
CHAPTER 15 
Symbolic Mathematics 
with Canonical Forms 

Anything simple always interests me. 

-David Hockney 

C hapter 8 started with high hopes: to take an existing pattern matcher, copy down some 
mathematical identities out of a reference book, and come up with a usable symbolic 
algebra system. The resulting system was usable for some purposes, and it showed 

that the technique of rule-based translation is a powerful one. However, the problems of 
section 8.5 show that not everything can be done easily and efficiently within the rule-based 
pattern matching framework. 

There are important mathematical transformations that are difficult to express in the rule-
based approach. For example, dividing two polynomials to obtain a quotient and remainder is 
a task that is easier to express as an algorithm—a program—than as a rule or set of rules. 
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In addition, there is a problem with efficiency. Pieces of the input expressions are 
simplified over and over again, and much time is spent interpreting rules that do not 
apply. Section 9.6 showed some techniques for speeding up the program by a factor 
of 100 on inputs of a dozen or so symbols, but for expressions with a hundred or so 
symbols, the speed-up is not enough. We can do better by designing a specialized 
representation from the ground up. 

Serious algebraic manipulation programs generally enforce a notion of canonical 
simplification. That is, expressions are converted into a canonical internal format that 
may be far removed from the input form. They are then manipulated, and translated 
back to external form for output. Of course, the simplifier we have already does this 
kind of translation, to some degree. It translates (3 + χ + - 3 + y) into (+ χ y) 
internally, and then outputs it as (χ + y ) . But a canonical representation must have 
the property that any two expressions that are equal have identical canonical forms. 
In our system the expression (5 + y + x + - 5 ) i s translated to the internal form (+ 
y χ), which is not identical to (+ x y ) , even though the two expressions are equal. 
Thus, our system is not canonical. Most of the problems of the previous section stem 
from the lack of a canonical form. 

Adhering to canonical form imposes grave restrictions on the representation. For 
example, — 1 and {x — l){x are equal, so they must be represented identically. 
One way to insure this is to multiply out all factors and collect similar terms. So 
{x-l){x-\-l)isx^ -x + x - l , which simplifies to x^ - 1 , in whatever the canonical 
internal form is. This approach works fine for x^ - 1, but for an expression like 
{x - 1 ) 1 0 0 0 ^ multiplying out all factors would be quite time- (and space-) consuming. 
It is hard to find a canonical form that is ideal for all problems. The best we can do is 
choose one that works well for the problems we are most likely to encounter. 

15.1 A Canonical Form for Polynomials 

This section will concentrate on a canonical form for polynomials. Mathematically 
speaking, a polynomial is a function (of one or more variables) that can be computed 
using only addition and multiplication. We will speak of a polynomial's main variable, 
coefficents, and degree. In the polynomial: 

5xx^-\-hxx^-\-cxx-\-l 

the main variable is x, the degree is 3 (the highest power of x), and the coefficients 
are 5,6, c and 1. We can define an input format for polynomials as follows: 

1. Any Lisp number is a polynomial. 

2. Any Lisp symbol is a polynomial. 
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^ In fact, the algebraic properties of polynomial arithmetic and its generalizations fit so well 
with ideas in data abstraction that an extended example (in Scheme) on this topic is provided 
in Structure and Interpretation of Computer Programs by Abelson and Sussman (see section 2.4.3, 
pages 153-166). We'll pursue a slightly different approach here. 

3. lip and q are polynomials, so are (p + ̂ ) and (p* q). 

4. If ρ is a polynomial and η is a positive integer, then (p " η) is a polynomial. 

Hov^ever, the input format cannot be used as the canonical form, because it would 
admit both (X + y ) a n d ( y + x ) , and both 4 and (2 + 2 ) . 

Before considering a canonical form for polynomials, let us see why polynomials 
were chosen as the target domain. First, the volume of programming needed to sup
port canonical forms for a larger class of expressions grows substantially. To make 
things easier, we have eliminated complications like log and trig functions. Polyno
mials are a good choice because they are closed under addition and multiplication: 
the sum or product of any two polynomials is a polynomial. If we had allowed divi
sion, the result would not be closed, because the quotient of two polynomials need 
not be a polynomial. As a bonus, polynomials are also closed under differentiation 
and integration, so we can include those operators as well. 

Second, for sufficiently large classes of expressions it becomes not just difficult 
but impossible to define a canonical form. This may be surprising, and we don't 
have space here to explain exactly why it is so, but here is an argument: Consider 
what would happen if we added enough functionality to duplicate all of Lisp. Then 
"converting to canonical form" would be the same as "running a program." But it 
is an elementary result of computability theory that it is in general impossible to 
determine the result of running an arbitrary program (this is known as the halting 
problem). Thus, it is not surprising that it is impossible to canonicalize complex 
expressions. 

Our task is to convert a polynomial as previously defined into some canonical 
f orm.^ Much of the code and some of the commentary on this format and the routines 
to manipulate it was written by Richard Fateman, with some enhancements made 
by Peter Klier. 

The first design decision is to assume that we will be dealing mostly with dense 
polynomials, rather than sparse ones. That is, we expect most of the polynomials 
to be like ax^ -f bx^ Λ- cx -\- d, not like ax^^^ -|- bx^^ -h c. For dense polynomials, 
we can save space by representing the main variable {x in these examples) and the 
individual coefficients (a, 6, c, and d in these examples) explicitly, but representing 
the exponents only implicitly, by position. Vectors will be used instead of Usts, to 
save space and to allow fast access to any element. Thus, the representation of 

+ lOx^ + 20a: + 30 wiU be the vector: 

#(x 30 20 10 5) 
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The main variable, x, is in the 0th element of the vector, and the coefficient of the 
ith power of χ is in element ¿ Η-1 of the vector. A single variable is represented as a 
vector whose first coefficient is 1, and a number is represented as itself: 

#(x 30 20 10 5) represents5x^ + lOx^ + 20x + 30 
#(x 0 1) representsX 
5 represents 5 

The fact that a number is represented as itself is a possible source of confusion. The 
number 5, for example, is a polynomial by our mathematical definition of polyno
mials. But it is represented as 5, not as a vector, so (typep 5 ' pol ynomi a l ) will be 
false. The word "polynomial" is used ambiguously to refer to both the mathematical 
concept and the Lisp type, but it should be clear from context which is meant. 

A glossary for the canonical simplifier program is given in figure 15.1. 
The functions defining the type polynomial follow. Because we are concerned 

with efficiency, we proclaim certain short functions to be compiled inline, use the 
specific function svref (simple-vector reference) rather than the more general aref , 
and provide declarations for the polynomials using the special form the. More details 
on efficiency issues are given in Chapter 9. 

(proclaim ' ( i n l i n e main-var degree coef 
var= var> poly make-poly)) 

(deftype polynomial () 's imple-vector) 

(defun main-var (p) (svref (the polynomial p) 0)) 
(defun coef (p i ) (svref (the polynomial p) (+ i 1 ) ) ) 
(defun degree (p) (- ( length (the polynomial p)) 2)) 

We had to make another design decision in defining coef, the function to extract a 
coefficient from a polynomial. As stated above, the zth coefficient of a polynomial is 
in element i + 1 of the vector. If we required the caller of coef to pass in ζ Η-1 to get 
2 , we might be able to save a few addition operations. The design decision was that 
this would be too confusing and error prone. Thus, coef expects to be passed i and 
does the addition itself. 

For our format, we will insist that main variables be symbols, while coefficients 
can be numbers or other polynomials. A "production" version of the program might 
have to account for main variables like ( s i n χ), as well as other complications like + 
and * with more than two arguments, and noninteger powers. 

Now we can extract information from a polynomial, but we also need to build 
and modify polynomials. The function poly takes a variable and some coefficients 
and builds a vector representing the polynomial, make-pol y takes a variable and a 
degree and produces a polynomial with all zero coefficients. 
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Top-Level Fimctions 
c a n o n - s i m p l i f i e r A read-canonicalize-print loop. 
canon Canonicalize argument and convert it back to infix. 

Data Types 
polynomial A vector of main variable and coefficients. 

Major Functions 
pref ix ->canon Convert a prefix expression to canonical polynomial. 
canon->pref ix Convert a canonical polynomial to a prefix expression. 
poly+poly Add two polynomials. 
po ly *po ly Multiply two polynomials. 
poly^n Raise polynomial ρ to the nth power, n>=0. 
der iv -poly Return the derivative, dp/dx, of the polynomial p. 

Auxiliary Fimctions 
poly Construct a polynomial with given coefficients. 
make-poly Construct a polynomial of given degree. 
coef Pick out the ith coefficient of a polynomial. 
main-var The main variable of a polynomial. 
degree Thedegreeof a polynomial; (degree x^ ) = 2. 
var= Are two variables identical? 
var> Is one variable ordered before another? 
poly-i- Unary or binary polynomial addition. 
po ly - Unary or binary polynomial subtraction. 
k-»-poly Add a constant k to a polynomial p. 
k*poly Multiply a polynomial ρ by a constant k. 
poly+same Add two polynomials with the same main variable. 
poly*same Multiply two polynomials with the same main variable. 
normal ize-poly Alter a polynomial by dropping trailing zeros. 
exponent->pref ix Used to convert to prefix. 
a r g s - > p r e f i x Used to convert to prefix. 
rat-numerator Select the numerator of a rational. 
rat-denominator Select the denominator of a rational. 
r a t * r a t Multiply two rationals. 
rat-»-rat Add two rationals. 
r a t / r a t Divide two rationals. 

Figure 15.1: Glossary for the Symbolic Manipulation Program 
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(defun poly (x &rest coefs) 
"Make a polynomial with main var iable χ 
and coef f ic ients in increasing order." 
(apply #·vector χ coefs)) 

(defun make-poly (x degree) 
"Make the polynomial 0 + 0*x + 0*x''2 + . . . 0*x"degree" 
( le t ((p (make-array (+ degree 2) : in i t ia l -e lement 0 ) ) ) 

(set f (main-var p) x) 
P)) 

A polynomial can be altered by setting its main variable or any one of its coefficients 
using the following defse t f forms. 

(defsetf main-var (p) (va l ) 
* (set f (svref (the polynomial ,p) 0) , va l ) ) 

(defsetf coef (p i ) (va l ) 
• (set f (svref (the polynomial ,p) (+ .i D ) . va l ) ) 

The function pol y constructs polynomials in a fashion similar to 1 i s t or vector: with 
an explicit list of the contents, make-poly, on the other hand, is like make-a may: it 
makes a polynomial of a specified size. 

We provide s e t f methods for modifying the main variable and coefficients. Since 
this is the first use of defsetf , it deserves some explanation. A defse t f form takes 
a function (or macro) name, an argument list, and a second argument list that must 
consist of a single argument, the value to be assigned. The body of the form is an 
expression that stores the value in the proper place. So the defse t f for ma 1 η - va r says 
that ( s e t f (main-var p) val) is equivalent to ( s e t f ( svref (the polynomial p) 
0) va l ) . A defse t f is much like a defmacro, but there is a little less burden placed 
on the writer of defsetf . Instead of passing ρ and val directly to the s e t f method. 
Common Lisp binds local variables to these expressions, and passes those variables 
to the s e t f method. That way, the writer does not have to worry about evaluating 
the expressions in the wrong order or the wrong number of times. It is also possible 
to gain finer control over the whole process with def i ne-setf-method, as explained 
on page 884. 

The functions poly+poly, poly*poly and poly'n perform addition, multiplica
tion, and exponentiation of polynomials, respectively. They are defined with several 
helping functions. k*poly multipHes a polynomial by a constant, k, which may 
be a number or another polynomial that is free of polynomial p's main variable. 
poly*same is used to multiply two polynomials with the same main variable. For 
addition, the functions k+poly and poly+same serve analogous purposes. With that 
in mind, here's the function to convert from prefix to canonical form: 
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(defun prefix->canon (x) 
"Convert a pref ix L isp expression to canonical form. 
Exs; (+ X 2) (* 3 x)) => #(x 0 3 1) 

( - ( * ( - X 1) ( + X D ) (- ( ^ X 2) D ) => 0" 
(cond ((numberp x) x) 

((symbolp x) (poly χ 0 D ) 
((and (exp-p x) (get (exp-op x) 'pref ix->canon)) 
(apply (get (exp-op x) 'pref ix->canon) 

(mapcar # 'pref ix->canon (exp-args x ) ) ) ) 
(t (error "Not a polynomial: ~a" x ) ) ) ) 

It is data-driven, based on the pref ix ->canon property of each operator. In the 
following we install the appropriate functions. The existing functions p o l y * p o l y 
and p o l y ' n can be used directly. But other operators need interface functions. The 
operators + and - need interface functions that handle both unary and binary. 

(do l i s t (item ' ( ( + poly+) (- po ly- ) (* poly*poly) 
(" poly^n) (D der iv -po ly ) ) ) 

(set f (get ( f i r s t item) *prefix->canon) (second item))) 

(defun poly+ (&rest args) 
"Unary or binary polynomial add i t ion . " 
(ecase (length args) 

(1 ( f i r s t a rgs) ) 
(2 (poly+poly ( f i r s t args) (second a r g s ) ) ) ) ) 

(defun poly- (&rest args) 
"Unary or binary polynomial subt rac t ion . " 
(ecase (length args) 

(1 (poly*poly - 1 ( f i r s t a rgs ) ) ) 
(2 (poly+poly ( f i r s t args) (poly*poly -1 (second a r g s ) ) ) ) ) ) 

The function pref ix->canon accepts inputs that were not part of our definition of 
polynomials: unary positive and negation operators and binary subtraction and 
differentiation operators. These are permissible because they can all be reduced to 
the elementary + and * operations. 

Remember that our problems with canonical form all began with the inability to 
decide which was simpler: (+ χ y) or (+ y χ). In this system, we define a canonical 
form by imposing an ordering on variables (we use alphabetic ordering as defined by 
s t r i ng>). The rule is that a polynomial ρ can have coefficients that are polynomials 
in a variable later in the alphabet than p's main variable, but no coefficients that 
are polynomials in variables earlier than p's main variable. Here's how to compare 
variables: 

(defun var= (x y) (eq χ y ) ) 
(defun var> (x y) ( s t r i ng> χ y ) ) 
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The canonical form of the variable χ will be #(x 0 1 ) , which is 0 χ χ° + 1 x ar̂ . The 
canonical form of (+ χ y) is #(x #(y 0 1 ) 1 ) . It couldn't be #(y #(x 0 1 ) 1 ) , 
because then the resulting polynomial would have a coefficient with a lesser main 
variable. The policy of ordering variables assures canonicality, by properly grouping 
like variables together and by imposing a particular ordering on expressions that 
would otherwise be commutative. 

Here, then, is the code for adding two polynomials: 

(defun poly+poly (p q) 
"Add two polynomials." 
(normal ize-poly 

(cond 
((numberp p) (k+poly ρ q)) 
((numberp q) (k+poly q p)) 
( (var= (main-var p) (main-var q)) (poly+same ρ q)) 
( (var> (main-var q) (main-var p)) (k+poly q p)) 
(t (k+poly ρ q ) ) ) ) ) 

(defun k+poly (k p) 
"Add a constant k to a polynomial p." 
(cond ((eql k 0) p) 0 + ρ = ρ 

((and (numberp k)(numberp p)) 
(+ k p)) Add numbers 

(t ( let ( ( r (copy-poly p) ) ) Add k to x"0 term of ρ 
(set f (coef r 0) (poly+poly (coef r 0) k)) 
r ) ) ) ) 

(defun poly+same (p q) 
"Add two polynomials with the same main va r iab le . " 

F i r s t assure that q i s the higher degree polynomial 
( i f (> (degree p) (degree q)) 

(poly+same q p) 
; ; Add each element of ρ into r (which i s a copy of q ) . 
( let ( ( r (copy-poly q) ) ) 

(loop for i from 0 to (degree p) do 
(set f (coef r i ) (poly+poly (coef r i ) (coef ρ i ) ) ) ) 

r ) ) ) 

(defun copy-poly (p) 
"Make a copy a polynomial." 
(copy-seq p)) 
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and the code for multiplying polynomials: 

(defun poly*poly (p q) 
"Mult ip ly two polynomials." 
(normal ize-poly 

(cond 
((numberp p) (k*poly ρ q)) 
((numberp q) (k*poly q p)) 
( (var= (main-var p) (main-var q)) (poly*same ρ q)) 
( (var> (main-var q) (main-var p)) (k*poly q p)) 
(t (k*poly ρ q ) ) ) ) ) 

(defun k*poly (k p) 
"Mult ip ly a polynomial ρ by a constant factor k." 
(cond 

((eql k 0) 0) ; ; 0 * ρ = 0 
((eql k 1) p) ; ; 1 * ρ = ρ 
((and (numberp k) 

(numberp p)) (* k p)) Mul t ip ly numbers 
(t Mul t ip ly each coef f ic ient 

( let ( ( r (make-poly (main-var p) (degree p ) ) ) ) 
Accumulate resul t in r; rC i ] = k*pCi] 

(loop for i from 0 to (degree p) do 
(set f (coef r i ) (poly*poly k (coef ρ i ) ) ) ) 

r ) ) ) ) 

The hard part is multiplying two polynomials with the same main variable. This 
is done by creating a new polynomial, r, whose degree is the sum of the two input 
polynomials ρ and q. Initially, all of r's coefficients are zero. A doubly nested 
loop multiplies each coefficient of ρ and q and adds the result into the appropriate 
coefficient of r. 

(defun poly*same (p q) 
"Mult ip ly two polynomials with the same var iab le . " 

rC i ] = pCO]*qCi] + pC l ] *qC i - l ] + . . . 
( le t * ((r-degree (+ (degree p) (degree q) ) ) 

(r (make-poly (main-var p) r-degree))) 
(loop for i from 0 to (degree p) do 

(unless (eql (coef ρ i ) 0) 
(loop for j from 0 to (degree q) do 

(set f (coef r (+ i j ) ) 
(poly+poly (coef r (+ i j ) ) 

(poly*poly (coef ρ i ) 
(coef q j ) ) ) ) ) ) ) 

r ) ) 
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Both poly+poly and p o l y * p o l y make use of the function normal i z e - p o l y to "nor
malize" the result. The idea is that ( - χ 5) ( " χ 5 ) ) should return O, not 
# ( x O O O O O O ) . Note that normal i z e - p o l y is a destructive operation: it calls 
del ete, which can actually alter its argument. Normally this is a dangerous thing, 
but since norma 1 i ze - pol y is replacing something with its conceptual equal, no harm 
is done. 

(defun normalize-poly (p) 
"Alter a polynomial by dropping t r a i l i ng ze ros . " 
( i f (numberp p) 

Ρ 
( let ((p-degree (- (pos i t ion 0 ρ i test (complement # 'eq l ) 

:from-end t ) 
1) ) ) 

(cond ((<= p-degree 0) (normalize-poly (coef ρ 0 ) ) ) 
( (< p-degree (degree p)) 

(delete 0 ρ .-start p-degree)) 
(t p ) ) ) ) ) 

There are a few loose ends to clean up. First, the exponentiation function: 

(defun po ly 'n (p n) 
"Raise polynomial ρ to the nth power, n > = 0 . " 
(check-type η ( integer 0 * ) ) 
(cond ( (= η 0) (asser t (not (eql ρ 0 ) ) ) 1) 

(( integerp p) (expt ρ η)) 
(t (poly*poly ρ (poly^n ρ (- η 1 ) ) ) ) ) ) 

15.2 Differentiating Polynomials 
The differentiation routine is easy, mainly because there are only two operators (+ 
and *) to deal with: 

(defun der iv-poly (p x) 
"Return the der iva t ive , dp/dx, of the polynomial p." 
; ; I f ρ i s a number or a polynomial with main-var > x , 

then ρ i s free of x , and the der ivat ive i s zero; 
; ; otherwise do real work. 
; ; But f i r s t , make sure X i s a simple var iab le , 
; ; of the form #(X 0 1 ) . 
(asser t (and (typep χ 'polynomial) (= (degree x) 1) 

(eql (coef χ 0) 0) (eql (coef χ 1) 1 ) ) ) 
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(cond 
((numberp p) 0) 
( (var> (main-var p) (main-var x ) ) 0) 
( (var= (main-var p) (main-var x ) ) 

d(a + bx + cx^2 + dx^3)/dx = b + 2cx + 3dx'^2 
So, sh i f t the sequence ρ over by 1 , then 

; ; put χ back i n , and mult iply by the exponents 
( let ( ( r (subseq ρ 1) ) ) 

(set f (main-var r) (main-var x ) ) 
(loop for i from 1 to (degree r) do 

(set f (coef r i ) (poly*poly (+ i 1) (coef r i ) ) ) ) 
(normalize-poly r ) ) ) 

(t Otherwise some coef f ic ient may contain x. Ex: 
d(z + 3x + 3zx^2 + z^2x^3)/dz 
= 1 + 0 + 3x'^2 + 2zx"3 
So copy p, and d i f ferent iate the coef f i c ien ts , 

( let ( ( r (copy-poly p) ) ) 
(loop for i from 0 to (degree p) do 

(set f (coef r i ) (der iv-poly (coef r i ) x ) ) ) 
(normalize-poly r ) ) ) ) ) 

@ Exercise 15.1 [h] Integrating polynomials is not much harder than differentiating 
them. Forexample: 

/ 2 , - ax uju 

ax -\-bxdx = -γ- + — + c. 

