fact ' (i nd . indiv idual . ?supe r))))

14,10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 491

(def-attached-fn val (re la t ion indi ind2)
Make sure the ind iv idua ls are the r ight kinds

(query-bind (?ca t l ?cat2) ' (re l . re la t ion ?ca t l ?cat2)
(add-fact *(ind , ind l . ? c a t l))
(add-fact ' (i nd .ind2 . ?ca t2))))

The attached function for rel simply runs the attached function for any individual of
the given relation. Normally one would make all rel assertions before i nd assertions,
so this will have no effect at all. But we want to be sure the data base stays consistent
even if facts are asserted in an unusual order.

(def-attached-fn rel (re la t ion cat l cat2)
Run attached function for any IND 's of th i s re lat ion

(query-bind (?a ?b) ' (i nd . re la t ion ?a ?b)
(run-attached-fn ' (i nd . re la t ion . ?a . ? b))))

The most complicated attached function is for sub. Adding a fact such as (sub bear
an ima l) causes the following to happen:

• All of an imal ' s supercategories (such as 1 i v i n g - t h i n g) become supercate-
gories of all of bea r's subcategories (such as pol a r - bea r) .

• animal itself becomes a supercategory all of bear ' s subcategories.

• bear itself becomes a subcategory of all of an imal ' s supercategories.

• All of the individuals of bear become individuals of animal and its supercate
gories.

The following accomplishes these four tasks. It does it with four calls to
i ndex -new- fac t , which is used instead of add - f ac t because we don't need to run
the attached function on the new facts. We do, however, need to make sure that we
aren't indexing the same fact twice.

(def-attached-fn sub (subcat supercat)
Cache SUB facts

(query-bind (?super-super) ' (sub .supercat ?super-super)
(index-new-fact ' (sub .subcat .?super -super))
(query-bind (?sub-sub) ' (sub ?sub-sub .subcat)

(index-new-fact ' (sub .?sub-sub .?super -super))))
(query-bind (?sub-sub) ' (sub ?sub-sub .subcat)

(index-new-fact ' (sub .?sub-sub .supercat)))
Cache IND facts

(query-bind (?super-super) ' (sub .subcat ?super-super)
(query-bind (?sub-sub) ' (sub ?sub-sub .supercat)

(query-bind (? ind) ' (i nd ? ind .?sub-sub)
(index-new-fact ' (i nd .? ind .?super -super))))))

492 KNOWLEDGE REPRESENTATION AND REASONING

(defun index-new-fact (fact)
"Index the fact in the data base unless i t i s already there."
(unless (fact-present-p fact)

(index fac t)))

The following function tests the attached functions. It shows that adding the single
fact (sub bea r ani mal) to the given data base causes 18 new facts to be added.

(defun test-bears ()
(c lear-dtrees)
(mapc # 'add-fact

' ((sub animal l i v i ng - th ing)
(sub l i v i ng - th ing th ing) (sub polar-bear bear)
(sub g r i zz l y bear) (ind Yogi bear) (ind Lars polar-bear)
(ind Helga g r i z z l y)))

(trace index)
(add-fact ' (sub bear animal))
(untrace index))

> (test -bears)
(1 ENTER INDEX: (SUB BEAR ANIMAL))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB BEAR THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB GRIZZLY THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB POLAR-BEAR THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB BEAR LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB GRIZZLY LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB POLAR-BEAR LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB GRIZZLY ANIMAL))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (SUB POLAR-BEAR ANIMAL))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND LARS LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND HELGA LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND YOGI LIVING-THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND LARS THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND HELGA THING))

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 493

(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND YOGI THING))
(1 EXIT INDEX: T)
(1 ENTER INDEX: (IND LARS ANIMAD)
(1 EXIT INDEX: Τ)
(1 ENTER INDEX: (IND HELGA ANIMAD)
(1 EXIT INDEX: Τ)
(1 ENTER INDEX: (IND YOGI ANIMAD)
(1 EXIT INDEX: Τ)
(INDEX)

A Frame Language

Another direction we can take is to provide an alternative syntax that will be easier
to read and write. Many representation languages are based on the idea of frames,
and their syntax reflects this. A frame is an object with slots. We will continue to use
the same data base in the same format, but we will provide an alternative syntax that
considers the individuals and categories as frames, and the relations as slots.