3 6χ2 

Write a function to integrate polynomials and install it in pref ix->canon. 

@ Exercise 15.2 [m] Add support for definite integrals, such as y dx. You will 
need to make up a suitable notation and properly install it in both in f ix ->pre f ix 
and prefix->canon. A full implementation of this feature would have to consider 
infinity as a bound, as well as the problem of integrating over singularities. You need 
not address these problems. 

15.3 Converting between Infix and Prefix 
All that remains is converting from canonical form back to prefix form, and from 
there back to infix form. This is a good point to extend the prefix form to allow 
expressions with more than two arguments. First we show an updated version of 
pref i x->i nf i χ that handles multiple arguments: 

file://-/-bxdx
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(defun p re f i x -> in f i x (exp) 
"Translate pref ix to i n f i x express ions. 
Handles operators with any number of a r g s . " 
( i f (atom exp) 

exp 
( intersperse 

(exp-op exp) 
(mapcar # ' p re f i x -> i n f i x (exp-args exp) ) ) ) ) 

(defun intersperse (op args) 
"Place op between each element of a rgs . 
Ex: ( intersperse ' + ' (a b c ) ) => ' (a + b + c ) " 
( i f ( length=l args) 

( f i r s t args) 
( rest (loop for arg in args 

co l lect op 
co l lect a rg ) ) ) ) 

Now we need only convert from canonical form to prefix: 

(defun canon->prefix (p) 
"Convert a canonical polynomial to a l i s p express ion . " 
( i f (numberp p) 

Ρ 
(args->pref ix 

' + 0 
(loop for i from (degree p) downto 0 

co l lect (args->pref ix 
' * 1 
( l i s t (canon->prefix (coef p i ) ) 

(exponent->prefix 
(main-var p) i ) ) ) ) ) ) ) 

(defun exponent->prefix (base exponent) 
"Convert canonical base^exponent to pref ix form." 
(case exponent 

(0 1) 
(1 base) 
(t * ( " .base .exponent)))) 

(defun args->pref ix (op ident i ty args) 
"Convert arg l op arg2 op . . . to pref ix form." 
( le t ( (use fu l -a rgs (remove ident i ty a rgs ) ) ) 

(cond ((nul l use fu l -a rgs) ident i ty) 
((and (eq op ' * ) (member 0 a rgs ) ) 0) 
( ( length=l args) ( f i r s t use fu l -a rgs ) ) 
(t (cons op (mappend 

#*(lambda (exp) 
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( i f (s tar ts -wi th exp op) 
(exp-args exp) 
( l i s t exp))) 

u s e f u l - a r g s ) ) ) ) ) ) 

Finally, here's a top level to make use of all this: 

(defun canon ( in f ix -exp) 
"Canonical ize argument and convert i t back to in f i x " 
(p re f i x -> in f i x 

(canon->prefix 
(prefix->canon 

( in f i x ->pre f i x i n f i x -exp ) ) ) ) ) 

(defun canon-simpl i f ier () 
"Read an express ion, canonical ize i t . and pr int the resu l t . " 
(loop 

(pr int 'canon>) 
(pr int (canon ( read) ) ) ) ) 

and an example of it in use: 

> (canon-s impl i f ier ) 
CANON> (3 + X + 4 - X ) 
7 
CANON> ( X + y + y + X ) 
((2 * Χ) + (2 * Y)) 
CANON> (3 * X + 4 * X ) 
(7 * X) 
CANON> ( 3 * x + y + x + 4 * x ) 
((8 * X) + Y) 
CANON> ( 3 * x + y + z + x + 4 * x ) 
( (8 * X) + (Y + Z)) 
CANON> ( ( X + 1) ^ 10) 
((X ^ 10) + (10 * (X ^ 9)) + (45 * (X ^ 8) ) + (120 * (X ^ 7)) 
+ (210 * (X ^ 6)) + (252 * (X ^ 5)) + (210 * (X ^ 4) ) 
+ (120 * (X 3)) + (45 * (X ^ 2)) + (10 * X) + 1) 

CAN0N> ( ( X + 1) 10 + ( X - 1) ^ 10) 
((2 * (X ^ 10)) + (90 * (X ^ 8) ) + (420 * (X ^ 6) ) 
+ (420 * (X ^ 4) ) + (90 * (X ^ 2)) + 2) 

CAN0N> ( ( X + 1) ^ 10 - ( X - 1) ^ 10) 
((20 * (X ^ 8)) + (240 * (X ^ 7)) + (504 * (X ^ 5)) 
+ (240 * (X ^ 3)) + (20 * X)) 

CAN0N> (3 * X ^ 3 + 4 * X * y * ( X - 1) + X ^ 2 * ( X + y ) ) 
((4 * (X ^ 3)) + ((5 * Y) * (X ^ 2)) + ( ( -4 * Y) * X)) 
CAN0N> ( 3 * x ^ 3 + 4 * x * w * ( x - l ) + x ^ 2 * ( x + w)) 
( ( ( (5 * (X ^ 2)) + (-4 * X)) * W) + (4 * (X ^ 3 ) ) ) 
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CANON> (d (3 * X ^ 2 + 2 * X + 1) / d X ) 
((6 * X) + 2) 
CANON> (d(z + 3 * x + 3 * z * x ^ 2 + z ^ 2 * x ^ 3 ) / d z ) 
( ( (2 * Z) * (X ^ 3)) + (3 * (X ^ 2)) + 1) 
CANON> [Abort] 

15.4 Benchmarking the Polynomial Simplifier 

Unlike the rule-based program, this version gets all the answers right. Not only is the 
program correct (at least as far as these examples go), it is also fast. We can compare 
it to the canonical simplifier originally written for MACSYMA by William Martin (circa 
1968), and modified by Richard Fateman. The modified version was used by Richard 
Gabriel in his suite of Common Lisp benchmarks (1985). The benchmark program 
is called f rpo1y, because it deals with polynomials and was originally written in 
the dialect Franz Lisp. The f rpoly benchmark encodes polynomials as lists rather 
than vectors, and goes to great lengths to be efficient. Otherwise, it is similar to the 
algorithms used here (although the code itself is quite different, using progs and gos 
and other features that have fallen into disfavor in the intervening decades). The 
particular benchmark we will use here is raising 1-\- χ -\-y -\- ziothe 15th power: 

(defun r l5 - tes t () 
( le t ( ( r (prefix->canon *(+ 1 (+ χ (+ y ζ ) ) ) ) ) ) 

(time (poly^n r 15)) 
n i l ) ) 

This takes .97 seconds on our system. The equivalent test with the original f r po l y 
code takes about the same time: .98 seconds. Thus, our program is as fast as 
production-quaUty code. In terms of storage space, vectors use about half as much 
storage as lists, because half of each cons cell is a pointer, while vectors are all useful 
data.2 

How much faster is the polynomial-based code than the rule-based version? 
Unfortunately, we can't answer that question directly. We can time (s imp ' ( (1 
+ x + y + z) " 1 5 ) ) ) . This takes only a tenth of a second, but that is because 
it is doing no work at all—the answer is the same as the input! Alternately, we 
can take the expression computed by ( po l y^n r 15) , convert it to prefix, and pass 
that to s impl i fy . s impl i fy takes 27.8 seconds on this, so the rule-based version is 

^Note: systems that use ''cdr-coding" take about the same space for lists that are allocated 
all at once as for vectors. But cdr-coding is losing favor as RISC chips replace microcoded 
processors. 
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much slower. Section 9.6 describes ways to speed up the rule-based program, and a 
comparison of timing data appears on page 525. 

There are always surprises when it comes down to measuring timing data. For 
example, the alert reader may have noticed that the version of pol y defined above 
requires η multiplications. Usually, exponentiation is done by squaring a value when 
the exponent is even. Such an algorithm takes only log η multiplications instead of 
n. We can add a line to the definition of pol y to get an 0(log n) algorithm: 

(defun poly^n (p n) 
"Raise polynomial ρ to the nth power. n>=0." 
(check-type η ( integer 0 *)) 
(cond ( (= η 0) (asser t (not (eql ρ 0) ) ) 1) 

(( integerp p) (expt ρ n)) 
((evenp n) (poly^2 (poly^n ρ ( / η 2 ) ) ) ) 
(t (poly*poly ρ (poly^n ρ (- η 1 ) ) ) ) ) ) 

(defun poly"2 (p) (poly*poly ρ ρ)) 

The surprise is that this takes longer to raise *r* to the 15th power. Even though it 
does fewer pol y *po l y operations, it is doing them on more complex arguments, and 
there is more work altogether. If we use this version of p o l y ' n , then r l 5 - t e s t takes 
1.6 seconds instead of .98 seconds. 

By the way, this is a perfect example of the conceptual power of recursive func
tions. We took an existing function, pol y " n , added a single cond clause, and changed 
it from an 0 ( n ) to O(logn) algorithm. (This turned out to be a bad idea, but that's 
beside the point. It would be a good idea for raising integers to powers.) The rea
soning that allows the change is simple: First, is certainly equal to (p^^^ )̂̂  when 
η is even, so the change can't introduce any wrong answers. Second, the change 
continues the policy of decrementing η on every recursive call, so the function must 
eventually terminate (when η = 0). If it gives no wrong answers, and it terminates, 
then it must give the right answer. 

In contrast, making the change for an iterative algorithm is more complex. The 
initial algorithm is simple: 

(defun poly^n (p n) 
( let ( ( resu l t D ) 

(loop repeat η do (set f resul t (poly*poly ρ resu l t ) ) ) 
resu l t ) ) 

But to change it, we have to change the repeat loop to a whi 1 e loop, explicitly put in 
the decrement of n, and insert a test for the even case: 
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(defun poly^n (p n) 
( le t ( ( resu l t D ) 

(loop while (> η 0) 
do ( i f (evenp n) 

(set f ρ (poly^2 p) 
η ( / η 2)) 

(set f resul t (poly*poly ρ resu l t ) 
η (- η 1 ) ) ) ) 

resu l t ) ) 

For this problem, it is clear that thinking recursively leads to a simpler function that 
is easier to modify. 

It turns out that this is not the final word. Exponentiation of polynomials can be 
done even faster, with a little more mathematical sophistication. Richard Fateman's 
1974 paper on Polynomial Multiplication analyzes the complexity of a variety of 
exponentiation algorithms. Instead of the usual asymptotic analysis (e.g. 0 ( n ) 
or (9(n^)), he uses a fine-grained analysis that computes the constant factors (e.g. 
1000 X η or 2 X n^). Such analysis is crucial for small values of n. It turns out that for a 
variety of polynomials, an exponentiation algorithm based on the binomial theorem 
is best. The binomial theorem states that 

i = 0 

for example. 

( a - f 6 r = ¿ — ^ a V -

{a + bf = b^-\-3ab^-^3aH + a^ 

We can use this theorem to compute a power of a polynomial all at once, instead 
of computing it by repeated multiplication or squaring. Of course, a polynomial will 
in general be a sum of more than two components, so we have to decide how to split it 
into the a and b pieces. There are two obvious ways: either cut the polynomial in half, 
so that a and 6 will be of equal size, or split off one component at a time. Fateman 
shows that the latter method is more efficient in most cases. In other words, a 
polynomial k^x'^ - f k2x'^~~^ + k^x^''^ -h · · will be treated as the sum a + b where 
a = k\x'^ and b is the rest of the polynomial. 

Following is the code for binomial exponentiation. It is somewhat messy, because 
the emphasis is on efficiency. This means reusing some data and using ρ - add - i nto 1 
instead of the more general poly+poly. 

(defun poly'^n (p n) 
"Raise polynomial ρ to the nth power, n>=0 . " 
; ; Uses the binomial theorem 
(check-type η ( integer 0 * ) ) 
(cond 

( (= η 0) 1) 
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(( integerp p) (expt ρ η)) 
(t ; ; F i r s t : s p l i t the polynomial ρ = a + b, where 

a = k*x^d and b i s the rest of ρ 
( let ((a (make-poly (main-var p) (degree p) ) ) 

(b (normalize-poly (subseq ρ 0 (- ( length p) 1 ) ) ) ) 
Al locate arrays of powers of a and b: 

(a^n (make-array (+ η 1) ) ) 
(b^n (make-array {+ η 1) ) ) 

I n i t i a l i z e the resu l t : 
( resu l t (make-poly (main-var p) (* (degree p) n ) ) ) ) 

(set f (coef a (degree p)) (coef ρ (degree p) ) ) 
; ; Second: Compute powers of a^i and b^i for i up to η 
(set f (aref a^n 0) 1) 
(set f (aref b^n 0) 1) 
(loop for i from 1 to η do 

(set f (aref a^n i ) (poly*poly a (aref a^n (- i 1 ) ) ) ) 
(set f (aref b^n i ) (poly*poly b (aref b^n (- i 1 ) ) ) ) ) 

; ; Th i rd : add the products into the resu l t . 
so that resu l tC i ] = (n choose i ) * a'^i * b" (n- i ) 

( le t ( (c 1)) c helps compute (n choose i ) incrementally 
(loop for i from 0 to η do 

(p-add- into! resul t c 
(poly*poly (aref a'^n i ) 

(aref b^n (- η i ) ) ) ) 
(set f c ( / (* c (- η i ) ) (+ i 1 ) ) ) ) ) 

(normalize-poly r esu l t ) ) ) ) ) 

(defun p-add-into! ( resu l t c p) 
"Destruct ively add c*p into resu l t . " 
( i f (or (numberp p) 

(not (var= (main-var p) (main-var r esu l t ) ) ) ) 
(set f (coef resul t 0) 

(poly+poly (coef resul t 0) (poly*poly c p) ) ) 
(loop for i from 0 to (degree p) do 

(set f (coef resul t i ) 
(poly+poly (coef resul t i ) (poly*poly c (coef ρ i ) ) ) ) ) ) 

resu l t ) 

Using this version of pol y "n, r l 5 - t e s t takes only .23 seconds, four times faster than 
the previous version. The following table compares the times for r l 5 - t e s t with 
the three versions of p o l y ' n , along with the times for applying s imp ly to the r l 5 
polynomial, for various versions of s i mpl i f y: 
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program sees speed-up 
rule-based versions 

1 original 27.8 -
2 memoization 7.7 4 
3 memo+index 4.0 7 
4 compilation only 2.5 11 
5 memo+compilation 1.9 15 

canonical versions 
6 squaring pol y 'n 1.6 17 
7 iterative p o l y ' n .98 28 
8 binomial p o l y ' n .23 120 

As we remarked earlier, the general techniques of memoization, indexing, and 
compilation provide for dramatic speed-ups. However, in the end, they do not lead 
to the fastest program. Instead, the fastest version was achieved by throwing out the 
original rule-based program, replacing it with a canonical-form-based program, and 
fine-tuning the algorithms within that program, using mathematical analysis. 

Now that we have achieved a sufficiently fast system, the next two sections 
concentrate on making it more powerful. 

15.5 A Canonical Form for Rational Expressions 

A rational number is defined as a fraction: the quotient of two integers. A rational 
expression is hereby defined as the quotient of two polynomials. This section presents 
a canonical form for rational expressions. 

First, a number or polynomial will continue to be represented as before. The 
quotient of two polynomials will be represented as a cons cells of numerator and 
denominator pairs. However, just as Lisp automatically reduces rational numbers 
to simplest form (6/8 is represented as 3/4), we must reduce rational expressions. 
So, for example, {x^ -l)/{x -1) must be reduced to χ + 1, not left as a quotient of 
two polynomials. 

The following functions build and access rational expressions but do not reduce 
to simplest form, except in the case where the denominator is a number. Building up 
the rest of the functionality for full rational expressions is left to a series of exercises: 

(defun make-rat (numerator denominator) 
"Bui ld a ra t iona l : a quotient of two polynomials." 
( i f (numberp denominator) 

(k*poly ( / 1 denominator) numerator) 
(cons numerator denominator))) 
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(defun rat-numerator ( rat) 
"The numerator of a rational express ion . " 
(typecase rat 

(cons (car ra t ) ) 
(number (numerator ra t ) ) 
(t ra t ) ) ) 

(defun rat-denominator ( rat) 
"The denominator of a rational express ion . ' 
(typecase rat 

(cons (cdr rat ) ) 
(number (denominator ra t ) ) 
(t 1) ) ) 

^ Exercise 15.3 [s] Modify p re f i x ->canon to accept input of the form χ / y and to 
return rational expressions instead of polynomials. Also allow for input of the form 
χ " - n. 

@ Exercise 15.4 [m] Add arithmetic routines for multiplication, addition, and divi
sion of rational expressions. Call them r a t * ra t , ra t+ra t , and r a t / r a t respectively. 
They will call upon p o l y * p o l y . p o l y + p o l y and a new function, pol y / p o l y , which is 
defined in the next exercise. 

@ Exercise 15.5 [h] Define p o l y - g c d , which computes the greatest common divisor 
of two polynomials. 

@ Exercise 15.6 [h] Using p o l y - g c d , define the function pol y / p o l y , which will im
plement division for polynomials. Polynomials are closed under addition and multi
plication, so p o l y + p o l y and p o l y * p o l y both returned polynomials. Polynomials are 
not closed under division, so pol y /po l y will return a rational expression. 

15.6 Extending Rational Expressions 

Now that we can divide polynomials, the final step is to reinstate the logarithmic, 
exponential, and trigonometric functions. The problem is that if we allow all these 
functions, we get into problems with canonical form again. For example, the follow
ing three expressions are all equivalent: 
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sin(x) 

c o s ( x - ^ ) 

2i 

If we are interested in assuring we have a canonical form, the safest thing is to 
allow only and log(x). All the other functions can be defined in terms of these two. 
With this extension, the set of expressions we can form is closed under differentiation, 
and it is possible to canonicalize expressions. The result is a mathematically sound 
construction known as a differentiable field. This is precisely the construct that is 
assumed by the Risch integration algorithm (Risch 1969,1979). 

The disadvantage of this minimal extension is that answers may be expressed in 
unfamiliar terms. The user asks for d s in (x^)/dx, expecting a simple answer in terms 
of cos, and is surprised to see a complex answer involving e*^. Because of this prob
lem, most computer algebra systems have made more radical extensions, allowing 
sin, cos, and other functions. These systems are treading on thin mathematical ice. 
Algorithms that would be guaranteed to work over a simple differentiable field may 
fail when the domain is extended this way. In general, the result will not be a wrong 
answer but rather the failure to find an answer at all. 

15.7 History and References 

A brief history of symbolic algebra systems is given in chapter 8. Fateman (1979), 
Martin and Fateman (1971), and Davenport et al. (1988) give more details on the MAC
SYMA system, on which this chapter is loosely based. Fateman (1991) discusses the 
f rpo l y benchmark and introduces the vector implementation used in this chapter. 

15.8 Exercises 

t¿ l Exercise 15.7 [h] Implement an extension of the rationals to include logarithmic, 
exponential, and trigonometric functions. 

t¿] Exercise 15.8 [m] Modify deri ν to handle the extended rational expressions. 

[¿3 Exercise 15.9 [d] Adapt the integration routine from section 8.6 (page 252) to the 
rational expression representation. Davenport et al. 1988 may be useful. 
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S Exercise 15.10 [s] Give several reasons why constant polynomials, like 3, are rep
resented as integers rather than as vectors. 