Here is an example of the frame syntax for individuals, which uses the operator
a. Note that it is more compact than the equivalent notation using the primitives.

(a person (name Joe) (age 27)) =

(and (ind personl person)
(val name personl Joe)
(val age personl 27))

The syntax also allows for nested expressions to appear as the values of slots. Notice
that the Skolem constant personl was generated automatically; an alternative is
to supply a constant for the individual after the category name. For example, the
following says that Joe is a person of age 27 whose best friend is a person named Fran
who is 28 and whose best friend is Joe:

(a person pi (name Joe) (age 27)
(best- f r iend (a person (name Fran) (age 28)

(best- f r iend p i)))) =

(and (ind pi person) (val name pi joe) (val age pi 27)
(ind person2 person) (val name person2 fran)
(val age person2 28) (val best - f r iend person2 p i)
(val best- f r iend pi person2))

494 KNOWLEDGE REPRESENTATION AND REASONING

The frame syntax for categories uses the operator each. For example:

(each person (i sa animal) (name person-name) (age integer)) =

(and (sub person animal)
(rel name person person-name)
(rel age person integer))

The syntax for queries is the same as for assertions, except that variables are used
instead of the Skolem constants. This is true even when the Skolem constants are
automatically generated, as in the following query:

(a person (age 27)) = (AND (IND ?3 PERSON) (VAL AGE ?3 27))

To support the frame notation, we define the macros a and each to make assertions
and ?? to make queries.

(defmacro a (&rest args)
"Define a new individual and asser t facts about i t in the data base. "
*(add-fact \ (t r a n s l a t e - e x p (cons *a a r g s))))

(defmacro each (&rest args)
"Define a new category and asser t facts about i t in the data base. "
' (add-fact (t ransíate-exp (cons 'each a r g s))))

(defmacro ? ? (&rest quer ies)
"Return a l i s t of answers sa t i s f y i ng the query or quer ies . "
* (re t r ieve-setof

' . (t rans la te -exp (maybe-add 'and (rep lace-?-vars quer ies))
rquery)))

All three of these macros call on t r a n s ! ate - exp to translate from the frame syntax to
the primitive syntax. Note that an a or ea ch expression is computing a conjunction of
primitive relations, but it is also computing a term when it is used as the nested value
of a slot. It would be possible to do this by returning multiple values, but it is easier to
build t r a n s í ate - exp as a set of local functions that construct facts and push them on
the local variable con j unc t s . At the end, the list of con j unc ts is returned as the value
of the translation. The local functions t r a n s ! a te -a and t r a n s ! a te -each return the
atom that represents the term they are translating. The local function t r a n s l a t e
translates any kind of expression, t r a n s ! a te - s ! ot handles a slot, and co! ! ec t - f ac t
is responsible for pushing a fact onto the list of conjuncts. The optional argument
query-mode-p tells what to do if the individual is not provided in an a expression. If
query-mode-p is true, the individual will be represented by a variable; otherwise it
will be a Skolem constant.

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 495

(defun translate-exp (exp &optional query-mode-p)
"Translate exp into a conjunction of the four p r im i t i ves . "
(let ((conjuncts n i l))

(labels
((co l lec t - fac t (&rest terms) (push terms conjuncts))

(t ranslate (exp)
Figure out what kind of expression th i s i s

(cond
((atom exp) exp)
((eq (f i r s t exp) *a) (t ranslate-a (rest exp)))
((eq (f i r s t exp) 'each) (t ranslate-each (rest exp)))
(t (apply # ' co l lec t - fac t exp) exp)))

(t ranslate-a (args)
t ranslate (A category Cind] (rel f i l l e r) *)

(le t * ((category (pop args))
(se l f (cond ((and args (atom (f i r s t a rgs)))

(pop a rgs))
(query-mode-p (gentemp " ? "))
(t (gentemp (s t r ing ca tegory))))))

(co l lec t - fac t ' ind se l f category)
(do l i s t (s lo t args)

(t rans la te -s lo t 'val se l f s l o t))
s e l f))