15.9 Answers 

Answer 15.4 

(defun rat*rat (x y) 
"Mult ip ly ra t i ona ls : a/b * c /d = a*c /b*d" 
(poly/poly (poly*poly (rat-numerator x) 

(rat-numerator y ) ) 
(poly*poly (rat-denominator x) 

(rat-denominator y ) ) ) ) 

(defun rat+rat (x y) 
"Add ra t i ona ls : a/b + c /d = (a*d + c*b) /b*d" 
( let ((a (rat-numerator x ) ) 

(b (rat-denominator x ) ) 
(c (rat-numerator y ) ) 
(d (rat-denominator y ) ) ) 

(poly/poly (poly+poly (poly*poly a d) (poly*poly c b)) 
(poly*poly b d ) ) ) ) 

(defun ra t / ra t (x y) 
"Divide ra t i ona ls : a/b / c /d = a*d/b*c" 
( rat*rat χ (make-rat (rat-denominator y ) (rat-numerator y ) ) ) ) 

Answer 15.6 

(defun poly/poly (p q) 
"Divide ρ by q: i f d i s the greatest common d i v i so r of ρ and q 
then p/q = (p/d) / ( q /d ) . Note i f q = l . then p/q = p." 
( i f (eql q 1) 

Ρ 
( le t ((d (poly-gcd ρ q ) ) ) 

(make-rat (poly/poly ρ d) 
(poly/poly q d ) ) ) ) ) 

Answer 15.10 (1) An integer takes less time and space to process. (2) Representing 
numbers as a polynomial would cause an infinite regress, because the coefficients 
would be numbers. (3) Unless a policy was decided upon, the representation would 
not be canonical, since #(χ 3) and #(y 3) both represent 3. 



CHAPTER 16 
Expert Systems 

An expert is one who knows more and more 
about less and less. 

-Nicholas Murray Butler (1862-1947) 

In the 1970s there was terrific interest in the area of knowledge-based expert systems. An expert 
system or knowledge-based system is one that solves problems by applying knowledge 
that has been garnered from one or more experts in a field. Since these experts will not in 

general be programmers, they will very probably express their expertise in terms that cannot 
immediately be translated into a program. It is the goal of expert-system research to come up 
with a representation that is flexible enough to handle expert knowledge, but still capable of 
being manipulated by a computer program to come up with solutions. 
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A plausible candidate for this representation is as logical facts and rules, as in 
Prolog. However, there are three areas where Prolog provides poor support for a 
general knowledge-based system: 

• Reasoning with uncertainty. Prolog only deals with the black-and-white world 
of facts that are clearly true or false (and it doesn't even handle false very well). 
Often experts will express rules of thumb that are "likely" or "90% certain." 

• Explanation. Prolog gives solutions to queries but no indication of how those 
solutions were derived. A system that can explain its solutions to the user in 
understandable terms will be trusted more. 

• Flexible flow of control. Prolog works by backward-chaining from the goal. In 
some cases, we may need more varied control strategy. For example, in medical 
diagnosis, there is a prescribed order for acquiring certain information about 
the patient. A medical system must follow this order, even if it doesn't fit in 
with the backward-chaining strategy. 

The early expert systems used a wide variety of techniques to attack these prob
lems. Eventually, it became clear that certain techniques were being used frequently, 
and they were captured in expert-system shells: specialized programming environ
ments that helped acquire knowledge from the expert and use it to solve problems 
and provide explanations. The idea was that these shells would provide a higher 
level of abstraction than just Lisp or Prolog and would make it easy to write new 
expert systems. 

The MYCIN expert system was one of the earliest and remains one of the best 
known. It was written by Dr. Edward Shortliffe in 1974 as an experiment in medical 
diagnosis. MYCIN was designed to prescribe antibiotic therapy for bacterial blood 
infections, and when completed it was judged to perform this task as well as experts 
in the field. Its name comes from the common suffix in drugs it prescribes: ery
thromycin, clindamycin, and so on. The following is a slightly modified version of 
one of MYCIN'S rules, along with an English paraphrase generated by the system: 

(defrule 52 
i f ( s i te culture i s blood) 

(gram organism i s neg) 
(morphology organism i s rod) 
(burn patient i s ser ious) 

then .4 
( ident i ty organism i s Pseudomonas)) 
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Rule 52: 
I f 

1) THE SITE OF THE CULTURE I S BLOOD 
2) THE GRAM OF THE ORGANISM IS NEG 
3) THE MORPHOLOGY OF THE ORGANISM I S ROD 
4) THE BURN OF THE PATIENT I S SERIOUS 

Then there i s weakly suggest ive evidence (0 .4) that 
1) THE IDENTITY OF THE ORGANISM I S PSEUDOMONAS 

MYCIN lead to the development of the EMYCIN expert-system shell. EMYCIN stands 
for "essential MYCIN," although it is often mispresented as "empty MYCIN." Either 
way, the name refers to the shell for acquiring knowledge, reasoning with it, and 
explaining the results, without the specific medical knowledge. 

EMYCIN is a backward-chaining rule interpreter that has much in common with 
Prolog. However, there are four important differences. First, and most importantly, 
EMYCIN deals with uncertainty. Instead of insisting that all predications be true or 
false, EMYCIN associates a certainty factor with each predication. Second, EMYCIN 
caches the results of its computations so that they need not be duplicated. Third, 
EMYCIN provides an easy way for the system to ask the user for information. Fourth, 
it provides explanations of its behavior. This can be summed up in the equation: 

EMYCIN = Prolog -h uncertainty + caching + questions -h explanations 

We will first cover the ways EMYCIN is different from Prolog. After that we will 
return to the main core of EMYCIN, the backward-chaining rule interpreter. Finally, 
we will show how to add some medical knowledge to EMYCIN to reconstruct MYCIN. 
A glossary of the program is in figure 16.1. 

16.1 Dealing with Uncertainty 

EMYCIN deals with uncertainty by replacing the two boolean values, true and false, 
with a range of values called certainty factors. These are numbers from - 1 (false) to 
+ 1 (true), with 0 representing a complete unknown. In Lisp: 

(defconstant true +1.0) 
(defconstant fa lse -1 .0 ) 
(defconstant unknown 0.0) 

To define the logic of certainty factors, we need to define the logical operations, 
such as and, or, and not. The first operation to consider is the combination of two 
distinct pieces of evidence expressed as certainty factors. Suppose we are trying to 
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Top-Level Functions for the Client 
emycin Run the shell on a list of contexts representing a problem. 
mycin Run the shell on the microbial infection domain. 

Top-Level Fimctions for the Expert 
d e f c o n t e x t Define a context. 
defparm Define a parameter. 
d e f r u l e Define a rule. 

Constants 
t r u e A certainty factor of +1. 
f a l s e A certainty factor of -1. 
unknown A certainty factor of 0. 
c f - c u t - o f f Below this certainty we cut off search. 

Data Types 
c o n t e x t A subdomain concerning a particular problem. 
parm A parameter. 
r u l e A backward-chaining rule with certainty factors. 
y e s / n o The type with members yes and no. 

Major Functions within Emycin 
g e t - c o n t e x t - d a t a Collect data and draw conclusions. 
f i n d - o u t Determine values by knowing, asking, or using rules. 
g e t - d b Retrieve a fact from the data base. 
u s e - r u l e s Apply all rules relevent to a parameter. 
u s e - r u l e Apply one rule. 
n e w - i n s t a n c e Create a new instance of a context. 
r e p o r t - f i n d i n g s Print the results. 

Auxiliary Functions 
c f - o r Combine certainty factors (CPs) with OR. 
c f - a n d Combine certainty factors (CPs) with AND. 
t r u e - p Is this CP true for purposes of search? 
f a l s e - p Is this CP false for purposes of search? 
c f - p Is this a certainty factor? 
p u t - d b Place a fact in the data base. 
c l e a r - d b Clear all facts from the data base. 
g e t - v a l s Get value and CP for a parameter/instance. 
g e t - c f Get CP for a parameter/instance/value triplet. 
u p d a t e - c f Change CP for a parameter/instance/value triplet. 
a s k - v a l s Ask the user for value/CP for a parameter/instance. 
p r o m p t - a n d - r e a d - v a l s Print a prompt and read a reply. 
i n s t - n a m e The name of an instance. 
c h e c k - r e p l y See if reply is valid list of CP/values. 
p a r s e - r e p l y Convert reply into list of CP/values. 
p a r m - t y p e Values of this parameter must be of this type. 
g e t - p a r m Find or make a parameter structure for this name. 
p u t - r u l e Add a new rule, indexed under each conclusion. 
g e t - r u l e s Retrieve rules that help determine a parameter. 
c l e a r - r u l e s Remove all rules. 
s a t i s f y - p r e m i s e s Calculate the combined CP for the premises. 
e v a l - c o n d i t i o n Determine the CP for a condition. 
r e j e c t - p r e m i s e Rule out a premise if it is clearly false. 
c o n c l u d e Add a parameter/instance/value/CP to the data base. 
i s An alias for e q u a l . 
c h e c k - c o n d i t i o n s Make sure a rule is valid. 
p r i n t - r u l e Print a rule. 
p r i n t - c o n d i t i o n s Print a list of conditions. 
p r i n t - c o n d i t i o n Print a single condition. 
c f - > e n g l i s h Convert .7 to "suggestive evidence," etc. 
p r i n t - w h y Say why a rule is being used. 

Figure 1 6 . 1 : Glossary for the EMYCIN Program 
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determine the chances of a patient having disease X. Assume we have a population 
of prior patients that have been given two lab tests. One test says that 60% of the 
patients have the disease and the other says that 40% have it. How should we 
combine these two pieces of evidence into one? Unfortunately, there is no way to 
answer that question correctly without knowing more about the dependence of the two 
sources on each other. Suppose the first test says that 60% of the patients (who all 
happen to be male) have the disease, and the second says that 40% (who all happen 
to be female) have it. Then we should conclude that 100% have it, because the two 
tests cover the entire population. On the other hand, if the first test is positive only 
for patients that are 70 years old or older, and the second is positive only for patients 
that are 80 or older, then the second is just a subset of the first. This adds no new 
information, so the correct answer is 60% in this case. 

In section 16.9 we will consider ways to take this kind of reasoning into account. 
For now, we will present the combination method actually used in EMYCIN. It is 
defined by the formula: 

combine (A, B) = 

A + B-AB; A,B>0 

A-^B-\-AB; A,B <0 

A-\-B 
l-min{\Al\B\) ; otherwise 

According to this formula, combine(.60,.40) = .76, which is a compromise between 
the extremes of .60 and 1.00. It is the same as the probability p(A or B), assuming that 
A and Β are independent. 

However, it should be clear that certainty factors are not the same thing as 
probabilities. Certainty factors attempt to deal with disbelief as well as belief, but 
they do not deal with dependence and independence. The EMYCIN combination 
function has a number of desirable properties: 

• It always computes a number between —1 and + 1 . 

• Combining unknown (zero) with anything leaves it unchanged. 

• Combining true with anything (except false) gives true. 

• Combining true and false is an error, 

• Combining two opposites gives unknown. 

• Combining two positives (except true) gives a larger positive. 

• Combining a positive and a negative gives something in between. 
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So far we have seen how to combine two separate pieces of evidence for the same 
hypothesis. In other words, if we have the two rules: 

and we know A with certainty factor (cf) .6 and Β with cf .4, then we can conclude C 
with cf .76. But consider a rule with a conjunction in the premise: 

AandB=>C 

Combining A and Β in this case is quite different from combining them when they are 
in separate rules. EMYCIN chooses to combine conjunctions by taking the minimum of 
each conjunct's certainty factor. If certainty factors were probabilities, this would be 
equivalent to assumming dependence between conjuncts in a rule. (If the conjuncts 
were independent, then the product of the probabilities would be the correct answer.) 
So EMYCIN is making the quite reasonable (but sometimes incorrect) assumption that 
conditions that are tied together in a single rule will be dependent on one another, 
while conditions in separate rules are independent. 

The final complication is that rules themselves may be uncertain. That is, MYCIN 
accommodates rules that look like: 

AandB=^.9C 

to say that A and Β imply C with .9 certainty. EMYCIN simply multiplies the rule's cf 
by the combined cf of the premise. So if A has cf .6 and Β has cf .4, then the premise 
as a whole has cf .4 (the minimum of A and B), which is multiplied by .9 to get .36. 
The .36 is then combined with any exisiting cf for C. If C is previously unknown, then 
combining .36 with 0 will give .36. If C had a prior cf of .76, then the new cf would be 
.36 -h .76 - (.36 X .76) = .8464. 

Here are the EMYCIN certainty factor combination functions in Lisp: 

(defun c f -or (a b) 
"Combine the certainty factors for the formula (A or B ) . 
This i s used when two rules support the same conc lus ion . " 
(cond ((and (> a 0) (> b 0)) 

(+ a b (* -1 a b) ) ) 
((and « a 0) « b 0)) 

(+ a b (* a b) ) ) 
(t ( / (+ a b) 

(- 1 (min (abs a) (abs b ) ) ) ) ) ) ) 

(defun cf-and (a b) 
"Combine the certainty factors for the formula (A and B ) . " 
(min a b)) 

Certainty factors can be seen as a generalization of truth values. EMYCIN is a 
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backward-chaining rule system that combines certainty factors according to the 
functions laid out above. But if we only used the certainty factors true and f al se, 
then EMYCIN would behave exactly like Prolog, returning only answers that are defi
nitely true. It is only when we provide fractional certainty factors that the additional 
EMYCIN mechanism makes a difference. 

Truth values actually serve two purposes in Prolog. They determine the final 
answer, yes, but they also determine when to cut off search: if any one of the 
premises of a rule is false, then there is no sense looking at the other premises. If 
in EMYCIN we only cut off the search when one of the premises was absolutely false, 
then we might have to search through a lot of rules, only to yield answers with very 
low certainty factors. Instead, EMYCIN arbitrarily cuts off the search and considers a 
premise false when it has a certainty factor below .2. The following functions support 
this arbitrary cutoff point: 

(defconstant c f -cut -o f f 0.2 
"Below th i s certainty we cut off search . " ) 

(defun true-p (cf) 
" I s th is certainty factor considered t rue?" 
(and (cf-p cf) (> cf c f -cu t -o f f ) ) ) 

(defun fa lse-p (cf) 
" I s th i s certainty factor considered f a l s e ? " 
(and (cf -p cf) (< cf (- c f -cut -o f f 1 .0 ) ) ) ) 

(defun cf-p (x) 
" I s X a va l id numeric certainty fac to r?" 
(and (numberp x) (<= fa lse χ t rue) ) ) 

@ Exercise 16.1 [m] Suppose you read the headline "Elvis Alive in Kalamazoo" in a 
tabloid newspaper to which you attribute a certainty factor of .01. If you combine cer
tainties using EMYCIN'S combination rule, how many more copies of the newspaper 
would you need to see before you were .95 certain Elvis is alive? 

16.2 Caching Derived Facts 

The second thing that makes EMYCIN different from Prolog is that EMYCIN caches all 
the facts it derives in a data base. When Prolog is asked to prove the same goal twice, 
it performs the same computation twice, no matter how laborious. EMYCIN performs 
the computation the first time and just fetches it the second time. 
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We can implement a simple data base by providing three functions: put - db to add 
an association between a key and a value, ge t -db to retrieve a value, and cl ear-db 
to empty the data base and start over: 

( let ((db (make-hash-table : test # 'equa l ) ) ) 
(defun get-db (key) (gethash key db)) 
(defun put-db (key val ) (set f (gethash key db) va l ) ) 
(defun clear-db () (c l rhash db))) 

This data base is general enough to hold any association between key and value. 
However, most of the information we will want to store is more specific. E M Y C I N 
is designed to deal with objects (or instances) and attributes (or parameters) of those 
objects. For example, each patient has a name parameter. Presumably, the value of 
this parameter will be known exactly. On the other hand, each microscopic organism 
has an i denti ty parameter that is normally not known at the start of the consulta
tion. Applying the rules will lead to several possible values for this parameter, each 
with its own certainty factor. In general, then, the data base will have keys of the 
form (parameter instance) with values of the form ( ( v a h cf\) (vah c / 2 ) . . . ) . In the 
following code, get - va 1 s returns the Ust of value/cf pairs for a given parameter and 
instance, g e t - c f returns the certainty factor for a parameter/instance/value triplet, 
and upda t e - c f changes the certainty factor by combining the old one with a new one. 
Note that the first time update-cf is called on a given parameter/instance/value 
triplet, g e t - c f will return un known (zero). Combining that with the given c f yields c f 
itself. Also note that the data base has to be an equal hash table, because the keys 
may include freshly consed lists. 

(defun get -va ls (parm ins t ) 
"Return a l i s t of (val cf ) pa i rs for th i s (parm i n s t ) . " 
(get-db ( l i s t parm i n s t ) ) ) 

(defun get-cf (parm ins t va l ) 
"Look up the certainty factor or return unknown." 
(or (second (assoc val (get -va ls parm i n s t ) ) ) 

unknown)) 

(defun update-cf (parm ins t val c f ) 
"Change the certainty factor for (parm ins t i s v a l ) , 
by combining the given cf with the o l d . " 
( let ((new-cf (c f -or cf (get-cf parm ins t v a l ) ) ) ) 

(put-db ( l i s t parm ins t ) 
(cons ( l i s t val new-cf) 

(remove val (get-db ( l i s t parm i ns t ) ) 
:key # * f i r s t ) ) ) ) ) 

The data base holds all information related to an instance of a problem. For example. 
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in the medical domain, the data base would hold all information about the current 
patient. When we want to consider a new patient, the data base is cleared. 

There are three other sources of information that cannot be stored in this data 
base, because they have to be maintained from one problem to the next. First, the 
rule base holds all the rules defined by the expert. Second, there is a structure to 
define each parameter; these are indexed under the name of each parameter. Third, 
we shall see that the flow of control is managed in part by a list of contexts to consider. 
These are structures that will be passed to the myci η function. 

16.3 Asking Questions 

The third way that EMYCIN differs from Prolog is in providing an automatic means of 
asking the user questions when answers cannot be derived from the rules. This is not 
a fundamental difference; after all, it is not too hard to write Prolog rules that print 
a query and read a reply. EMYCIN lets the knowledge-base designer write a simple 
declaration instead of a rule, and will even assume a default declaration if none is 
provided. The system also makes sure that the same question is never asked twice. 

The following function ask-val s prints a query that asks for the parameter of an 
instance, and reads from the user the value or a list of values with associated certainty 
factors. The function first looks at the data base to make sure the question has not 
been asked before. It then checks each value and certainty factor to see if each is of 
the correct type, and it also allows the user to ask certain questions. A ? reply will 
show what type answer is expected. Rul e will show the current rule that the system 
is working on. Why also shows the current rule, but it explains in more detail what the 
system knows and is trying to find out. Finally, hel ρ prints the following summary: 

(defconstant help-string 
"~&Type one of the following: 

? - to see possible answers for this parameter 
rule - to show the current rule 
why - to see why this question is asked 
help - to see this l i s t 
xxx - (for some specific xxx) i f there is a definite answer 
( X X X .5 yyy .4) - I f there are several answers with 

different certainty factors.") 

Here is a s k - va 1 s. Note that the why and rule options assume that the current rule has 
been stored in the data base. The functions pri nt-why, parm-type, and check- repl y 
will be defined shortly. 
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(defun ask-va ls (parm ins t ) 
"Ask the user for the value(s) of i n s t ' s parm parameter, 
unless th is has already been asked. Keep asking unti l the 
user types UNKNOWN (return n i l ) or a va l id reply (return t ) . " 
(unless (get-db ' (asked ,parm . i n s t ) ) 

(put-db ' (asked .parm . i ns t ) t ) 
(loop 

( le t ((ans (prompt-and-read-vals parm i n s t ) ) ) 
(case ans 

(help (format t he lp -s t r ing ) ) 
(why (print-why (get-db 'current - ru le) parm)) 
(rule (pr inc (get-db ' cur ren t - ru le ) ) ) 
((unk unknown) (RETURN n i l ) ) 
(? (format t "~&A ~a must be of type ~a" 

parm (parm-type parm)) n i l ) 
(t ( i f (check-reply ans parm ins t ) 

(RETURN t ) 
(format t "~&I1 legal reply. ~ 

Type ? to see legal o n e s . " ) ) ) ) ) ) ) ) 

The following is prompt - and - read - va 1 s , the function that actually asks the query and 
reads the reply. It basically calls format to print a prompt and read to get the reply, but 
there are a few subtleties. First, it calls f i n i s h - output. Some Lisp implementations 
buffer output on a line-by-line basis. Since the prompt may not end in a newline, 
f i ni sh - output makes sure the output is printed before the reply is read. 

So far, all the code that refers to a parm is really referring to the name of a 
parameter—a symbol. The actual parameters themselves will be implemented as 
structures. We use get-parm to look up the structure associated with a symbol, and 
the selector functions parm-prompt to pick out the prompt for each parameter and 
pa rm- reader to pick out the reader function. Normally this will be the function read, 
but read -1 i ne is appropriate for reading string-valued parameters. 

The macro def parm (shown here) provides a way to define prompts and readers 
for parameters. 

(defun prompt-and-read-vals (parm ins t ) 
"Pr int the prompt for th i s parameter (or make one up) and 
read the reply . " 
( f resh- l ine ) 
(format t (parm-prompt (get-parm parm)) (inst-name ins t ) parm) 
(princ " ") 
( f in ish-output ) 
(funcall (parm-reader (get-parm parm)))) 
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(defun inst-name ( i ns t ) 
"The name of th i s ins tance." 

The stored name i s either l i ke (("Jan Doe" 1.0)) or n i l 
(or ( f i r s t ( f i r s t (get -va ls 'name i n s t ) ) ) 

i ns t ) ) 

The function check- repl y uses parse - repl y to convert the user's reply into a canon
ical form, and then checks that each value is of the right type, and that each certainty 
factor is valid. If so, the data base is updated to reflect the new certainty factors. 

(defun check-reply (reply parm ins t ) 
" I f reply i s va l id for th i s parm, update the DB. 
Reply should be a val or ( va i l c f l val2 cf2 . . . ) . 
Each val must be of the r ight type for th i s parm." 
( let ((answers (parse-reply rep ly ) ) ) 

(when (every #'(lambda (pa i r ) 
(and (typep ( f i r s t pa i r ) (parm-type parm)) 

(cf-p (second pa i r ) ) ) ) 
answers) 

Add repl ies to the data base 
(do l i s t (pair answers) 

(update-cf parm ins t ( f i r s t pa i r ) (second pa i r ) ) ) 
answers))) 

(defun parse-reply ( reply) 
"Convert the reply into a l i s t of (value cf) p a i r s . " 
(cond ((nul l reply) n i l ) 

((atom reply) * ( ( , rep ly . t rue) ) ) 
(t (cons ( l i s t ( f i r s t reply) (second reply)) 

(parse-reply ( rest2 rep l y ) ) ) ) ) ) 

Parameters are implemented as structures with six slots: the name (a symbol), the 
context the parameter is for, the prompt used to ask for the parameter's value, 
a Boolean that tells if we should ask the user before or after using rules, a type 
restriction describing the legal values, and finally, the function used to read the 
value of the parameter. 

Parameters are stored on the property list of their names under the pa rm property, 
so getting the pa rm - type of a name requires first getting the parm structure, and then 
selecting the type restriction field. By default, a parameter is given type t , meaning 
that any value is valid for that type. We also define the type yes/no, which comes in 
handy for Boolean parameters. 

We want the default prompt to be "What is the PARM of the INST?" But most 
user-defined prompts will want to print the inst, and not the parm. To make it easy 
to write user-defined prompts, prompt-and-read-vals makes the instance be the 
first argument to the format string, with the parm second. Therefore, in the default 
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prompt we need to use the format directive " ~*" to skip the instance argument, and 
"'^2:*" to back up two arguments to get back to the instance. (These directives are 
common in cerror calls, where one list of arguments is passed to two format strings.) 

defparm is a macro that calls new-parm, the constructor function defined in the 
parm structure, and stores the resulting structure under the parm property of the 
parameter's name. 

(defstruct (parm (.-constructor 
new-parm (name Äoptional context type- res t r ic t !on 

prompt a s k - f i r s t reader))) 
name (context n i l ) (prompt "~&What i s the ~*~a of ~ 2 : * ~ a ? " ) 
( a s k - f i r s t n i l ) ( type- res t r ic t ion t ) (reader ' read)) 

(defmacro defparm (parm &rest args) 
"Define a parameter." 
' ( se t f (get *,parm *parm) (apply #*new-parm *,parm * . a r g s ) ) ) 

(defun parm-type (parm-name) 
"What type i s expected for a value of th is parameter?" 
(parm-type-restr ict ion (get-parm parm-name))) 

(defun get-parm (parm-name) 
"Look up the parameter structure with th i s name." 

I f there i s none, make one 
(or (get parm-name 'parm) 

(set f (get parm-name 'parm) (new-parm parm-name)))) 

(deftype yes/no () '(member yes no)) 

16.4 Contexts Instead of Variables 
Earlier we gave an equation relating EMYCIN to Prolog. That equation was not quite 
correct, because EMYCIN lacks one of Prolog's most important features: the logic 
variable. Instead, EMYCIN uses contexts. So the complete equation is: 

EMYCIN = Prolog + uncertainty -f caching -f questions + explanations 
-f contexts - variables 

A context is defined by the designers of MYCIN as a situation within which the 
program reasons. But it makes more sense to think of a context simply as a data 
type. So the list of contexts supplied to the program will determine what types of 
objects can be reasoned about. The program keeps track of the most recent instance 
of each type, and the rules can refer to those instances only, using the name of the 
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type. In our version of MYCIN, there are three types or contexts: patients, cultures, 
and organisms. Here is an example of a rule that references all three contexts: 

(defrule 52 
i f ( s i te culture i s blood) 

(gram organism i s neg) 
(morphology organism i s rod) 
(burn patient i s ser ious) 

then .4 
( ident i ty organism i s Pseudomonas)) 

Ignoring certainty factors for the moment, this MYCIN rule is equivalent to a Prolog 
rule of the form: 

(< - ( ident i ty ?o ?pseudomonas) 
(and (culture ?c) ( s i t e ?c blood) 

(organism ?o) (gram ?o neg) (morphology ?o rod) 
(patient ?p) (burn ?p se r i ous ) ) ) 

The context mechanism provides sufficient flexibility to handle many of the cases 
that would otherwise be handled by variables. One important thing that cannot 
be done is to refer to more than one instance of the same context. Only the most 
recent instance can be referred to. Contexts are implemented as structures with the 
following definition: 

(defstruct context 
"A context i s a sub-domain, a type." 
name (number 0) i n i t i a l -da ta goals) 

(defmacro defcontext (name &optional i n i t i a l -da ta goals) 
"Define a context." 
•(make-context :name '.name : i n i t i a l -da ta * . i n i t i a l -da ta 

igoals ' . g o a l s ) ) 

The name field is something like pa t ien t or organism. Instances of contexts are 
numbered; the number field holds the number of the most recent instance. Each 
context also has two lists of parameters. The i ni t i al -data parameters are asked for 
when each instance is created. Initial data parameters are normally known by the 
user. For example, a doctor will normally know the patient's name, age, and sex, and 
as a matter of training expects to be asked these questions first, even if they don't 
factor into every case. The goal parameters, on the other hand, are usually unknown 
to the user. They are determined through the backward-chaining process. 

The following function creates a new instance of a context, writes a message, and 
stores the instance in two places in the data base: under the key current - i nstance. 
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and also under the name of the context. The contexts form a tree. In our example, 
the pa t i ent context is the root of the tree, and the current patient is stored in the data 
base under the key pa t i ent. The next level of the tree is for cultures taken from the 
patient; the current culture is stored under the cul ture key. Finally, there is a level 
for organisms found in each culture. The current organism is stored under both the 
organi sm and current - i nstance keys. The context tree is shown in figure 16.2. 

(defun new-instance (context) 
"Create a new instance of th i s context." 
( let ( ( instance (format ni l "~a-~d" 

(context-name context) 
( incf (context-number context ) ) ) ) ) 

(format t "~& ~a ~&" instance) 
(put-db (context-name context) instance) 
(put-db 'current- instance instance)) ) 

Patient: Sylvia Fischer 

CULTURE-1 CULTURE-2 

ORGANISM-1 ORGANISM-2 

Figure 16.2: A Context Tree 

16.5 Backward-Chaining Revisited 
Now that we have seen how EMYCIN is different from Prolog, we are ready to tackle 
the way in which it is the same: the backward-chaining rule interpreter. Like Prolog, 
EMYCIN is given a goal and applies rules that are appropriate to the goal. Applying a 
rule means treating each premise of the rule as a goal and recursively applying rules 
that are appropriate to each premise. 



544 EXPERT SYSTEMS 

There are still some remaining differences. In Prolog, a goal can be any expression, 
and appropriate rules are those whose heads unify with the goal. If any appropriate 
rule succeeds, then the goal is known to be true. In EMYCIN, a rule might give a goal 
a certainty of .99, but we still have to consider all the other rules that are appropriate 
to the goal, because they might bring the certainty down below the cutoff threshold. 
Thus, EMYCIN always gathers all evidence relating to a parameter/instance pair first, 
and only evaluates the goal after all the evidence is in. For example, if the goal was 
(temp pa t i ent > 9 8 . 6 ) , EMYCIN would first evaluate all rules with conclusions about 
the current patient's temperature, and only then compare the temperature to 98.6. 

Another way of looking at it is that Prolog has the luxury of searching depth-first, 
because the semantics of Prolog rules is such that if any rule says a goal is true, then it 
is true. EMYCIN must search breadth-first, because a goal with certainty of .99 might 
turn out to be false when more evidence is considered. 

We are now ready to sketch out the design of the EMYCIN rule interpreter: To 
f i nd-out a parameter of an instance: If the value is already stored in the data base, 
use the known value. Otherwise, the two choices are using the rules or asking the 
user. Do these in the order specified for this parameter, and if the first one succeeds, 
don't bother with the second. Note that ask-val s (defined above) will not ask the 
same question twice. 

To use - rul es, find all the rules that concern the given parameter and evaluate 
them with use - rul e. After each rule has been tried, if any of them evaluate to true, 
then succeed. 

To use - rul e a rule, first check if any of the premises can be rejected outright. If 
we did not have this check, then the system could start asking the user questions that 
were obviously irrelevant. So we waste some of the program's time (checking each 
premise twice) to save the more valuable user time. (The function eval -condi t i on 
takes an optional argument specifying if we should recursively ask questions in trying 
to accept or reject a condition.) 

If no premise can be rejected, then evaluate each premise in turn with 
eval uate- condi t i on, keeping track of the accumulated certainty factor with c f - and 
(which is currently just mi n), and cutting off evaluation when the certainty factor 
drops below threshold. If the premises evaluate true, then add the conclusions to 
the data base. The calling sequence looks like this. Note that the recursive call to 
f i nd - out is what enables chaining to occur: 

f i nd - out ; To find out a parameter for an instance: 
get - db ; See if it is cached in the data base 
a s k - V a 1 s ; See if the user knows the answer 
use - rul es ; See if there is a rule for it: 

reject-premise ; See if the rule is outright false 
satisfy-premises ; Or see if each condition is true: 

eval-condition ; Evaluate each condition 
f i nd - out ; By finding the parameter's values 
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Before showing the interpreter, here is the structure definition for rules, along with 
the functions to maintain a data base of rules: 

(defstruct (rule ( :pr in t - funct ion p r in t - ru le ) ) 

number premises conclusions cf) 

( let ( ( ru les (make-hash-table))) 

(defun put-rule ( ru le) 
"Put the rule in a tab le, indexed under each 
parm in the conc lus ion . " 
(do l i s t (concl ( ru le-conclus ions ru le) ) 

(push rule (gethash ( f i r s t concl) ru les ) ) ) 
rule) 

(defun get - ru les (parm) 
"A l i s t of rules that help determine th is parameter." 
(gethash parm ru les) ) 

(defun c lear - ru les () (c l rhash ru les ) ) ) 

Here, then, is the interpreter, f i nd-ou t . It can find out the value(s) of a parameter 
three ways. First, it looks to see if the value is already stored in the data base. Next, 
it tries asking the user or using the rules. The order in which these two options are 
tried depends on the p a r m - a s k - f i r s t property of the parameter. Either way, if an 
answer is determined, it is stored in the data base. 

(defun f ind-out (parm &optional ( i ns t (get-db 'cur rent - ins tance) ) ) 
"Find the value(s) of th i s parameter for t h i s instance, 
unless the values are already known. 
Some parameters we ask f i r s t ; others we use rules f i r s t . " 
(or (get-db '(known .parm . i ns t ) ) 

(put-db '(known .parm . i ns t ) 
( i f (parm-ask- f i rs t (get-parm parm)) 

(or (ask -va ls parm ins t ) (use-ru les parm)) 
(or (use-ru les parm) (ask-va ls parm i n s t ) ) ) ) ) ) 

(defun use-ru les (parm) 
"Try every rule associated with th i s parameter. 
Return true i f one of the rules returns t rue. " 
(some # ' t rue-p (mapcar # 'use- ru le (get - ru les parm)))) 
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(defun use-ru le ( ru le) 
"Apply a rule to the current s i t ua t i on . " 
; ; Keep track of the rule for the explanation system: 
(put-db 'current - ru le rule) 
; ; I f any premise i s known f a l s e , give up. 
; ; I f every premise can be proved t rue, then 

draw conclusions (weighted with the certainty fac to r ) , 
(unless (some #'reject-premise (rule-premises ru le) ) 

( let ( (c f (sat is fy-premises (rule-premises rule) t rue) ) ) 
(when (true-p c f ) 

(do l i s t (conclusion ( ru le-conc lus ions ru le) ) 
(conclude conclusion (* cf ( ru le-c f ru le ) ) ) ) 

c f ) ) ) ) 

(defun sat is fy-premises (premises c f - so - f a r ) 
"A l i s t of premises i s sa t i s f i ed i f they are al l t rue. 
A combined cf i s returned." 
; ; c f - so - fa r i s an accumulator of certainty factors 
(cond ((nul l premises) c f - so - f a r ) 

((not (true-p c f - s o - f a r ) ) fa l se ) 
(t (sat is fy-premises 

( rest premises) 
(cf-and c f - so - fa r 

(eval-condi t ion ( f i r s t p remises) ) ) ) ) ) ) 

The function eval - cond i t ion evaluates a single condition, returning its certainty 
factor. If f i nd - out - ρ is true, it first calls f i nd - out, which may either query the user 
or apply appropriate rules. If f i nd -out -p is false, it evaluates the condition using 
the current state of the data base. It does this by looking at each stored value for 
the parameter/instance pair and evaluating the operator on it. For example, if the 
condition is (temp pat ient > 98 .6 ) and the values for temp for the current patient 
a r e ( (98 .3 ) (99 .6 ) (100 . 1 ) ) , then e v a l - c o n d i t i o n will test each of the values 
98,99, and 100 against 98.6 using the > operator. This test will succeed twice, so the 
resulting certainty factor is .6 -h .1 = .7. 

The function re jec t -premi se is designed as a quick test to eliminate a rule. As 
such, it calls eva 1 - condi 11 on with f 1 nd - out - ρ nil, so it will reject a premise only if it 
is clearly false without seeking additional information. 

If a rule's premises are true, then the conclusions are added to the data base by 
concl ude. Note that i s is the only operator allowed in conclusions, i s is just an alias 
for equal. 

(defun eval-condi t ion (condit ion Äoptional ( f ind-out-p t ) ) 
"See i f th i s condit ion i s t rue, opt ional ly using FIND-OUT 
to determine unknown parameters." 
(mult iple-value-bind (parm ins t op va l ) 

(parse-condit ion condit ion) 
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(when f ind-out-p 
( f ind-out parm i ns t ) ) 
Add up al l the (val cf ) pa i rs that sa t i s f y the test 

(loop for pair in (get -va ls parm ins t ) 
when (funcal l op ( f i r s t pa i r ) va l ) 
sum (second pa i r ) ) ) ) 

(defun reject-premise (premise) 
"A premise i s rejected i f i t i s known f a l s e , without 
needing to cal l f ind-out recurs ive ly . " 
( fa lse-p (eval-condi t ion premise n i l ) ) ) 

(defun conclude (conclusion cf) 
"Add a conclusion (with speci f ied certainty factor) to DB . " 
(mult iple-value-bind (parm ins t op va l ) 

(parse-condit ion conclusion) 
(update-cf parm ins t val c f ) ) ) 

(defun i s (a b) (equal a b)) 

All conditions are of the form: (parameter instance operator value). For example: 
(morphology organism i s rod) . Thefunctionparse-conditionturnsalistofthis 
form into four values. The trick is that it uses the data base to return the current 
instance of the context, rather than the context name itself: 

(defun parse-condit ion (condit ion) 
"A condit ion i s of the form (parm ins t op v a l ) . 
So for (age patient i s 21 ) , we would return 4 va lues: 
(age pat ient-1 i s 21 ) , where pat ient-1 i s the current pat ient . " 
(values ( f i r s t condit ion) 

(get-db (second condi t ion)) 
( th i rd condit ion) 
(fourth condi t ion)) ) 

At this point a call like ( f i n d - o u t ' i d e n t i t y O r g a n i s m - 1 ) would do the right 
thing only if we had somehow entered the proper information on the current patient, 
culture, and organism. The function get - context - da ta makes sure that each context 
is treated in order. First an instance is created, then f i nd-out is used to determine 
both the initial data parameters and the goals. The findings for each goal are printed, 
and the program asks if there is another instance of this context. Finally, we also 
need a top-level function, emycin, which just clears the data base before calling 
get-context -da ta . 
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(defun emycin (contexts) 
"An Expert-System S h e l l . Accumulate data for instances of each 
context, and solve for goa l s . Then report the f i n d i n g s . " 
(clear-db) 
(get-context-data contexts)) 

(defun get-context-data (contexts) 
"For each context, create an instance and try to f ind out 
required data. Then go on to other contexts, depth f i r s t , 
and f i na l l y ask i f there are other instances of th i s context." 
(unless (null contexts) 

( le t * ((context ( f i r s t contexts)) 
( i ns t (new-instance context))) 

(put-db 'current- ru le ' i n i t i a l ) 
(mapc # ' f ind-out (context - in i t ia l -data context)) 
(put-db 'current - ru le 'goa l ) 
(mapc # ' f ind-out (context-goals context)) 
( repor t - f ind ings context i ns t ) 
(get-context-data ( rest contexts)) 
(when (y-or -n-p " I s there another ~ a ? " 

(context-name context)) 
(get-context-data contex ts ) ) ) ) ) 

16.6 Interacting with the Expert 

At this point all the serious computational work is done: we have defined a backward-
chaining rule mechanism that deals with uncertainty, caching, questions, and con
texts. But there is still quite a bit of work to do in terms of input/output interaction. A 
programming language needs only to interface with programmers, so it is acceptable 
to make the programmer do all the work. But an expert-system shell is supposed to 
alleviate (if not abolish) the need for programmers. Expert-system shells really have 
two classes of users: the experts use the shell when they are developing the system, 
and the end users or clients use the resulting expert system when it is completed. 
Sometimes the expert can enter knowledge directly into the shell, but more often 
it is assumed the expert will have the help of a knowledge engineer—someone who is 
trained in the use of the shell and in eliciting knowledge, but who need not be either 
an expert in the domain or an expert programmer. 