(t ranslate-each (args)
; ; t rans late (EACH category [(i sa cat*)] (s lo t cat)*)
(le t * ((category (pop a rgs)))

(when (eq (predicate (f i r s t a rgs)) ' i s a)
(do l i s t (super (res t (pop a rgs)))

(co l lec t - fac t 'sub category super)))
(do l i s t (s lo t args)

(t rans la te -s lo t ' re l category s l o t))
category))

(t rans la te -s lo t (pr imit ive se l f s l o t)
t ranslate (re la t ion value) into a REL or SUB

(asser t (= (length s l o t) 2))
(co l lec t - fac t pr imit ive (f i r s t s l o t) s e l f

(t ranslate (second s l o t)))))

Body of t rans late-exp:
(t ranslate exp) Bui ld up the l i s t of conjuncts
(maybe-add 'and (nreverse con juncts)))))

496 KNOWLEDGE REPRESENTATION AND REASONING

The auxiliary functions maybe - add and repl ace - ? - va r s are shown in the following:

(defun maybe-add (op exps Äoptional i f - n i l)
"For example, (maybe-add 'and exps t) returns
t i f exps i s n i l , (f i r s t exps) i f there i s only one.
and (and expl exp2 . . .) i f there are several exps . "
(cond ((nul l exps) i f - n i l)

((length=l exps) (f i r s t exps))
(t (cons op exps))))

(defun length=l (x)
" I s X a l i s t of length 1 ? "
(and (consp x) (null (cdr x))))

(defun rep lace-?-vars (exp)
"Replace each ? in exp with a temporary var : 7123"
(cond ((eq exp '7) (gentemp "7 "))

((atom exp) exp)
(t (reuse-cons (replace-7-vars (f i r s t exp))

(replace-7-vars (rest exp))
exp))))

Possible Worlds: Truth, Negation, and Disjunction

In this section we address four problems: distinguishing unknown from f al se, rep
resenting negations, representing disjunctions, and representing multiple possible
states of affairs. It turns out that all four problems can be solved by introducing
two new techniques: possible worlds and negated predicates. The solution is not
completely general, but it is practical in a wide variety of applications.

There are two basic ways to distinguish unknown from false. The first possibility
is to store a truth value—true or f al se—along with each proposition. The second
possibility is to include the truth value as part of the proposition. There are several
syntactic variations on this theme. The following table shows the possibilities for
the propositions "Jan likes Dean is true" and "Jan likes Ian is false:"

Approach True Prop. False Prop.

(1) (l i k e s Jan Dean) - - t rue (l i k e s Jan Ian) - - f a l s e
(2a) (l i k e s true Jan Dean) (l i k e s f a l s e Jan Ian)
{2b) (l i k e s Jan Dean) (not (l i k e s Jan Dean))

(2c) (l i k e s Jan Dean) (~ l i k e s Jan Dean)

The difference between (1) and (2) shows up when we want to make a query.
With (1), we make the single query (1 i kes Jan Dean) (or perhaps (1 i kes Jan ?x)),
and the answers will tell us who Jan does and does not like. With (2), we make one

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 497

query to find out what liking relationships are true, and another to find out which
ones are false. In either approach, if there are no responses then the answer is truly
unknown.

Approach (1) is better for applications where most queries are of the form "Is
this sentence true or false?" But applications that include backward-chaining rules
are not like this. The typical backward-chaining rule says "Conclude X is true if Y is
true." Thus, most queries will be of the type "Is Y true?" Therefore, some version of
approach (2) is preferred.

Representing true and false opens the door to a host of possible extensions. First,
we could add multiple truth values beyond the simple "true" and "false." These
could be symbolic values like "probably-true" or "false-by-default" or they could be
numeric values representing probabilities or certainty factors.

Second, we could introduce the idea of possible worlds. That is, the truth of a
proposition could be unknown in the current world, but true if we assume p, and
false if we assume q. In the possible world approach, this is handled by calling the
current world W, and then creating a new world VFi, which is just like W except
that ρ is true, and w2, which is just like W except that q is true. By doing reasoning
in different worlds we can make predictions about the future, resolve ambiguitites
about the current state, and do reasoning by cases.