In our version of EMYCIN, we provide only the simplest tools for making the 
expert's job easier. The macros defcontext and defparm, defined above, are a little 
easier than calling ma ke - context and ma ke - pa rm explicitly, but not much. The macro 
def rul e defines a rule and checks for some obvious errors: 
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(defmacro defrule (number &body body) 
"Define a rule with condi t ions, a certainty factor , and 
conclus ions. Example: (defrule ROOl i f . . . then .9 . . . ) " 
(asser t (eq ( f i r s t body) ' i f ) ) 
( le t * ((then-part (member 'then body)) 

(premises ( I d i f f ( rest body) then-part)) 
(conclusions (rest2 then-part)) 
(cf (second then-part ) ) ) 

Do some error checking: 
(check-condit ions number premises 'premise) 
(check-condit ions number conclusions 'conclus ion) 
(when (not (cf-p c f ) ) 

(warn "Rule " a : I l l ega l certainty factor : " a " number c f ) ) 
Now bui ld the ru le : 

*(put-rule 
(make-rule :number ',number :cf ,c f :p remises ' ,premises 

:conclusions ' , conc l us i ons ) ) ) ) 

The function check-condi t i ons makes sure that each rule has at least one premise 
and conclusion, that each condition is of the right form, and that the value of the 
condition is of the right type for the parameter. It also checks that conclusions use 
only the operator i s: 

(defun check-condit ions (rule-num condit ions kind) 
"Warn i f any condit ions are i n v a l i d . " 
(when (null condi t ions) 

(warn "Rule " a : Miss ing " a " rule-num kind)) 
(do l i s t (condit ion condi t ions) 

(when (not (consp condi t ion)) 
(warn "Rule ~a: I l l ega l ' "a: ' ' a " rule-num kind condi t ion)) 

(mult ip le-value-bind (parm ins t op va l ) 
(parse-condit ion condit ion) 

(declare ( ignore i ns t ) ) 
(when (and (eq kind 'conclus ion) (not (eq op ' i s ) ) ) 

(warn "Rule ~a: I l l ega l operator (~a) in conc lus ion: " a " 
rule-num op condi t ion)) 

(when (not (typep val (parm-type parm))) 
(warn "Rule ~a: I l l ega l value (~a) in ~a: ~a" 

rule-num val kind cond i t ion) ) ) ) ) 

The real EMYCIN had an interactive environment that prompted the expert for each 
context, parameter, and rule. Randall Davis (1977, 1979, Davis and Lenat 1982) 
describes the TEIRESIAS program, which helped experts enter and debug rules. 
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16.7 Interacting with the Client 

Once the knowledge is in, we need some way to get it out. The client wants to run 
the system on his or her own problem and see two things: a solution to the problem, 
and an explanation of why the solution is reasonable. EMYCIN provides primitive 
facilities for both of these. The function report- f i ndi ngs prints information on all 
the goal parameters for a given instance: 

(defun repor t - f ind ings (context i ns t ) 
"Pr int f ind ings on each goal for th i s ins tance." 
(when (context-goals context) 

(format t "~&Findings for ~ a ; " (inst-name i ns t ) ) 
(do l i s t (goal (context-goals context)) 

( le t ( (values (get -va ls goal i n s t ) ) ) 
; ; I f there are any values for th i s goa l , 
; ; pr int them sorted by certainty factor , 
( i f values 

(format t "~& ~a:~{~{ ~a (~,3f) " } " } " goal 
(sor t ( copy - l i s t values) # ' > :key # 'second)) 

(format t "~& ~a: unknown" g o a l ) ) ) ) ) ) 

The only explanation facility our version of EMYCIN offers is a way to see the current 
rule. If the user types rul e in response to a query, a pseudo-EngUsh translation of 
the current rule is printed. Here is a sample rule and its translation: 

(defrule 52 
i f ( s i t e culture i s blood) 

(gram organism i s neg) 
(morphology organism i s rod) 
(burn patient i s ser ious) 

then .4 
( ident i ty organism i s Pseudomonas)) 

Rule 52: 
I f 

1) THE SITE OF THE CULTURE I S BLOOD 
2) THE GRAM OF THE ORGANISM I S NEG 
3) THE MORPHOLOGY OF THE ORGANISM I S ROD 
4) THE BURN OF THE PATIENT I S SERIOUS 

Then there i s weakly suggest ive evidence (0 .4) that 
1) THE IDENTITY OF THE ORGANISM I S PSEUDOMONAS 

The function p r i nt - ru l e generates this translation: 
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(defun pr in t - ru le (rule &optional (stream t) depth) 
(declare ( ignore depth)) 
(format stream "~&Rule ~a:~& I f " (rule-number ru le) ) 
(pr in t -condi t ions (rule-premises rule) stream) 
(format stream "~& Then "a (~a) that" 

(c f ->eng l ish ( ru le-c f ru le) ) ( ru le-c f ru le) ) 
(pr in t -condi t ions ( ru le-conclus ions rule) stream)) 

(defun pr in t -condi t ions (condit ions Äoptional 
(stream t ) (num 1)) 

"Pr int a l i s t of numbered cond i t ions . " 
(do l i s t (condit ion condi t ions) 

(pr int -condi t ion condit ion stream num))) 

(defun pr int -condi t ion (condit ion stream number) 
"Pr int a s ing le condit ion in pseudo-Eng l ish . " 
(format stream "~& ~d)~{ ~a~}" number 

( le t ((parm ( f i r s t condi t ion)) 
( ins t (second condi t ion)) 
(op ( th i rd condi t ion)) 
(val (fourth condi t ion)) ) 

(case val 
(YES ' ( the , i ns t ,op .parm)) 
(NO ' ( the . i ns t .op not .parm)) 
(T ' ( the .parm of the . i ns t .op . v a l ) ) ) ) ) ) 

(defun c f ->eng l ish (cf ) 
"Convert a certainy factor to an Engl ish phrase." 
(cond ( (= cf 1.0) "there i s certa in evidence") 

( (> cf .8) "there i s st rongly suggest ive evidence") 
( (> cf .5) "there i s suggest ive evidence") 
( (> cf 0.0) "there i s weakly suggest ive evidence") 
( (= cf 0.0) "there i s NO evidence either way") 
( (< cf 0.0) (concatenate ' s t r i n g (c f ->eng l ish (- c f ) ) 

" AGAINST the conc lus ion" ) ) ) ) 

If the user types why in response to a query, a more detailed account of the same 
rule is printed. First, the premises that are already known are displayed, followed 
by the remainder of the rule. The parameter being asked for will always be the first 
prennse in the remainder of the rule. The current - ru l e is stored in the data base by 
u s e - r u l e whenever a rule is applied, but it is also set by ge t - con tex t -da ta to the 
atom i ni t i al or goal when the system is prompting for parameters, p r i nt -why 
checks for this case as well. Note the use of the pa r t i t i on - i f function from page 256. 
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(defun print-why (rule parm) 
"Tell why th i s rule i s being used. Pr int what i s known, 
what we are t ry ing to f ind out, and what we can conclude." 
(format t "~&CWhy i s the value of '"a being asked f o r ? ] " parm) 
( i f (member rule ' ( i n i t i a l goal ) ) 

(format t "~&~a i s one of the ~a parameters." 
parm rule) 

(mult iple-value-bind (knowns unknowns) 
(pa r t i t i on - i f #'(lambda (premise) 

(true-p (eval-condi t ion premise n i l ) ) ) 
(rule-premises ru le) ) 

(when knowns 
(format t """Alt i s known that : " ) 
(pr in t -condi t ions knowns) 
(format t "~&Therefore,")) 

( let ((new-rule (copy-rule ru le ) ) ) 
(set f (rule-premises new-rule) unknowns) 
(pr int new-rule)) ) ) ) 

That completes the definition of emyci n. We are now ready to apply the shell to a 
specific domain, yielding the beginnings of an expert system. 

16.8 MYCIN, A Medical Expert System 

This section applies emycin to MYCIN'S original domain: infectious blood disease. 
In our version of MYCIN, there are three contexts: first we consider a patient, then 
any cultures that have been grown from samples taken from the patient, and finally 
any infectious organisms in the cultures. The goal is to determine the identity of 
each organism. The real MYCIN was more complex, taking into account any drugs 
or operations the patient may previously have had. It also went on to decide the 
real question: what therapy to prescribe. However, much of this was done by 
special-purpose procedures to compute optimal dosages and the like, so it is not 
included here. The original MYCIN also made a distinction between current versus 
prior cultures, organisms, and drugs. All together, it had ten contexts to consider, 
while our version only has three: 

(defun mycin () 
"Determine what organism i s infect ing a pat ient . " 
(emycin 

( l i s t (defcontext patient (name sex age) ( ) ) 
(defcontext culture (s i te days-old) ( ) ) 
(defcontext organism () ( i den t i t y ) ) ) ) ) 
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These contexts declare that we will first ask each patient's name, sex, and age, and 
each culture's site and the number of days ago it was isolated. Organisms have no 
initial questions, but they do have a goal: to determine the identity of the organism. 

The next step is to declare parameters for the contexts. Each parameter is given 
a type, and most are given prompts to improve the naturalness of the dialogue: 

Parameters for pat ient: 
(defparm name patient t "Pa t ien t ' s name: " t read- l ine) 
(defparm sex patient (member male female) " S e x : " t ) 
(defparm age patient number "Age: " t ) 
(defparm burn patient (member no mild ser ious) 

" I s ~a a burn pat ient? I f s o , mild or s e r i o u s ? " t ) 
(defparm compromised-host patient yes/no 

" I s ~a a compromised hos t? " ) 

; ; ; Parameters for cu l ture: 
(defparm s i te culture (member blood) 

"From what s i t e was the specimen for ~a taken?" t ) 
(defparm days-old culture number 

"How many days ago was th i s culture (~a) obtained?" t ) 

; ; ; Parameters for organism: 
(defparm ident i ty organism 

(member Pseudomonas klebsiel la enterobacteriaceae 
staphylococcus bacteroides streptococcus) 

"Enter the ident i ty (genus) of ~ a : " t ) 
(defparm gram organism (member ac id - fas t pos neg) 

"The gram s ta in of ~ a : " t ) 
(defparm morphology organism (member rod coccus) 

" I s ~a a rod or coccus ( e t c . ) : " ) 
(defparm aerobic i ty organism (member aerobic anaerobic)) 
(defparm growth-conformation organism 

(member chains pa i rs clumps)) 

Now we need some rules to help determine the identity of the organisms. The 
following rules are taken from Shortliffe 1976. The rule numbers refer to the pages 
on which they are listed. The real MYCIN had about 400 rules, dealing with a much 
wider variety of premises and conclusions. 

(c lear - ru les) 

(defrule 52 
i f ( s i te culture i s blood) 

(gram organism i s neg) 
(morphology organism i s rod) 
(burn patient i s ser ious) 

then .4 
( ident i ty organism i s Pseudomonas)) 
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(defrule 71 
i f (gram organism i s pos) 

(morphology organism i s coccus) 
(growth-conformation organism i s clumps) 

then .7 
( ident i ty organism i s staphylococcus)) 

(defrule 73 
i f ( s i te culture i s blood) 

(gram organism i s neg) 
(morphology organism i s rod) 
(aerobic i ty organism i s anaerobic) 

then .9 
( ident i ty organism i s bacteroides)) 

(defrule 75 
i f (gram organism i s neg) 

(morphology organism i s rod) 
(compromised-host patient i s yes) 

then .6 
( ident i ty organism i s Pseudomonas)) 

(defrule 107 
i f (gram organism i s neg) 

(morphology organism i s rod) 
(aerobic i ty organism i s aerobic) 

then .8 
( ident i ty organism i s enterobacteriaceae)) 

(defrule 165 
i f (gram organism i s pos) 

(morphology organism i s coccus) 
(growth-conformation organism i s chains) 

then .7 

( ident i ty organism i s streptococcus)) 

He re is a n example of the p r o g r a m i n use : 

> (mycin) 

PATIENT-1 
Pat ien t 's name: Sy lv ia Fischer 
Sex: female 
Age: 27 

CULTURE-1 
From what s i t e was the specimen for CULTURE-1 taken? blood 
How many days ago was th i s culture (CULTURE-1) obtained? 3 
- ORGANISM-1 
Enter the ident i ty (genus) of ORGANISM-1: unknown 
The gram s ta in of ORGANISM-1: ? 
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A GRAM must be of type (MEMBER ACID-FAST POS NEG) 
The gram s ta in of ORGANISM-1: neg 

The user typed ? to see the list of valid responses. The dialog continues: 

I s ORGANISM-1 a rod or coccus ( e t c . ) : rod 
What i s the AEROBICITY of ORGANISM-1? why 
[Why i s the value of AEROBICITY being asked f o r ? ] 
I t i s known that : 

1) THE GRAM OF THE ORGANISM I S NEG 
2) THE MORPHOLOGY OF THE ORGANISM I S ROD 

Therefore, 
Rule 107: 

I f 
1) THE AEROBICITY OF THE ORGANISM I S AEROBIC 

Then there i s suggest ive evidence (0 .8) that 
1) THE IDENTITY OF THE ORGANISM I S ENTEROBACTERIACEAE 

The user wants to know why the system is asking about the organism's aerobicity. 
The reply shows the current rule, what is already known about the rule, and the fact 
that if the organism is aerobic, then we can conclude something about its identity. In 
this hypothetical case, the organism is in fact aerobic: 

What i s the AEROBICITY of ORGANISM-1? aerobic 
I s Sy lv ia Fischer a compromised host? yes 
I s Sy lv ia Fischer a burn pat ient? I f s o . mild or se r ious? why 
[Why i s the value of BURN being asked f o r ? ] 
I t i s known that: 

1) THE SITE OF THE CULTURE I S BLOOD 
2) THE GRAM OF THE ORGANISM I S NEG 
3) THE MORPHOLOGY OF THE ORGANISM I S ROD 

Therefore, 
Rule 52: 

I f 
1) THE BURN OF THE PATIENT I S SERIOUS 

Then there i s weakly suggest ive evidence (0 .4) that 
1) THE IDENTITY OF THE ORGANISM I S PSEUDOMONAS 

I s Sy lv ia Fischer a burn pat ient? I f s o , mild or se r ious? ser ious 
Findings for ORGANISM-1: 

IDENTITY: ENTEROBACTERIACEAE (0.800) PSEUDOMONAS (0.760) 

The system used rule 107 to conclude the identity might be enterobacteriaceae. 
The certainty is .8, the certainty for the rule itself, because all the conditions were 
known to be true with certainty. Rules 52 and 75 both support the hypothesis of 
Pseudomonas. The certainty factors of the two rules, .6 and .4, are combined by the 
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formula .6 + .4 - (.6 χ .4) = .76. After printing the findings for the first organism, 
the system asks if another organism was obtained from this culture: 

I s there another ORGANISM? (Y or N) Y 
ORGANISM-2 

Enter the ident i ty (genus) of ORGANISM-2: unknown 
The gram sta in of ORGANISM-2: (neg .8 pos .2) 
I s ORGANISM-2 a rod or coccus ( e t c . ) : rod 
What i s the AEROBICITY of ORGANISM-2? anaerobic 

For the second organism, the lab test was inconclusive, so the user entered a qualified 
answer indicating that it is probably gram-negative, but perhaps gram-positive. This 
organism was also a rod but was anaerobic. Note that the system does not repeat 
questions that it already knows the answers to. In considering rules 75 and 52 
it already knows that the culture came from the blood, and that the patient is a 
compromised host and a serious burn patient. In the end, rule 73 contributes to the 
bacteroides conclusion, and rules 75 and 52 again combine to suggest Pseudomonas, 
although with a lower certainty factor, because the neg finding had a lower certainty 
factor: 

Findings for ORGANISM-2: 
IDENTITY: BACTEROIDES (0.720) PSEUDOMONAS (0.646) 

Finally, the program gives the user the opportunity to extend the context tree with 
new organisms, cultures, or patients: 

I s there another ORGANISM? (Y or N) Ν 
I s there another CULTURE? (Y or N) Ν 
I s there another PATIENT? (Y or N) Ν 

The set of rules listed above do not demonstrate two important features of the 
system: the ability to backward-chain, and the ability to use operators other than i s 
in premises. 

If we add the following three rules and repeat the case shown above, then eval
uating rule 75 will back-chain to rule 1, 2, and finally 3 trying to determine if the 
patient is a compromised host. Note that the question asked will be "What is Sylvia 
Fischer's white blood cell count?" and not "Is the white blood cell count of Sylvia 
Fischer < 2.5?" The latter question would suffice for the premise at hand, but it 
would not be as useful for other rules that might refer to the WBC. 

(defparm wbc patient number 
"What i s ~ a ' s white blood cel l count?") 
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(defrule 1 
i f (immunosuppressed patient i s yes) 
then 1.0 (compromised-host patient i s yes ) ) 

(defrule 2 
i f (leukopenia patient i s yes) 
then 1.0 (immunosuppressed patient i s yes) ) 

(defrule 3 
i f (wbc patient < 2.5) 
then .9 (leukopenia patient i s yes) ) 

16.9 Alternatives to Certainty Factors 
Certainty factors are a compromise. The good news is that a system based on rules 
with certainty factors requires the expert to come up with only a small set of numbers 
(one for each rule) and will allow fast computation of answers. The bad news is that 
the answer computed may lead to irrational decisions. 

Certainty factors have been justified by their performance (MYCIN performed as 
well or better than expert doctors) and by intuitive appeal (they satisfy the criteria 
listed on page 534). However, they are subject to paradoxes where they compute 
bizarre results (as in Exercise 16.1, page 536). If the rules that make up the knowledge 
base are designed in a modular fashion, then problems usually do not arise, but it is 
certainly worrisome that the answers may be untrustworthy. 

Before MYCIN, most reasoning with uncertainty was done using probability the
ory. The laws of probability—in particular, Bayes's law—provide a well-founded 
mathematical formalism that is not subject to the inconsistencies of certainty fac
tors. Indeed, probability theory can be shown to be the only formalism that leads 
to rational behavior, in the sense that if you have to make a series of bets on some 
uncertain events, combining information with probability theory will give you the 
highest expected value for your bets. Despite this, probability theory was largely set 
aside in the mid-1970s. The argument made by Shortliffe and Buchanan (1975) was 
that probability theory required too many conditional probabilities, and that people 
were not good at estimating these. They argued that certainty factors were intuitively 
easier to deal with. Other researchers of the time shared this view. Shaf er, with later 
refinements by Dempster, created a theory of belief functions that, like certainty 
factors, represented a combination of the belief for and against an event. Instead of 
representing an event by a single probability or certainty, Dempster-Shafer theory 
maintains two numbers, which are analagous to the lower and upper bound on the 
probability. Instead of a single number like .5, Dempster-Shafer theory would have 
an interval like [.4,.6] to represent a range of probabilities, A complete lack of knowl
edge would be represented by the range [0,1]. A great deal of effort in the late 1970s 
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and early 1980s was invested in these and other nonprobabilistic theories. Another 
example is Zadeh's fuzzy set theory, which is also based on intervals. 

There is ample evidence that people have difficulty with problems involving 
probability. In a very entertaining and thought-provoking series of articles, Tversky 
and Kahneman (1974, 1983, 1986) show how people make irrational choices when 
faced with problems that are quite simple from a mathematical viewpoint. They 
liken these errors in choice to errors in visual perception caused by optical illusions. 
Even trained doctors and statisticians are subject to these errors. 

As an example, consider the following scenario. Adrian and Dominique are to be 
married. Adrian goes for a routine blood test and is told that the results are positive 
for a rare genetic disorder, one that strikes only 1 in 10,000 people. The doctor 
says that the test is 99% accurate—it gives a false positive reading in only 1 in 100 
cases. Adrian is despondent, being convinced that the probability of actually having 
the disease is 99%. Fortunately, Dominique happens to be a Bayesian, and quickly 
reassures Adrian that the chance is more like 1 %. The reasoning is as follows: Take 
10,001 people at random. Of these, only 1 is expected to have the disease. That 
person could certainly expect to test positive for the disease. But if the other 10,000 
people all took the blood test, then 1 % of them, or 100 people would also test positive. 
Thus, the chance of actually having the disease given that one tests positive is 1/101. 
Doctors are trained in this kind of analysis, but unfortunately many of them continue 
to reason more like Adrian than Dominique. 

In the late 1980s, the tide started to turn back to subjective Bayesian probability 
theory. Cheeseman (1985) showed that, while Dempster-Shafer theory looks like 
it can, in fact it cannot help you make better decisions than probability theory. 
Heckerman (1986) re-examined MYCIN'S certainty factors, showing how they could 
be interpreted as probabilities. Judea Pearl's 1988 book is an eloquent defense of 
probability theory. He shows that there are efficient algorithms for combining and 
propagating probabilities, as long as the network of interdependencies does not 
contain loops. It seems likely that uncertain reasoning in the 1990s will be based 
increasingly on Bayesian probability theory. 

16.10 History and References 

The MYCIN project is well documented in Buchanan and Shortliffe 1984. An earlier 
book, Shortliffe 1976, is interesting mainly for historical purposes. Good introduc
tions to expert systems in general include Weiss and Kulikowski 1984, Waterman 
1986, Luger and Shibblefield 1989, and Jackson 1990. 

Dempster-Shafer evidence theory is presented enthusiastically in Gordon and 
Shortliffe 1984 and in a critical light in Pearl 1989/1978. Fuzzy set theory is presented 
in Zadeh 1979 and Dubois and Prade 1988. 
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Pearl (1988) captures most of the important points that lead to the renaissance 
of probability theory. Shafer and Pearl 1990 is a balanced collection of papers on all 
kinds of uncertain reasoning. 

16.11 Exercises 

@ Exercise 16.2 [s] Suppose the rule writer wanted to be able to use symbolic certainty 
factors instead of numbers. What would you need to change to support rules like 
this: 

(defrule 100 i f . . . then true . . . ) 
(defrule 101 i f . . . then probably . . . ) 

@ Exercise 16.3 [m] Change p rompt -and- read-va l s so that it gives a better prompt 
for parameters of type y e s / n o . 

[¿] Exercise 16.4 [m] Currently, the rule writer can introduce a new parameter without 
defining it first. That is handy for rapid testing, but it means that the user of the system 
won't be able to see a nice English prompt, nor ask for the type of the parameter. In 
addition, if the rule writer simply misspells a parameter, it will be treated as a new 
one. Make a simple change to fix these problems. 

@ Exercise 16.5 [d] Write rules in a domain you are an expert in, or find and interview 
an expert in some domain, and write down rules coaxed from the expert. Evaluate 
your resulting system. Was it easier to develop your system with E M Y C I N than it 
would have been without it? 

@ Exercise 16.6 [s] It is said that an early version of M Y C I N asked if the patient was 
pregnant, even though the patient was male. Write a rule that would fix this problem. 

E¿] Exercise 16.7 [m] To a yes/no question, what is the difference between yes and (no 
-1) ? What does this suggest? 

@ Exercise 16.8 [m] What happens if the user types why to the prompt about the 
patient's name? What happens if the expert wants to have more than one context 
with a name parameter? If there is a problem, fix it. 
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The remaining exercises discuss extensions that were in the original EMYCIN, but 
were not implemented in our version. Implementing all the extensions will result in a 
system that is very close to the full power of EMYCIN. These extensions are discussed 
in chapter 3 of Buchanan and Shortliffe 1984. 

Ξ Exercise 16.9[h] Add a spelling corrector to ask-vals. If the user enters an invalid 
reply, and the parameter type is a member expression, check if the reply is "close" in 
spelling to one of the valid values, and if so, use that value. That way, the user can type 
just entero instead of enterobacter i aceae. You may experiment with the definition 
of "close," but you should certainly allow for prefixes and at least one instance of a 
changed, missing, inserted, or transposed letter. 

t¿J Exercise 16.10 [m] Indent the output for each new branch in the context tree. In 
other words, have the prompts and findings printed like this: 

RATIENT-1 
Pat ien t 's name: Sy lv ia Fischer 
Sex: female 
Age: 27 

CULTURE-1 
From what s i t e was the specimen for CULTURE-1 taken? blood 
How many days ago was th i s culture (CULTURE-1) obtained? 3 

ORGANISM-1 
Enter the ident i ty (genus) of ORGANISM-1: unknown 
The gram s ta in of ORGANISM-1: neg 

Findings for ORGANISM-1: 
IDENTITY: ENTEROBACTERIACEAE (0.800) PSEUDOMONAS (0.760) 

I s there another ORGANISM? (Y or N) Ν 
I s there another CULTURE? (Y or N) Ν 

I s there another PATIENT? (Y or N) Ν 

@ Exercise 16.11 [h] We said that our emycin looks at all possible rules for each 
parameter, because there is no telling how a later rule may affect the certainty factor. 
Actually, that is not quite true. If there is a rule that leads to a conclusion with 
certainty 1, then no other rules need be considered. This was called a unity path. 
Modify the program to look for unity paths first. 

@ Exercise 16.12 [m] Depending on whether a parameter is in i ni t i al -data or not, 
all the relevant rules are run either before or after asking the user for the value 
of the parameter. But there are some cases when not all initial data parameters 
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should be asked for. As an example, suppose that identity and gram were initial 
data parameters of organi sm. If the user gave a positive answer for i denti ty, then it 
would be wasteful to ask for the gram parameter, since it could be determined directly 
from rules. After receiving complaints about this problem, a system of antecedent 
rules was developed. These rules were always run first, before asking questions. 
Implement antecedent rules. 

GJ Exercise 16.13 [h] It is useful to be able to write default rules that fill in a value after 
all other rules have failed to determine one. A default rule looks like this: 

(defrule η i f (parm ins t unknown) then (parm ins t i s defaul t ) ) 

It may also have other conjuncts in the premise. Beside details like writing the 
unknown operator, the difficult part is in making sure that these rules get run at the 
right time (after other rules have had a chance to fill in the parameter), and that 
infinite loops are avoided. 

@ Exercise 16.14 [h] The context tree proved to be a limitation. Eventually, the need 
arose for a rule that said, 'Tf any of the organisms in a culture has property X, then the 
culture has property Y." Implement a means of checking for some or every instance 
of a context. 

@ Exercise 16.15 [m] As the rule base grew, it became increasingly hard to remember 
the justification for previous rules. Implement a mechanism that keeps track of the 
author and date of creation of each rule, and allows the author to add documentation 
explaining the rationale for the rule. 

@ Exercise 16.16 [m] It is difficult to come up with the perfect prompt for each pa
rameter. One solution is not to insist that one prompt fits all users, but rather to allow 
the expert to supply three different prompts: a normal prompt, a verbose prompt (or 
reprompt) for when the user replies with a ?, and a terse prompt for the experienced 
user. Modify defparm to accommodate this concept, add a command for the user to 
ask for the terse prompts, and change ask-val s to use the proper prompt. 

The remaining exercises cover three additional replies the user can make: how, 
stop, and change. 

@ Exercise 16.17 [d] In addition to why replies, E M Y C I N also allowed for how questions. 
The user can ask how the value of a particular parameter/instance pair was deter
mined, and the system will reply with a list of rules and the evidence they supplied for 
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or against each value. Implement this mechanism. It will require storing additional 
information in the data base. 

@ Exercise 16.18 [m] There was also a stop command that immediately halted the 
session. Implement it. 

@ Exercise 16.19 [d] The original E M Y C I N also had a change command to allow the 
user to change the answer to certain questions without starting all over. Each question 
was assigned a number, which was printed before the prompt. The command change, 
followed by a list of numbers, causes the system to look up the questions associated 
with each number and delete the answer to these questions. The system also throws 
away the entire context tree and all derived parameter values. At that point the 
entire consultation is restarted, using only the data obtained from the unchanged 
questions. Although it may seem wasteful to start over from the beginning, it will 
not be wasteful of the user's time, since correct answers will not be asked again. 

Identify what needs to be altered to implement change and make the alterations. 

I¿3 Exercise 16.20 [h] Change the definition of c f - a nd and c f - o r to use fuzzy set theory 
instead of certainty factors. Do the same for Dempster-Shafer theory. 

16.12 Answers 

Answer 16.1 Because E M Y C I N assumes independence, each reading of the same 
headline would increase the certainty factor. The following computation shows 
that 298 more copies would be needed to reach .95 certainty. A more sophisticated 
reasoner would realize that multiple copies of a newspaper are completely dependent 
on one another, and would not change the certainty with each new copy. 

> (loop for cf = .01 then (c f -or .01 cf) 
unt i l (> cf .95) 
count t ) 

298 

Answer 16.2 Thedef rule expands to (make-rule rnumber Ί 0 1 : c f true . . . ) ; 
that is, the certainty factor is unquoted, so it is already legal to use true as a certainty 
factor! To support probabl y and other hedges, just define new constants. 
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Answer 16.4 Just make the defauh parameter type be ni 1 (by changing t to ni 1 
in parm-type). Then any rule that uses an undefined parameter will automatically 
generate a warning. 

Answer 16.6 

(defrule 4 
i f (sex patient is male) 
then - 1 (pregnant patient is yes)) 

Answer 16.7 Logically, there should be no difference, but to E M Y C I N there is a big 
difference. E M Y C I N wouldnotcomplainif you answered (yes 1 no 1) . This suggests 
that the system should have some way of dealing with mutually exclusive answers. 
One way would be to accept only yes responses for Boolean parameters, but have the 
input routine translate no to (yes -1) and (no cf) to (yes 1 -cf). Another possibility 
would be to have u pd a t e - c f check to see if any certainty factor on a mutually exclusive 
value is 1, and if so, change the other values to -1. 

Answer 16.18 Add the clause (stop (throw 'stop n i l ) ) to the case statement 
in ask-vals and wrap a (catch 'stop . . . ) around the code in emycin. 



CHAPTER 17 
Line-Diagram 
Labeling by Constraint 
Satisfaction 

It is wrong to think of Waltz's work only as a 
statement of the epistemology of line drawings of 

polyhedra. Instead I think it is an elegant case study 
of a paradigm we can expect to see again and again. 

—Patrick Winston 
The Psychology of Computer Vision (1975) 

I I 1 his book touches only the areas of AI that deal with abstract reasoning. There is another 
I side of AI, the field of robotics, that deals with interfacing abstract reasoning with the real 

JL world through sensors and motors. A robot receives input from cameras, microphones, 
sonar, and touch-sensitive devices, and produces "ouput" by moving its appendages or generat
ing sounds. The real world is a messier place than the abstract worlds we have been covering. 
A robot must deal with noisy data, faulty components, and other agents and events in the world 
that can affect changes in the environment. 
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Computer vision is the subfield of robotics that deals with interpreting visual 
information. Low-level vision takes its input directly from a camera and detects 
lines, regions and textures. We will not be concerned with this. High-level vision 
uses the findings of the low-level component to build a three-dimensional model of 
the objects depicted in the scene. This chapter covers one small aspect of high-level 
vision. 

17.1 The Line-Labeling Problem 
In this chapter we look at the line-diagram labeling problem: Given a list of lines and 
the Vertexes at which they intersect, how can we determine what the lines represent? 
For example, given the nine lines in figure 17.1, how can we interpret the diagram as 
a cube? 

Figure 17.1: A Cube 

Before we can arrive at an interpretation, we have to agree on what the candidates 
are. After all, figure 17.1 could be just a hexagon with three lines in the middle. For 
the purposes of this chapter, we will consider only diagrams that depict one or more 
po/y/zedra—three-dimensional solid figures whose surfaces are flat faces bounded by 
straight lines. In addition, we will only allow trihedral V E R T E X E S . That is, each vertex 
must be formed by the intersection of three faces, as in the corner of a cube, where 
the top, front, and side of the cube come together. A third restriction on diagrams is 
that no so-called accidental Vertexes are allowed. For example, figure 17.1 might be 
a picture of three different cubes hanging in space, which just happen to line up so 
that the edge of one is aligned with the edge of another from our viewpoint. We will 
assume that this is not the case. 
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Given a diagram that fits these three restrictions, our goal is to identify each line, 
placing it in one of three classes: 

1. A convex line separates two visible faces of a polyhedron such that a line from 
one face to the other would lie inside the polyhedron. It will be marked with a 
plus sign: -h. 

2. A concave line separates two faces of two polyhedra such that a line between 
the two spaces would pass through empty space. It will be marked with a 
minus sign: - . 

3. A boundary line denotes the same physical situation as a convex line, but the 
diagram is oriented in such a way that only one of the two faces of the poly
hedron is visible. Thus, the line marks the boundary between the polyhedron 
and the background. It will be marked with an arrow: —Traveling along the 
line from the tail to the point of the arrow, the polyhedron is on the right, and 
the background is on the left. 

Figure 17.2 shows a labeling of the cube using these conventions. Vertex A is 
the near corner of the cube, and the three lines coming out of it are all convex lines. 
Lines GD and DF are concave lines, indicating the junction between the cube and 
the surface on which it is resting. The remaining lines are boundary lines, indicating 
that there is no physical connection between the cube and the background there, but 
that there are other sides of the cube that cannot be seen. 

Figure 17.2: A Line-labeled Cube 

The line-labeling technique developed in this chapter is based on a simple idea. 
First we enumerate all the possible Vertexes, and all the possible labelings for each 
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vertex. It turns out there are only four different vertex types in the trihedral polygon 
world. We call them L, Y, W, and Τ Vertexes, because of their shape. The Y and W 
Vertexes are also known as forks and arrows, respectively. The V e r t e x e s are listed in 
figure 17.3. Each vertex imposes some constraints on the lines that compose it. For 
example, in a W vertex, the middle line can be labeled with a + or —, but not with 
an arrow. 

NX χ / \ y 

1 \ 1 Ν 2 
3 

V 2 

3 3 \ V 

(V L 1 2) (V Y 1 2 3) (V Τ 1 2 3) ( V W L 2 3 ) 

Figure 17.3: The Possible Vertexes and Labels 

Each line connects two Vertexes, so it must satisfy both constraints. This suggests 
a simple algorithm for labeling a diagram based on constraint propagation: First, 
label each vertex with all the possible labelings for the vertex type. An L vertex has 
six possibilities, Y has five, Τ has four, and W has three. Next, pick a vertex, V. 
Consider a neighboring vertex, Ν (that is, Ν and V are connected by a line). Ν will 
also have a set of possible labelings. If Ν and V agree on the possible labelings for the 
line between them, then we have gained nothing. But if the intersection of the two 
possibility sets is smaller than V's possibility set, then we have found a constraint on 
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the diagram. We adjust Ν and V's possible labehngs accordingly. Every time we add 
a constraint at a vertex, we repeat the whole process for all the neighboring Vertexes, 
to give the constraint a chance to propagate as far as possible. When every vertex 
has been visited at least once and there are no more constraints to propagate, then 
we are done. 

Figure 17.4 illustrates this process. On the left we start with a cube. All Vertexes 
have all possible labelings, except that we know line GD is concave (-), indicating that 
the cube is resting on a surface. This constrains vertex D in such a way that line DA 
must be convex (+). In the middle picture the constraint on vertex D has propagated 
to vertex A, and in the right-hand picture it propagates to vertex B. Soon, the whole 
cube will be uniquely labeled. 

Figure 17.4: Propagating Constraints 

Many diagrams will be labeled uniquely by this constraint propagation process. 
Some diagrams, however, are ambiguous. They will still have multiple labelings 
after constraint propagation has finished. In this case, we can search for a solution. 
Simply choose an ambiguous vertex, choose one of the possible labelings for that 
vertex, and repeat the constraint propagation/search process. Keep going until the 
diagram is either unambiguous or inconsistent. 

That completes the sketch of the line-labeling algorithm. We are now ready to 
implement a labeling program. It's glossary is in figure 17.5. 

The two main data structures are the di agram and the vertex. It would have been 
possible to implement a data type for 1 i nes, but it is not necessary: lines are defined 
implicitly by the two Vertexes at their end points. 

A diagram is completely specified by its list of Vertexes, so the structure di agram 
needs only one slot. A vertex, on the other hand, is a more complex structure. Each 
vertex has an identifying name (usually a single letter), a vertex type (L, Y, W, or T), a 
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Top-Level Functions 
pr in t - labe l ings Label the diagram by propagating constraints and then searching. 

Data Types 
diagram A diagram is a list of V E R T E X E S . 

vertex A vertex has a name, type, and list of neighbors and labelings. 
Major Functions 

f ind- labe l ings Do the same constraint propagation, but don't print anything. 
propagate-constraints Reduce the number of labelings on vertex by considering neighbors. 
cons is tent - labe l ings Return the set of labelings that are consistent with neighbors. 
search-solut ions Try all labelings for one ambiguous vertex, and propagate. 
defdiagram (macro) Define a diagram. 
diagram Retrieve a diagram stored by name. 
ground Attach the line between the two V E R T E X E S to the ground. 

Auxiliary Functions 
l abe ls - fo r Return all the labels for the line going to vertex. 
reverse-label Reverse left and right on arrow labels. 
ambiguous-vertex-p A vertex is ambiguous if it has more than one labeling. 
number-of- labelings Number of labels on a vertex. 
find-vertex Find the vertex with the given name. 
matrix-transpose Turn a matrix on its side. 
poss ib le - labe l ings The list of possible labelings for a given vertex type. 
print-vertex Print a vertex in the short form. 
show-vertex Print a vertex in a long form, on a new line. 
show-diagram Print a diagram in a long form. Include a title. 
construct-diagram Build a new diagram from a set of vertex descriptions. 
construct-vertex Build a new vertex from a vertex description. 
make-copy-diagram Make a copy of a diagram, preserving connectivity. 
check-diagram Check if the description appears consistent. 

Figure 17.5: Glossary for the Line-Labeling Program 

list of neighboring V e r t e x e s , and a list of possible labelings. A labeling is a list of line 
labels. For example, a Y vertex will initially have a list of five possible labelings. If it 
is discovered that the vertex is the interior of a concave corner, then it will have the 
single labeling (- - - ) . We give type information on the slots of vertex because it 
is a compUcated data type. The syntax of defstruct is such that you cannot specify 
a : type without first specifying a default value. We chose L as the default value for 
the type slot at random, but note that it would have been an error to give n i l as the 
default value, because n i 1 is not of the right type. 

(defstruct diagram "A diagram i s a l i s t of V e r t e x e s . " Vertexes) 
(defstruct (vertex ( :pr in t - funct ion pr in t -ver tex)) 

(name ni l :type atom) 
(type 'L :type (member L Y W T)) 
(neighbors ni l :type l i s t ) ; of vertex 
( label ings ni l :type l i s t ) ) ; of l i s t s of (member + - L R ) ) ) ) ) 
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An ambiguous vertex will have several labelings, while an unambiguous vertex has 
exactly one, and a vertex with no labelings indicates an impossible diagram. Initially 
we don't know which Vertexes are what, so they all start with several possible label
ings. Note that a labeling is a list, not a set: the order of the labels is significant and 
matches the order of the neighboring Vertexes. The function possi bl e-1 abel i ngs 
gives a list of all possible labelings for each vertex type. We use R and L instead of 
arrows as labels, because the orientation of the arrows is significant. An R means 
that as you travel from the vertex to its neighbor, the polyhedron is on the right and 
the background object is on the left. Thus, an R is equivalent to an arrow pointing 
away from the vertex. The L is just the reverse. 

(defun ambiguous-vertex-p (vertex) 
"A vertex i s ambiguous i f i t has more than one labe l i ng . " 
(> (number-of- labelings vertex) D ) 

(defun number-of- labelings (vertex) 
( length (ver tex- label ings ver tex)) ) 

(defun impossible-vertex-p (vertex) 
"A vertex i s impossible i f i t has no labe l i ng . " 
(null (ver tex- label ings vertex))) 

(defun impossible-diagram-p (diagram) 
"An impossible diagram i s one with an impossible vertex." 
(some #*impossible-vertex-p (diagram-Vertexes diagram))) 

(defun poss ib le - labe l ings (vertex-type) 
"The l i s t of poss ib le labe l ings for a given vertex type." 
; ; In these labe l i ngs , R means an arrow point ing away from 

the vertex, L means an arrow point ing towards i t . 
(case vertex-type 

((L) ' ( ( R L) (L R) (+ R) (L +) (- L) (R - ) ) ) 
((Y) ' ( ( + + +) ( ) (L R - ) (- L R) (R - L ) ) ) 
((T) ' ( ( R L -H) (R L -) (R L L) (R L R)) ) 
((W) ' ( ( L R +) (- - +) (+ + - ) ) ) ) ) 

17.2 Combining Constraints and Searching 

The main function print-1 abel ings takes a diagram as input, reduces the number 
of labelings on each vertex by constraint propagation, and then searches for all 
consistent interpretations. Output is printed before and after each step. 
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(defun p r in t - labe l ings (diagram) 
"Label the diagram by propagating constra ints and then 
searching for so lu t ions i f necessary. Pr int r e s u l t s . " 
(show-diagram diagram "~&The i n i t i a l diagram i s : " ) 
(every #*propagate-constraints (diagram-vertexes diagram)) 
(show-diagram diagram 

"~2&After constra int propagation the diagram i s : " ) 
( le t * ( (so lu t ions ( i f ( impossible-diagram-p diagram) 

ni l 
(search-so lu t ions diagram))) 

(n (length so lu t i ons ) ) ) 
(unless (= η 1) 

(format t "~2&There are ~r so lu t ion~:p : " n) 
(mapc #'show-diagram so lu t i ons ) ) ) 

(values)) 

The function propagate-constraints takes a vertex and considers the constraints 
imposed by neighboring V e r t e x e s to get a list of all the cons i stent -1 abel i ngs for the 
vertex. If the number of consistent labelings is less than the number before we started, 
then the neighbors' constraints have had an effect on this vertex, so we propagate the 
new-found constraints on this vertex back to each neighbor. The function returns 
nil and thus immediately stops the propagation if there is an impossible vertex. 
Otherwise, propagation continues until there are no more changes to the labelings. 

The whole propagation algorithm is started by a call to every in pri nt -1 abel i ngs, 
which propagates constraints from each vertex in the diagram. But it is not obvious 
that this is all that is required. After propagating from each vertex once, couldn't 
there be another vertex that needs relabeling? The only vertex that could possibly 
need relabeling would be one that had a neighbor changed since its last update. 
But any such vertex would have been visited by propagate-constraint, since we 
propagate to all neighbors. Thus, a single pass through the Vertexes, compounded 
with recursive calls, will find and apply all possible constraints. 

The next question worth asking is if the algorithm is guaranteed to terminate. 
Clearly, it is, because propagate-constra i nts can only produce recursive calls when 
it removes a labeling. But since there are a finite number of labelings initially (no more 
than six per vertex), there must be a finite number of calls topropagate-constraints. 

(defun propagate-constraints (vertex) 
"Reduce the label ings on vertex by considering neighbors. 
I f we can reduce, propagate the constra ints to each neighbor." 