For example, possible worlds allow us to solve Moore's communism/democracy
problem (page 466). We create two new possible worlds, one where is a democracy
and one where it is communist. In each world it is easy to derive that there is
a democracy next to a communist country. The trick is to realize then that the
two worlds form a partition, and that therefore the assertion holds in the original
"real" world as well. This requires an interaction between the Prolog-based tactical
reasoning going on within a world and the planning-based strategic reasoning that
decides which worlds to consider.

We could also add a truth maintenance system (or TMS) to keep track of the as
sumptions or justifications that lead to each fact being considered true. A truth
maintenance system can lessen the need to backtrack in a search for a global solu
tion. Although truth maintenance systems are an important part of AI programming,
they will not be covered in this book.

In this section we extend the dtree facility (section 14.8) to handle truth values
and possible worlds. With so many options, it is difficult to make design choices. We
will choose a fairly simple system, one that remains close to the simplicity and speed
of Prolog but offers additional functionality when needed. We will adopt approach
(2c) to truth values, using negated predicates. For example, the negated predicate of
1 i kes is ~1 i kes, which is pronounced "not likes."

We will also provide minimal support for possible worlds. Assume that there is
always a current world, W, and that there is a way to create alternative worlds and
change the current world to an alternative one. Assertions and queries will always be
made with respect to the current world. Each fact is indexed by the atoms it contains.

498 KNOWLEDGE REPRESENTATION AND REASONING

just as before. The difference is that the facts are also indexed by the current world.
To support this, we need to modify the notion of the numbered list, or n l i s t , to
include a numbered association list, or nal i s t . The following is an nal i s t showing
six facts indexed under three different worlds: WO, Wl, and W2:

(6 (WO #1# #2# #3#) (Wl #4#) (W2 #5# #6#))

The fetching routine will remain unchanged, but the postfetch processing will have
to sort through the nalists to find only the facts in the current world. It would also be
possible for fetch to do this work, but the reasoning is that most facts will be indexed
under the "real world," and only a few facts will exist in alternative, hypothetical
worlds. Therefore, we should delay the effort of sorting through the answers to
eliminate those answers in the wrong world—it may be that the first answer fetched
will suffice, and then it would have been a waste to go through and eliminate other
answers. The following changes to i ndex and dtree - i ndex add support for worlds:

(defvar *world* *W0 "The current world used by index and fe tch . ")

(defun index (key &optional (world *world*))
"Store key in a dtree node. Key must be (predicate . a r g s) ;
i t i s stored in the dtree, indexed by the wor ld."
(dtree-index key key world (get-dtree (predicate key))))

(defun dtree-index (key value world dtree)
"Index value under a l l atoms of key in dtree."
(cond

((consp key) ; index on both f i r s t and rest
(dtree-index (f i r s t key) value world

(or (d t ree- f i r s t dtree)
(set f (d t ree- f i r s t dtree) (make-dtree))))

(dtree-index (rest key) value world
(or (dtree-rest dtree)

(set f (dtree-rest dtree) (make-dtree)))))
((nul l key)) ; don' t index on n i l

((var iab le-p key) ; index a var iable
(na l is t -push world value (dtree-var dt ree)))

(t ; ; Make sure there i s an n l i s t for t h i s atom, and add to i t
(na l i s t -push world value (lookup-atom key d t ree)))))

The new function n a l i s t - p u s h adds a value to an nalist, either by inserting the value
in an existing key's list or by adding a new key/value list:

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 499

(defun na l is t -push (key val n a l i s t)
"Index val under key in a numbered al i s t . "
; ; An na l i s t i s of the form (count (key va l *) *)

Ex: (6 (nums 1 2 3) (le t te rs a b c))
(incf (car n a l i s t))
(let ((pa i r (assoc key (cdr n a l i s t))))

(i f pair
(push val (cdr pa i r))
(push (l i s t key va l) (cdr n a l i s t)))))

In the following, fetch is used on the same data base created by tes t - i ndex, indexed
under the world WO. This time the result is a list-of-lists of world/values a-lists. The
count, 3, is the same as before.