Return ni l only when the constra ints lead to an imposs ib i l i t y 
( let ((old-num (number-of- labelings ver tex)) ) 

(set f (ver tex- label ings vertex) (cons is tent - labe l ings vertex)) 
(unless ( impossible-vertex-p vertex) 

(when (< (number-of- labelings vertex) old-num) 
(every # 'propagate-constra ints (vertex-neighbors ver tex)) ) 

t ) ) ) 
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The function consi s tent -1 abel i ngs is passed a vertex. It gets all the labels for this 
vertex from the neighboring Vertexes, collecting them in nei ghbor-1 abel s. It then 
checks all the labels on the current vertex, keeping only the ones that are consistent 
with all the neighbors' constraints. The auxiliary function l abe l s - fo r finds the 
labels for a particular neighbor at a vertex, and reverse-1 abel accounts for the fact 
that L and R labels are interpreted with respect to the vertex they point at. 

(defun cons is tent - labe l ings (vertex) 
"Return the set of label ings that are consistent with ne ighbors. " 
( le t ( (neighbor- labels 

(mapcar #'(lambda (neighbor) ( l abe ls - fo r neighbor vertex)) 
(vertex-neighbors ver tex) ) ) ) 

Eliminate labe l ings that don' t have al l l i nes consistent 
; ; with the corresponding l i n e ' s label from the neighbor. 

Account for the L-R mismatch with reverse-label, 
( f i n d - a l l - i f 

#'(lambda ( labe l ing) 
(every #'member (mapcar #'reverse-1abel labe l ing) 

ne ighbor- labels) ) 
(ver tex- label ings ver tex) ) ) ) 

Constraint propagation is often sufficient to yield a unique interpretation. But some
times the diagram is still underconstrained, and we will have to search for solutions. 
The function search-sol utions first checks to see if the diagram is ambiguous, by 
seeing if it has an ambiguous vertex, v. If the diagram is unambiguous, then it is a 
solution, and we return it (in a hst, since sea rch - sol ut i ons is designed to return a 
list of all solutions). Otherwise, for each of the possible labelings for the ambiguous 
vertex, we create a brand new copy of the diagram and set v's labeling in the copy to 
one of the possible labelings. In effect, we are guessing that a labeling is a correct one. 
We call propagate - const ra i nts; if it fails, then we have guessed wrong, so there are 
no solutions with this labeling. But if it succeeds, then we call sea rch-sol utions 
recursively to give us the list of solutions generated by this labeling. 

(defun search-so lut ions (diagram) 
"Try al l labe l ings for one ambiguous vertex, and propagate." 

I f there i s no ambiguous vertex, return the diagram. 
; ; I f there i s one, make copies of the diagram t ry ing each of 
; ; the poss ib le l abe l i ngs . Propagate constra ints and append 
; ; a l l the so lu t ions together, 
( le t ((v ( f i nd - i f #'ambiguous-vertex-p 

(diagram-Vertexes diagram)))) 
( i f (null V) 

( l i s t diagram) 
(mapcan 

#'(lambda (v - labe l ing) 
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( le t * ((diagram2 (make-copy-diagram diagram)) 
(v2 ( f ind-vertex (vertex-name v) diagram2))) 

(set f (ver tex- label ings v2) ( l i s t v - labe l ing ) ) 
( i f (propagate-constraints v2) 

(search-so lu t ions diagram2) 
n i l ) ) ) 

(ver tex- label ings v ) ) ) ) ) 

That's all there is to the algorithm; all that remains are some auxiliary functions. 
Here are three of them: 

(defun labe ls - fo r (vertex from) 
"Return al l the labels for the l ine going to vertex." 
( let ((pos (pos i t ion from (vertex-neighbors ver tex) ) ) ) 

(mapcar #*(lambda ( labe l ing) (nth pos labe l ing) ) 
(ver tex- label ings ver tex) ) ) ) 

(defun reverse-label ( label ) 
"Account for the fact that one ver tex 's r ight i s another 's le f t . " 
(case label (L 'R) (R ' D (otherwise labe l ) ) ) 

(defun f ind-vertex (name diagram) 
"Find the vertex in the given diagram with the given name." 
( f ind name (diagram-vertexes diagram) :key #'vertex-name)) 

Here are the printing functions, p r i n t - vertex prints a vertex in short form. It obeys 
the ρ r i η t convention of returning the first argument. The functions s how - ve r t ex and 
show-d i agramprintmoredetailedforms. They obey theconventionfordescri be-like 
functions of returning no values at all. 

(defun pr int-vertex (vertex stream depth) 
"Pr int a vertex in the short form." 
(declare ( ignore depth)) 
(format stream "~a/~d" (vertex-name vertex) 

(number-of- labelings vertex)) 
vertex) 

(defun show-vertex (vertex &optional (stream t ) ) 
"Pr int a vertex in a long form, on a new l i n e . " 
(format stream "~& "a " d : " vertex (vertex-type vertex)) 
(mapc #'(lambda (neighbor labe ls ) 

(format stream " '"a~a=[' ' {~a' '} ]" (vertex-name vertex) 
(vertex-name neighbor) labe ls ) ) 

(vertex-neighbors vertex) 
(matrix-transpose (ver tex- label ings ver tex))) 

(va lues)) 
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(defun show-diagram (diagram Äoptional ( t i t l e "~2&Diagram:") 
(stream t ) ) 

"Pr int a diagram in a long form. Include a t i t l e . " 
(format stream t i t l e ) 
(mapc #*show-vertex (diagram-vertexes diagram)) 
( let ((n (reduce # ' * (mapcar # 'number-of- label ings 

(diagram-vertexes diagram)))) ) 
(when (> η 1) 

(format stream "~&For " R D in terpretat ion~:p." n)) 
(va lues)) ) 

Note that matri x - t ranspose is called by show-vertex to turn the matrix of labelings 
on its side. It works like this: 

> (poss ib le - labe l ings *Y) 
ii+ + +) 

( ) 
(L R -) 
(- L R) 
(R - D ) 

> (matrix-transpose (poss ib le - labe l ings Ύ ) ) 
( (+ - L - R) 
(-̂ • - R L - ) 
(-H - - R D ) 

The implementation of ma t r i x - t ranspose is surprisingly concise. It is an old Lisp 
trick, and well worth understanding: 

(defun matrix-transpose (matrix) 
"Turn a matrix on i t s s i d e . " 
( i f matrix (apply #'mapcar # ' l i s t matr ix))) 

The remaining code has to do with creating diagrams. We need some handy way of 
specifying diagrams. One way would be with a line-recognizing program operating 
on digitized input from a camera or bitmap display. Another possibility is an interac
tive drawing program using a mouse and bitmap display. But since there is not yet a 
Common Lisp standard for interacting with such devices, we will have to settle for a 
textual description. The macro def di agram defines and names a diagram. The name 
is followed by a list of vertex descriptions. Each description is a list consisting of 
the name of a vertex, the vertex type (Y, A, L, or T), and the names of the neighboring 
Vertexes. Here again is the def di agram description for the cube shown in figure 17.6. 
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(defdiagram cube 
(a Y b c d) 
(b W 
(c W 
(d W 
(e L 
(f L 
(g L 

e a) 
f a) 
g a) 
b) 
c) 
d)) 

Figure 17.6: A Cube 

Tiie macro def d iagram calls cons t ruc t -d iagram to do the real work. It would 
be feasible to have de fd i agram expand into a de fva r , making the names be special 
variables. But then it would be the user's responsibility to make copies of such a 
variable before passing it to a destructive function. Instead, I use pu t -d i agram and 
di agram to put and get diagrams in a table, d i agram retrieves the named diagram 
and makes a copy of it. Thus, the user cannot corrupt the original diagrams stored in 
the table. Another possibility would be to have def d i agram expand into a function 
definition for name that returns a copy of the diagram. I chose to keep the diagram 
name space separate from the function name space, since names like cube make 
sense in both spaces. 

(defmacro defdiagram (name &rest ver tex-descr iptors) 
"Define a diagram. A copy can be gotten by (diagram name)." 
'(put-diagram '.name (construct-diagram ' . ve r tex -desc r ip to rs ) ) ) 

( let ((diagrams (make-hash-table))) 
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(defun diagram (name) 
"Get a fresh copy of the diagram with th i s name." 
(make-copy-diagram (gethash name diagrams))) 

(defun put-diagram (name diagram) 
"Store a diagram under a name." 
(set f (gethash name diagrams) diagram) 
name)) 

The function c o n s t r u c t - d i agram translates each vertex description, using 
const ruct - vertex, and then fills in the neighbors of each vertex. 

(defun construct-diagram (ver tex-descr ip tors) 
"Bui ld a new diagram from a set of vertex descr ip tor . " 
( let ((diagram (make-diagram))) 

Put in the Vertexes 
(set f (diagram-vertexes diagram) 

(mapcar # 'construct-ver tex ver tex-descr ip tors) ) 
; ; Put in the neighbors for each vertex 
(do l i s t (v-d ver tex-descr ip tors) 

(set f (vertex-neighbors ( f ind-vertex ( f i r s t v-d) diagram)) 
(mapcar #'(lambda (neighbor) 

( f ind-vertex neighbor diagram)) 
(v-d-neighbors v -d ) ) ) ) 

diagram)) 

(defun construct-vertex (vertex-descr iptor) 
"Bui ld the vertex corresponding to the descr ip tor . " 
; ; Descr iptors are l i k e : (x L y z) 
(make-vertex 

:name ( f i r s t vertex-descr iptor) 
:type (second vertex-descr iptor) 
: labe l ings (poss ib le - labe l ings (second ver tex-descr ip tor ) ) ) ) 

(defun v-d-neighbors (ver tex-descr iptor) 
"The neighboring vertex names in a vertex descr ip tor . " 
( rest ( rest ver tex-descr ip tor ) ) ) 

The d e f s t r u c t for d i agram automatically creates the function copy -d i agram, but it 
just copies each field, without copying the contents of each field. Thus we need 
ma ke - copy - d i a g ram to create a copy that shares no structure with the original. 
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(defun make-copy-diagram (diagram) 
"Make a copy of a diagram, preserving connect iv i ty . " 
( le t * ((new (make-diagram 

•.Vertexes (mapcar #*copy-vertex 
(diagram-vertexes diagram))))) 

Put in the neighbors for each vertex 
(do l i s t (v (diagram-vertexes new)) 

(set f (vertex-neighbors v) 
(mapcar #*(lambda (neighbor) 

( f ind-vertex (vertex-name neighbor) new)) 
(vertex-neighbors v ) ) ) ) 

new)) 

17.3 Labeling Diagrams 

We are now ready to try labeling diagrams. First the cube: 

> (p r in t - labe l ings (diagram 'cube)) 
The i n i t i a l diagram i s : 

A/5 Y: AB=C+-L-R] AC=[+-RL-] AD=[+--RL] 
B/3 W: BG=[L-+] BE=[R-+] BA=[++-] 
C/3 W: CE=[L-+] CF=[R-+] CA=C++-] 
D/3 W: DF=[L-+] DG=[R-+] DA=C++-] 
E/6 L: EC=[RL+L-R] EB=[LRR+L-] 
F/6 L: FD=[RL+L-R] FC=CLRR+L-] 
G/6 L: GB=[RL+L-R] GD=[LRR+L-] 

For 29,160 in terpretat ions. 

After constraint propagation the diagram i s : 
A / 1 Y: AB=[+] AC=[+] AD=[+] 
B/2 W: BG=CL-] BE=[R-] BA=C++] 
C/2 W: CE=[L-] CF=[R-] CA=C++] 
D/2 W: DF=[L-] DG=[R-] DA=C++] 
E/3 L: EC=[R-R] EB=[LL-] 
F/3 L: FD=[R-R] FC=CLL-] 
G/3 L: GB=[R-R] GD=[LL-] 

For 216 in terpretat ions. 

There are four so lu t i ons : 
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Diagram: 
A / 1 Y: AB=[+] AC=C+] AD=C+] 
B/1 W: BG=[L] BE=[R] BA=[+] 

C/1 W: CE=CL] CF=CR] CA=[+] 
D/1 W: DF=CL] DG=[R] DA=[+] 
E/1 L: EC=[R] EB=[L] 
F/1 L: FD=CR] FC=CL] 
G/1 L: GB=[R] GD=[L] 

Diagram: 
A / 1 Y: AB=[+] AC=[+] AD=[+] 

B/1 W: BG=[L] BE=[R] BA=[+] 

C/1 W: CE=[L] CF=[R] CA=C+] 

D/1 W: DF=C-] DG=[-] DA=C+] 

E/1 L: EC=CR] EB=CL] 
F/1 L: FD=C-] FC=[L] 
G/1 L: GB=CR] GD=[-] 

Diagram: 
A / 1 Y: AB=C+] AC=C+] AD=C+] 

B/1 W: BG=[L] BE=[R] BA=C+] 

C/1 W: CE=[- ] CF=C-] CA=C+] 

D/1 W: DF=CL] DG=CR] DA=[-H] 

E/1 L: EC=C-] EB=[L] 
F/1 L: FD=[R] FC=[- ] 
G/1 L: GB=[R] GD=[L] 

Diagram: 
A / 1 Y: AB=[+] AC=[+] AD=C+] 

B/1 W: B G K - ] BE=C-] BA=C+] 

C/1 W: CE=[L] CF=[R] CA=[+] 

D/1 W: DF=[L] DG=CR] DA=C+] 

E/1 L: EC=CR] EB=C-] 
F/1 L: FD=[R] FC=CL] 
G/1 L: GB=C-] GD=[L] 

The four interpretations correspond, respectively, to the cases where the cube is free 
floating, attached to the floor (GD and DF = -), attached to a wall on the right (EC 
and CF = -), or attached to a wall on the left (BG and BE = -). These are shown in 
figure 17.7. It would be nice if we could supply information about where the cube is 
attached, and see if we can get a unique interpretation. The function ground takes a 
diagram and modifies it by making one or more lines be grounded lines—lines that 
have a concave (-) label, corresponding to a junction with the ground. 
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Figure 17.7: Four Interpretations of the Cube 

(defun ground (diagram vertex-a vertex-b) 
"Attach the l ine between the two Vertexes to the ground. 
That i s . label the l ine with a -" 
( le t * ((A ( f ind-vertex vertex-a diagram)) 

(B ( f ind-vertex vertex-b diagram)) 
( i (pos i t ion Β (vertex-neighbors A ) ) ) ) 

(asser t (not (null i ) ) ) 
(set f (ver tex- label ings A) 

( f i n d - a l l - i f #'(lambda (1) (eq (nth i 1) ' - ) ) 
(ver tex- label ings A) ) ) 

diagram)) 



580 LINE-DIAGRAM LABELING BY CONSTRAINT SATISFACTION 

We can see how this works on the cube: 

Figure 17.8: Cube on a Plate 

> (p r in t - labe l ings (ground (diagram 'cube) 'g *d)) 
The i n i t i a l diagram i s : 

A/5 Y: AB=[+-L-R] AC=C+-RL-] AD=[+--RL] 
B/3 W: BG=[L-+] BE=[R-+] BA=C++-] 
C/3 W : C E = C L - + ] CF=CR-+] C A = C - H - ] 

D/3 W: DF=[L-+] DG=[R-+] D A = [ - M - ] 
E/6 L: EC=[RL+L-R] EB=[LRR+L-] 
F/6 L: FD=[RL+L-R] FCKLRR+L- ] 
G/1 L: GB=[R] GD=[-] 

For 4,860 in terpretat ions. 

After constraint propagation the diagram i s : 
A / 1 Y: AB=C+] AC=C+] AD=C+] 
B/1 W: BG=[L] BE=[R] BA=[+] 
C /1 W : CE=[L] CF=CR] CA=[+] 
D/1 W: DF=[- ] DG=C-] DA=C+] 
E/1 L: EC=[R] E B = C L ] 
F/1 L: FD=[-] FC=CL] 
G/1 L: GB=CR] GD=C-] 
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Note that the user only had to specify one of the two ground lines, GD. The program 
found that DF is also grounded. Similarly, in programming ground-1 ine, we only 
had to update one of the Vertexes. The rest is done by constraint propagation. 

The next example yields the same four interpretations, in the same order (free 
floating, attached at bottom, attached at right, and attached at left) when interpreted 
ungrounded. The grounded version yields the unique solution shown in the following 
output and in figure 17.9. 

Figure 17.9: Labeled Cube on a Plate 

(defdiagram cube-on-plate 
(a Y b c d) 

e a) 
f a) 
g a) 
b) 
c i ) 
d h) 
g j ) 
m j ) 
i k) 

(b W 
(c W 
(d W 
(e L 
( f Y 
(g Y 
(h W 1 
( i W f 
(j Y h 
(k W m 1 j ) 
(1 L h k) 
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(m L k i ) ) 

> (p r in t - labe l ings (ground (diagram 'cube-on-plate) 'k 'm)) 
The i n i t i a l diagram i s : 

A /5 Y: AB=C+-L-R] AC=C+-RL-] A[)=[+--RL] 
B/3 W: BG=CL-+] BE=[R-+] BA=C++-] 
C/3 W: CE=CL-+] CF=CR-+] CA=C++-] 
D/3 W: DF=CL-+] DG=CR-+] DA=C++-] 
E/6 L: EC=CRL+L-R] EB=CLRR+L-] 
F/5 Y: FD=C+-L-R] FC=C+-RL-] F I= [+ - -RL ] 
G/5 Y: GB=C+-L-R] GD=C+-RL-] GH=[+--RL] 
H/3 W: HL=CL-+] HG=[R-+] HJ=[+-h-] 
1/3 W: IF=CL-+] IM=[R-+] I J= [++- ] 
J /5 Y: JH=C+-L-R] J I=C+-RL- ] JK=[+- -RL] 
K/1 W: KM=[-] KL=C-] KJ=[+] 
L/6 L: LH=CRL+L-R] LK=CLRR+L-] 
M/6 L: MK=[RL+L-R] MI=CLRR+L-] 

For 32.805.000 in terpretat ions. 

After constraint propagation the diagram i s : 
A / 1 Y: AB=C+] AC=C+] AD=C+] 
B/1 W: BG=CL] BE=[R] BA=C+] 
C/1 W: CE=[L] CF=CR] CA=[+] 
D/1 W: DF=C-] DG=C-] DA=[+] 
E/1 L: EC=CR] EB=CL] 
F/1 Y: FD=C-] FC=CL] FI=[R] 
G/1 Y: GB=[R] GD=C-] GH=CL] 
H/1 W: HL=[L] HG=CR] H J = M 
I/l W: IF=CL] IM=[R] IJ=C+] 
J / 1 Y: JH=[+] JI=C+] JK=[+] 
K/1 W: KM=[-] KL=[- ] KJ=[+] 
L/1 L: LH=CR] LK=C-] 
M/1 L: MK=[-] MI=[L] 

It is interesting to try the algorithm on an "impossible" diagram. It turns out the 
algorithm correctly finds no interpretation for this well-known illusion: 

(defdiagram poiuyt 
(a L b g) 
(b L j a) 
(c L d 1) 
(d L h c) 
(e L f i ) 
( f L k e) 
(g L a 1) 
(h L 1 d) 
( i L e k) 
(j L k b) 
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Figure 17.10: An Impossible Figure (A Poiuyt) 

(k W j i f ) 
(1 W h g c) ) 

> (p r in t - labe l ings (diagram 'po iuyt ) ) 
The i n i t i a l diagram i s : 

A/6 
B/6 
C/6 
D/6 
E/6 
F/6 
G/6 
H/6 
1/6 
J /6 
K/3 W 
L/3 W 

AB=CRL+L-R] AG=[LRR+L-] 
BJ=[RL+L-R] BA=[LRR+L-] 
CD=CRL+L-R] CL=[LRR+L-] 
DH=[RL+L-R] DC=CLRR+L-] 
EF=[RL+L-R] EI=[LRR+L-] 
FK=[RL+L-R] FE=CLRR+L-] 
GA=[RL+L-R] GL=[LRR+L-] 
HL=[RL+L-R] HD=CLRR+L-] 
IE=[RL+L-R] IK=CLRR+L-] 
JK=[RL+L-R] JB=CLRR+L-] 
KJ=[L-+] KI=CR-+] KF=[++-] 
LH=[L-+] LG=[R-+] LC=C++-] 

For 544.195.584 in terpretat ions. 