> (fetch ' (p ?x c))
(((WO (P Β C) (P A C)))

((WO (P A ? X))))
3

So far, worlds have been represented as symbols, with the implication that different
symbols represent completely distinct worlds. That doesn't make worlds very easy
to use. We would like to be able to use worlds to explore alternatives—create a
new hypothetical world, make some assumptions (by asserting them as facts in the
hypothetical world), and see what can be derived in that world. It would be tedious
to have to copy all the facts from the real world into each hypothetical world.

An alternative is to establish an inheritance hierarchy among worlds. Then a fact
is considered true if it is indexed in the current world or in any world that the current
world inherits from.

To support inheritance, we will implement worlds as structures with a name field
and a field for the list of parents the world inherits from. Searching through the
inheritance lattice could become costly, so we will do it only once each time the user
changes worlds, and mark all the current worlds by setting the current field on or
off. Here is the definition for the world structure:

(defstruct (world (:pr in t - funct ion pr int-wor ld))
name parents current)

We will need a way to get from the name of a world to the world structure. Assuming
names are symbols, we can store the structure on the name's property list. The
function get-worl d gets the structure for a name, or builds a new one and stores it.
get - wor 1 d can also be passed a world instead of a name, in which case it just returns
the world. We also include a definition of the default initial world.

500 KNOWLEDGE REPRESENTATION AND REASONING

(defun get-world (name &optional current (parents (l i s t *wor ld*)))
"Look up or create the world with th i s name.
I f the world i s new, give i t the l i s t of parents . "
(cond ((world-p name) name) ; ok i f i t already i s a world

((get name 'world))
(t (set f (get name 'world)

(make-world rname name .-parents parents
.•current cur ren t)))))

(defvar *world* (get-world 'WO ni l n i l)
"The current world used by index and fe tch . ")

The function use-worl d is used to switch to a new world. It first makes the current
world and all its parents no longer current, and then makes the new chosen world and
all its parents current. The function use-new-worl d is more efficient in the common
case where you want to create a new world that inherits from the current world. It
doesn't have to turn any worlds off; it j ust creates the new world and makes it current.

(defun use-world (world)
"Make th i s world current . "
; ; I f passed a name, look up the world i t names
(set f world (get-world world))
(unless (eq world *world*)

Turn the old world(s) off and the new one(s) on,
; ; unless we are already using the new world
(set-world-current *world* n i l)
(set-world-current world t)
(set f *world* world)))

(defun use-new-world ()
"Make up a new world and use i t .
The world inher i ts from the current wor ld."
(set f *world* (get-world (gensym "W")))
(set f (world-current *world*) t)
world)

(defun set-world-current (world on/of f)
"Set the current f i e ld of world and i t s parents on or of f . "

ni l i s of f , anything e lse i s on.
(set f (world-current world) on/of f)
(do l i s t (parent (world-parents world))

(set-world-current parent on /o f f)))

We also add a print function for worlds, which just prints the world's name.

14.10 SOLUTIONS TO THE EXPRESSIVENESS PROBLEMS 501

(defun print-world (world &optional (stream t) depth)
(declare (ignore depth))
(pr in l (world-name world) stream))

The format of the dtree data base has changed to include worlds, so we need
new retrieval functions to search through this new format. Here the functions
mapc-retr ieve, re t r ieve , and r e t r i e v e - b a g o f are modified to give new versions
that treat worlds. To reflect this change, the new functions all have names ending in
- i n -wor ld :

(defun mapc-retr ieve-in-world (fn query)
"For every fact in the current world that matches the query,
apply the function to the binding l i s t . "
(do l i s t (bucket (fetch query))

(do l i s t (world/entr ies bucket)
(when (world-current (f i r s t wor ld /ent r ies))

(do l i s t (answer (rest wor ld /ent r ies))
(let ((b indings (unify query answer)))

(unless (eq bindings f a i l)
(funcal l fn b i n d i n g s))))))))

(defun retr ieve- in-wor ld (query)
"Find al l facts that match query. Return a l i s t of b ind ings . "
(let ((answers n i l))

(mapc-retr ieve-in-world
#'(lambda (bindings) (push bindings answers))
query)

answers))

(defun retr ieve-bagof- in-wor ld (query)
"Find al l facts in the current world that match query.
Return a l i s t of queries with bindings f i l l e d i n . "
(mapcar #'(lambda (bindings) (subst -b ind ings bindings query))

(ret r ieve- in-wor ld query)))

Now let's see how these worlds work. First, in WO we see that the facts from
t e s t - i ndex are still in the data base:

> *world* ^ WO

> (retr ieve-bagof- in-wor ld *(p ?z c)) ^
((P A C) (P A C) (P Β Ο)

502 KNOWLEDGE REPRESENTATION AND REASONING

Now we create and use a new world that inherits from WO. Two new facts are added
to this new world:

> (use-new-world) W7031

> (index *(p new c)) => Τ

> (index ' C p b b)) =^ Τ

We see that the two new facts are accessible in this world:

> (retrieve-bagof-in-world ' (p ?z c))
((P A C) (P A C) (P Β C) (P NEW O)

> (retrieve-bagof-in-world ' (^p ?x ?y)) ^
((~P Β Β))

Now we create another world as an alternative to the current one by first switching
back to the original WO, then creating the new world, and then adding some facts:

> (use-world *W0) WO

> (use-new-world) W7173

> (index *(p newest c)) ^ Τ

> (index '(~p c newest)) Τ

Here we see that the facts entered in W7031 are not accessible, but the facts in the new
world and in WO are:

> (retrieve-bagof-in-world ' (p ?z c)) =^
((P A C) (P A C) (P Β C) (P NEWEST O)

> (retrieve-bagof-in-world ' (^p ?x ?y))
ir? C NEWEST))

Unification, Equality, Types, and Skolem Constants

The lesson of the zebra puzzle in section 11.4 was that unification can be used to
lessen the need for backtracking, because an uninstantiated logic variable or partially
instantiated term can stand for a whole range of possible solutions. However, this
advantage can quickly disappear when the representation forces the problem solver
to enumerate possible solutions rather than treating a whole range of solutions as one.
For example, consider the following query in the frame language and its expansion
into primitives:

14.11 HISTORY AND REFERENCES 503

(a person (name Fran))
= (and (ind ?p person) (val name ?p f ran))

The way to answer this query is to enumerate all individuals ?p of type person and
then check the name slot of each such person. It would be more efficient if (i nd ?p
person) did not act as an enumeration, but rather as a constraint on the possible
values of ?p. This would be possible if we changed the definition of variables (and
of the unification function) so that each variable had a type associated with it. In
fact, there are at least three sources of information that have been implemented as
constraints on variables terms:

• The type or category of the term.

• The members or size of a term considered as a set or list.

• Other terms this term is equal or not equal to.

Note that with a good solution to the problem of equality, we can solve the problem
of Skolem constants. The idea is that a regular constant unifies with itself but no
other regular constant. On the other hand, a Skolem constant can potentially unify
with any other constant (regular or Skolem). The equality mechanism is used to keep
track of each Skolem variable's possible bindings.

14.11 History and References
Brachman and Levesque (1985) collect thirty of the key papers in knowledge repre
sentation. Included are some early approaches to semantic network based (Quillian
1967) and logic-based (McCarthy 1968) representation. Two thoughtful critiques
of the ad hoc use of representations without defining their meaning are by Woods
(1975) and McDermott (1978). It is interesting to contrast the latter with McDermott
1987, which argues that logic by itself is not sufficient to solve the problems of AI.
This argument should not be surprising to those who remember the slogan logic =
algonthm - control.

Genesereth and Nilsson's textbook (1987) cover the predicate-calculus-based ap
proach to knowledge representation and AI in general. Ernest Davis (1990) presents
a good overview of the field that includes specialized representations for time, space,
qualitative physics, propositional attitudes, and the interaction between agents.

Many representation languages focus on the problem of defining descriptions for
categories of objects. These have come to be known as term-subsumption languages.
Examples include KL-ONE (Schmölze and Lipkis 1983) and KRYPTON (Brachman,
Fikes, and Levesque 1983). See Lakoff 1987 for much more on the problem of
categories and prototypes.

504 KNOWLEDGE REPRESENTATION AND REASONING

Hector Levesque (1986) points out that the areas Prolog has difficulty with—
disjunction, negation, and existentials—all involve a degree of vagueness. In his
term, they lack vividness. A vivid proposition is one that could be represented
directly in a picture: the car is blue; she has a martini in her left hand; Albany is the
capital of New York. Nonvivid propositions cannot be so represented: the car is not
blue; she has a martini in one hand; either Albany or New York City is the capital
of New York. There is interest in separating vivid from nonvivid reasoning, but no
current systems are actually built this way.

The possible world approach of section 14.10 was used in the MRS system (Russell
1985). More recent knowledge representation systems tend to use truth maintenance
systems instead of possible worlds. This approach was pioneered by Doyle (1979)
and McAllester (1982). Doyle tried to change the name to "reason maintenance," in
(1983), but it was too late. The version in widest used today is the assumption-based
truth maintenance system, or ATMS, developed by de Kleer (1986a,b,c). Charniak
et al. (1987) present a complete Common Lisp implementation of a McAllester-
styleTMS.

There is little communication between the logic programming and knowledge
representation communities, even though they cover overlapping territory. Colmer
auer (1990) and Cohen (1990) describe Logic Programming languages that address
some of the issues covered in this chapter. Key papers in equality reasoning include
Caller and Fisher 1974, Kornfeld 1983,^ Jaffar, Lassez, and Maher 1984, and van
Emden and Yukawa 1987. HöUdobler's book (1987) includes an overview of the area.
Papers on extending unification in ways other than equality include Ait-Kaci et al.
1987 and Staples and Robinson 1988. Finally, papers on extending Prolog to cover
disjunction and negation (i.e., non-Horn clauses) include Loveland 1987, Plaisted
1988, and Stickell988.

14.12 Exercises

@ Exercise 14.1 [m] Arrange to store dtrees in a hash table rather than on the property
list of predicates.

(¿3 Exercise 14.2 [m] Arrange to store the dtree-atoms in a hash table rather than in
an association list.

@ Exercise 14.3 [m] Change the dtree code so that η i 1 is used as an atom index. Time
the performance on an application and see if the change helps or hurts.

^ A commentary on this paper appears in Elcock and Hoddinott 1986.

14.12 EXERCISES 505

@ Exercise 14.4 [m] Consider the query (ρ a b c d e f g). If the index under a
returns only one or two keys, then it is probably a waste of time for dtree-fetch
to consider the other keys in the hope of finding a smaller bucket. It is certainly
a waste if there are no keys at all indexed under a. Make appropriate changes to
dtree-fetch.

@ Exercise 14.5 [h] Arrange to delete elements from a dtree.

@ Exercise 14.6 [h] Implement iterative-deepening search in the Prolog compiler.
You will have to change each function to accept the depth as an extra argument, and
compile in checks for reaching the maximum depth.

Exercise 14.7 [d] Integrate the Prolog compiler with the dtree data base. Use
the dtrees for predicates with a large number of clauses, and make sure that each
predicate that is implemented as a dtree has a Prolog primitive accessing the dtree.

[¿J Exercise 14.8 [d] Add support for possible worlds to the Prolog compiler with
dtrees. This support has already been provided for dtrees, but you will have to
provide it for ordinary Prolog rules.

@ Exercise 14.9 [h] Integrate the language described in section 14.10 and the frame
syntax from section 14.10 with the extended Prolog compiler from the previous
exercise.

@ Exercise 14.10 [d] Build a strategic reasoner that decides when to create a possible
world and does reasoning by cases over these worlds. Use it to solve Moore's problem
(page 466).

506 KNOWLEDGE REPRESENTATION AND REASONING

14.13 Answers

Answer 14.1

(le t ((dtrees (make-hash-table : test # 'eq)))

(defun get-dtree (predicate)
"Fetch (or make) the dtree for th is predicate."
(set f (gethash predicate dtrees)

(or (gethash predicate dtrees)
(make-dtree))))

(defun c lear-dtrees ()
"Remove al l the dtrees for al l the predicates."
(c l rhash dt rees)))

Answer 14.5 Hint: here is the code for nl i s t - del ete . Now figure out how to find
all the nlists that an item is indexed under.

(defun n l i s t -de le te (item n l i s t)
"Remove an element from an n l i s t .
Assumes that item i s present exactly once."
(decf (car n l i s t))
(set f (cdr n l i s t) (delete item (cdr n l i s t) rcount D)
n l i s t)