After constraint propagation the diagram i s : 
A/5 
B/5 
C/2 
D/3 
E/3 
F/2 

AB=CRL+-R] AG=[LRRL-] 
BJ=CRLL-R] BA=[LR+L-] 
CD=[LR] CL=[+-] 
DH=[RL-] DC=[LRL3 
EF=[RLR] E I= [LR- ] 
FK=C+-] FE=[RL] 
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(a Y b c d) (n L q 0 ) 

(b W g e a) ( 0 W y j n) 
(c W e f a) (P L r i ) 
(d W f g a) (q W η s w) 
(e L c b) (r W s ρ χ) 
( f Y d c i ) (s L r q) 
(g Y b d h) ( t W w χ ζ) 
(h W 1 g j ) (u W χ y ζ) 
(i W f m p) (V W y w ζ) 
(j Y h 0 k ) (w Y t ν q) 
( k W m 1 j ) (x Y r u t ) 

(1 L h k ) (y Y V u o) 
(m L k i ) ( z Y t U V ) ) 

> (p r in t - labe l ings (ground (diagram 'tower) Ί ' k ) ) 
The i n i t i a l diagram i s : 

=[+-L-R3 AC=[+-RL-] AD=C+--RL] 

F D = C + - L - R ] F C = C + - R L - ] F I = C + - - R L ] 

G B = [ + - L - R ] G D = C + - R L - ] G H = C + - - R L ] 

H L = C L - + ] H G = C R - + ] H J = C - h - ] 

I F = [ L - + ] I M = [ R - + ] I P = C + + - ] 

A/5 Y: 
B / 3 W: 

C/3 W: 
D/3 W: 
E/6 L: 
F/5 Y: 
G/5 Y: 
H/3 W: 
1/3 W: 
J /5 Y: 
K/3 W: 
L/1 L: 
M/6 L: 
N/6 L: 
0 /3 W: 
P/6 L: 
0/3 W: 
R/3 W: 
S /6 L: 

^ - -RL] 
KM=[L-+] KL=CR-+] KJ=C++-] 

QN=[L-+] QS=CR-+] QW=C++-] 
RS=CL-+] RP=[R-+3 RX=C -H-] 

S/6 L: SR=CRL+L-R] SQ=CLRR+L-] 

G/4 L: GA=[RL-R] GL=[L+L-] 
H/4 L: HL=[R+-R] HD=[LRL-] 
1/4 L: IE=CRL-R] IK=[L+L- ] 
J /4 L: JK=[R+-R] JB=CLRL-] 
K/3 W: KJ=[L-+] KI=CR-+] KF=C++-3 
L/3 W: LH=CL-+] LG=[R-+] LC=C++-] 

For 2.073,600 in terpretat ions. 

There are zero so lu t i ons : 

N o w we try a more complex d iagram: 

(defdiagram tower 
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T/3 W: TW=CL-+] TX=CR-+] TZ=C++-] 
U/3 W: UX=[L-+] UY=[R-+] UZ=[++-] 
V/3 W: VY=CL-+] VW=CR-+] VZ=[++-] 
W/5 Y: WT=C+-L-R] WV=C+-RL-] WQ=C+--RL] 
X/5 Y: XR=[+-L-R] XU=C+-RL-] XT=[+--RL] 
Y /5 Y : YV=[+-L-R] YU=[+-RL-] YO=C+--RL] 
Z/5 Y: ZT=C+-L-R] ZU=C+-RL-] ZV=[+--RL] 

For 1,614,252,037,500,000 in terpretat ions. 

Figure 17.11: A Tower 

After constraint propagation the diagram is: 
A/1 Y: AB=[+] AC=[+] AI>[+] 
B/1 W: BG=[L] BE=[R] BA=[+] 
C/1W: CE=[L] CF=[R] CA=[+] 
D/1W: DF=[-] DG=[-] DA=[+] 
E/1L: EC=[R]EB=[L] 
F/1YFD=[-] FC=[L] FI=[R] 
G/1Y GB=[R] GD=[-] GH=[L] 
H/1W: HL=[L] HG=[R] HJ=[+] 
I/l W: IF=[L]IM=[R] IP=[+] 
J/lYJH=[+]JO=MJK=[+] 
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K/1 W: KM=[-] KL=[-] KJ=[+] 
L/1 L: LH=[R] LK=[-] 
M / 1 L : MK=[-] MI=[L] 
N/1 L: NQ=[R] NO=[-] 
O / l W: OY=M OJ=M ON=[-] 
P/1 L: PR=[L] PI=[+] 
Q/1 W: QN=[L] Q S = [ R ] Q W = [ + ] 
R/1 W: R S = [ L ] RP=[R] RX=M 
S/1 L: SR=[R] S Q = [ L ] 
T/1 W: T W = [ + ] TX=[+] TZ=[-] 
U/1 W: UX=[+] UY=[+] UZ=[-] 
V/1 W: VY=[+] V W = [ + ] VZ=[-] 
W / 1 Υ : W T = [ + ] WV=M W Q = [ + ] 
X/1Υ: XR=[+] XU=[+] XT=[+] 
Υ/1Υ: YV=[+] YU=[+] Y0=[+] 
Z / 1 Y : ZT=[-] ZU=[-] ZV=[-] 

We see that the algorithm was able to arrive at a single interpretation. Moreover, even 
though there were a large number of possibilities—over a quadrillion—the computa
tion is quite fast. Most of the time is spent printing, so to get a good measurement, 
we define a function to find solutions without printing anything: 

(defun f ind- labe l ings (diagram) 
"Return a l i s t of al l consistent label ings of the diagram." 
(every # 'propagate-constra ints (diagram-vertexes diagram)) 
(search-so lut ions diagram)) 

When we t ime the application of f i n d - l a b e l i n g s to the grounded tower and the 
poiuyt, we find the tower takes 0.11 seconds, and the poiuyt 21 seconds. This is over 
180 times longer, even though the poiuyt has only half as many Vertexes and only 
about half a million interpretations, compared to the tower's quadrillion. The poiuyt 
takes a long time to process because there are few local constraints, so violations are 
discovered only by considering several widely separated parts of the figure all at the 
same time. It is interesting that the same fact that makes the processing of the poiuyt 
take longer is also responsible for its interest as an illusion. 

17.4 Checking Diagrams for Errors 

This section considers one more example, and considers what to do when there are 
apparent errors in the input. The example is taken from Charniak and McDermott's 
Introduction to Artificial Intelligence, page 138, and shown in figure 17.12. 



17.4 CHECKING DIAGRAMS FOR ERRORS 587 

Figure 17.12: Diagram of an arch 

(defdiagram arch 
(a W e b c) (P L 0 q) 
(b L d a) (q Τ Ρ i Γ ) 

(c Y a d g) ( Γ Τ 3 s q ) 

(d Y c b m) (s L Γ t ) 
(e L a f ) (t W ν s k) 
(f Τ e g n) (u L t 1) 
(g w h f c) (V L 2 4) 
( h τ g i 0 ) (w W X 1 y ) 

( i τ h j q) ( X L w z) 

( j τ i k r) ( y Y w 2 z) 
(k τ j 1 t ) (z W 3 X y ) 

(1 τ k m v) (1 Τ η 0 w) 
(m L 1 d) (2 W V 3 y ) 

(n L f 1) (3 L ζ 2) 
( 0 W Ρ 1 h ) (4 Τ u 1 V ) ) 

Unfortunately, running this example results in no consistent interpretations after 
constraint propagation. This seems wrong. Worse, when we try to ground the 
diagram on the line XZ and call pr i nt -1 abel i ngs on that, we get the following error: 
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»>ERROR: The f i r s t argument to NTH was of the wrong type. 
The function expected a fixnum >= zero. 
While in the function LABELS-FOR ^ CONSISTENT-LABELINGS 

Debugger entered while in the fol lowing funct ion: 

LABELS-FOR ( P . C . = 23) 
Arg 0 (VERTEX): U/6 
Arg 1 (FROM): 4/4 

What has gone wrong? A good guess is that the diagram is somehow inconsistent— 
somewhere an error was made in transcribing the diagram. It could be that the 
diagram is in fact impossible, like the poiuyt. But that is unlikely, as it is easy for us 
to provide an intuitive interpretation. We need to debug the diagram, and it would 
also be a good idea to handle the error more gracefully. 

One property of the diagram that is easy to check for is that every line should be 
mentioned twice. If there is a line between Vertexes A and B, there should be two 
entries in the vertex descriptors of the following form: 

(A ? . . . Β . . . ) 
(Β ? . . . A . . . ) 

Here the s y m b o l m e a n s we aren't concerned about the type of the V e r t e x e s , only 
with the presence of the line in two places. The following code makes this check 
when a diagram is defined. It also checks that each vertex is one of the four legal 
types, and has the right number of neighbors. 

(defmacro defdiagram (name &rest ver tex-descr ip tors) 
"Define a diagram. A copy can be gotten by (diagram name)." 
' (put-diagram '.name (construct-diagram 

(check-diagram ' . ve r tex -desc r ip to rs ) ) ) ) 

(defun check-diagram (ver tex-descr ip tors) 
"Check i f the diagram descr ipt ion appears cons is ten t . " 
( le t ( (er rors 0)) 

(do l i s t (v-d ver tex-descr ip tors) 
v-d i s l i k e : (a Y b c d) 

( let ((A ( f i r s t v -d) ) 
(v-type (second v -d ) ) ) 

Check that the number of neighbors i s r ight for 
the vertex type (and that the vertex type i s lega l ) 

(when ( /= ( length (v-d-neighbors v -d) ) 
(case v-type ((W Y Τ) 3) ( (L) 2) ( t - 1 ) ) ) 

(warn " I l l ega l type/neighbor combo: '^a" v-d) 
( incf errors)) 

; ; Check that each neighbor Β i s connected to 
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th is vertex. A. exactly once 
(do l i s t (B (v-d-neighbors v-d) ) 

(when ( /= 1 (count- i f 
#'(lambda (v-d2) 

(and (eql ( f i r s t v-d2) B) 
(member A (v-d-neighbors v -d2) ) ) ) 

ver tex-descr ip tors) ) 
(warn " Inconsis tent vertex: " a - ^ a " A B) 
( incf e r r o r s ) ) ) ) ) 

(when (> errors 0) 
(error " Inconsis tent diagram. ~d total er ror~:p . " 

e r ro rs ) ) ) 
ver tex-descr iptors) 

Now let's try the arch again: 

(defdiagram arch 
(a W e b c) (P L 0 q) 
(b L d a) (q Τ Ρ i r) 
(c Y a d g) (r Τ j s q) 
(d Y c b m) (s L r t ) 
(e L a f ) (t W V s k) 
(f Τ e g n) (u L t 1) 
(g W h f c) (V L 2 4) 
(h Τ g i 0 ) (w W X 1 y) 
(i Τ h j q) ( X L w z) 
( j Τ i k r) (y Y w 2 z) 
(k Τ j 1 t ) (ζ W 3 X y) 
(1 Τ k m v) (1 Τ η 0 w) 
(m L 1 d) (2 W V 3 y) 
(n L f 1) (3 L ζ 2) 
( 0 W ρ 1 h) (4 Τ u 1 V ) ) 

Warning: Inconsistent vertex: T-•V 
Warning: Inconsistent vertex: U-•T 
Warning: Inconsistent vertex: U--L 
Warning: Inconsistent vertex: L--V 
Warning: Inconsistent vertex: 4--u 
Warning: Inconsistent vertex: 4-•L 

»ERROR: Inconsistent diagram, 6 total e r ro rs . 

The def d i a g ram was transcribed from a hand-labeled diagram, and it appears that the 
transcription has fallen prey to one of the oldest problems in mathematical notation: 
confusing a "u" with a "v." The other problem was in seeing the line U-L as a single 
line, when in fact it is broken up into two segments, U-4 and 4-L. Repairing these 
bugs gives the diagram: 
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(defdiagram arch 
(a W e b c) (P L 0 q ) 
( b L d a) ( q Τ Ρ i Γ ) 

(c Y a d g ) ( Γ Τ J s q ) 

( d Y c b m) (s L Γ t ) 

(e L a f ) ( t W u s k) 
(f Τ e g n) (u L t 4) 
( g W h f c) (V L 2 4) 
( h Τ g i 0 ) (w W X 1 y ) 

( i τ h J q ) ( X L w z) 

(j τ k r) ( y Y w 2 z) 
(k τ i 1 t ) (z W 3 X y ) 

(1 τ k m 4) (1 Τ η 0 w) 
(m L 1 d ) (2 w V 3 y ) 

(n L f 1) (3 L ζ 2) 
( 0 W Ρ 1 h ) (4 Τ u 1 V ) ) 

; t-u not t-v 
; w-4 not u-l 

; 1-4 not l-v 

This time there are noerrors detected by check-di agram, butrunningprint-label ings 
again still does not give a solution. To get more information about which constraints 
are applied, I modified propagate-constrai nts to print out some information: 

(defun propagate-constraints (vertex) 
"Reduce the number of labe l ings on vertex by consider ing neighbors. 
I f we can reduce, propagate the new constra int to each neighbor." 

Return ni l only when the constra ints lead to an imposs ib i l i t y 
( le t ((old-num (number-of- labelings ver tex)) ) 

(set f (ver tex- label ings vertex) (cons is ten t - labe l ings vertex)) 
(unless ( impossible-vertex-ρ vertex) 

(when (< (number-of- label ings vertex) old-num) 
(format t " -&; ~a: " U a ~a" vertex 

(vertex-neighbors vertex) 
(ver tex- label ings vertex)) 

(every # 'propagate-constra ints (vertex-neighbors ver tex)) ) 
ver tex)) ) 

Running the problem again gives the following trace: 

> (p r in t - labe l ings (ground (diagram 'arch) *x ' ζ ) ) 
The i n i t i a l diagram i s : 

A/3 W: AE=[L-+] AB=[R-+] AC=[++-] 
P/6 L: PO=[RL+L-R] PQ=CLRR+L-] 
B/6 L: BD=[RL-HL-R] BA=CLRR+L-] 
Q/4 T: QP=[RRRR] QI=[LLLL] QR=[+-LR] 
C/5 Y: CA=C+-L-R] CD=C+-RL-] CG=[+--RL] 
R/4 T: RJ=[RRRR] RS=[LLLL] RQ=[+-LR] 
D/5 Y: DC=C+-L-R] DB=C+-RL-] DM=C+--RL] 
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S / 6 L : S R = [ R L + L - R ] S T = C L R R + L - ] 

E / 6 L : E A = C R L + L - R ] E F = [ L R R + L - ] 

T / 3 W: T U = [ L - + ] T S = [ R - + ] T K = C + + - ] 

F / 4 T : F E = [ R R R R ] F G = C L L L L ] F N = C + - L R ] 

U / 6 L : U T = C R L + L - R ] U 4 = C L R R + L - ] 

G / 3 W: G H = [ L - + ] G F = C R - + ] G C K - H - ] 

V / 6 L : V 2 = [ R L + L - R ] V 4 = [ L R R + L - ] 

H / 4 T : H G = C R R R R ] H I = C L L L L ] H O = [ + - L R ] 

W / 3 W: W X = C L - + ] W 1 = [ R - + ] W Y = C + + - ] 

1 / 4 T : I H = [ R R R R ] I J = C L L L L ] I Q = C + - L R ] 

X / 1 L : X W = [ R ] X Z = [ - ] 

J / 4 T : J I = C R R R R ] J K = C L L L L ] J R = [ - h - L R ] 

Y / 5 Y : Y W = [ + - L - R ] Y 2 = [ + - R L - ] Y Z = C + - - R L ] 

K / 4 T : K J = [ R R R R ] K L = [ L L L L ] K T = C + - L R ] 

Z / 3 W: Z 3 = C L - + ] Z X = C R - + ] Z Y = C + + - ] 

L / 4 T : L K = [ R R R R ] L M = [ L L L L ] L 4 = C + - L R ] 

1 / 4 T : 1 N = [ R R R R ] 1 0 = C L L L L ] 1 W = [ + - L R ] 

M / 6 L : M L = C R L + L - R ] M D = [ L R R + L - ] 

2 / 3 W: 2 V = [ L - + ] 2 3 = [ R - + ] 2 Y = [ + + - ] 

N / 6 L : N F = C R L + L - R ] N 1 = C L R R + L - ] 

3 / 6 L : 3 Z = [ R L + L - R ] 3 2 = C L R R + L - ] 

0 / 3 W: O P = [ L - + ] 0 1 = C R - + ] O H = C + + - ] 

4 / 4 T : 4 U = [ R R R R ] 4 L = [ L L L L ] 4 V = C + - L R ] 

For 2 , 8 8 8 , 8 1 6 , 5 4 5 , 2 3 4 , 9 4 4 , 0 0 0 i nterpretati ons. 
P / 2 ( 0 / 3 0 / 4 ) ( ( R L ) ( - D ) 

0 / 1 ( P / 2 1 / 4 H / 4 ) ( ( L R + ) ) 

P / 1 ( 0 / 1 Q / 4 ) ( ( R D ) 

1 / 3 ( N / 6 0 / 1 W / 3 ) ( ( R L + ) ( R L - ) ( R L D ) 

N / 2 ( F / 4 1 / 3 ) ( ( R L ) ( - D ) 

F / 2 ( E / 6 G / 3 N / 2 ) ( ( R L - ) ( R L D ) 

E / 2 ( A / 3 F / 2 ) ( ( R L ) ( - D ) 

A / 2 ( E / 2 B / 6 C / 5 ) ( ( L R + ) ( - - + ) ) 

B / 3 ( D / 5 A / 2 ) ( ( R L ) ( - L ) ( R - )) 
D / 3 ( C / 5 B / 3 M / 6 ) ( ( - - - ) ( - L R ) ( R - D ) 

W / 1 ( X / 1 1 / 3 Y / 5 ) ( ( L R + ) ) 

1 / 1 ( N / 2 0 / 1 W / 1 ) ( ( R L D ) 

Y / 1 ( W / 1 2 / 3 Z / 3 ) ( (+ + +)) 
2 / 2 ( V / 6 3 / 6 Y / 1 ) ( ( L R + ) ( - - + ) ) 

V / 3 ( 2 / 2 4 / 4 ) ( ( R L ) ( - L ) ( R - )) 

4 / 2 ( U / 6 L / 4 V / 3 ) ( ( R L - ) ( R L R ) ) 

U / 2 : ( T / 3 4 / 2 ) ( ( R L ) ( - D ) 

T / 2 ( U / 2 S / 6 K / 4 ) ( ( L R + ) ( - - + ) ) 

S / 2 ( R / 4 T / 2 ) ( ( R L ) ( R - ) ) 

K / 1 ( J / 4 L / 4 T / 2 ) ( ( R L + ) ) 

J / 1 ( 1 / 4 K / 1 R / 4 ) ( ( R L D ) 

I / l ( H / 4 J / 1 0 / 4 ) ( ( R L R ) ) 

L / 1 ( K / 1 M / 6 4 / 2 ) ( ( R L R ) ) 

M / 2 ( L / 1 D / 3 ) ( ( R L ) ( R - ) ) 
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3 / 3 : ( Z / 3 2 / 2 ) ( ( R L ) ( - L ) ( R - ) ) 

1/1: ( 3 / 3 X / 1 Y / 1 ) ( ( - - + ) ) 

3 / 1 : ( Z / 1 2 / 2 ) ( ( - D ) 

2 / 1 : ( V / 3 3 / 1 Y / 1 ) ( ( L R + ) ) 

V / 2 : ( 2 / 1 4 / 2 ) ( ( R L ) ( R - ) ) 

After constraint propagation the diagram i s : 
A / 0 W : 

P / 1 L : P O = [ R ] P Q = C L ] 

B / 0 L : 

Q / 4 T : Q P = [ R R R R ] Q I = [ L L L L ] Q R = [ + - L R ] 

C / 0 Y : 

R / 4 T : R J = [ R R R R ] R S = [ L L L L ] R Q = C + - L R ] 

D / 0 Y : 

S / 2 L : S R = C R R ] S T = [ L - ] 

E / 2 L : E A = [ R - ] E F = C L L ] 

T / 2 W : T U = [ L - ] T S = C R - ] T K = [ + + ] 

F / 2 T : F E = C R R ] FG=[LL] FN=C-L] 
U / 2 L : U T = [ R - ] U 4 = [ L L ] 

G / 0 W: 

V / 2 L : V 2 = [ R R ] V 4 = C L - ] 

H / 0 T : 

W / 1 W: W X = [ L ] W 1 = [ R ] W Y = C + ] 

I / l T : I H = [ R 3 I J = [ L ] I Q = [ R ] 

X / 1 L : X W = [ R ] X Z = [ - ] 

J / 1 T : J I = [ R ] J K = [ L ] J R = [ L ] 

Y / 1 Y : Y W = C + ] Y 2 = [ + ] Y Z = [ + ] 

K / 1 T : K J = C R ] K L = [ L ] K T = [ + ] 

Z / 1 W: Z 3 = C - ] Z X = [ - ] Z Y = [ H - ] 

L / 1 T : L K = [ R ] L M = [ L ] L 4 = [ R ] 

1 / 1 T : 1 N = [ R ] 1 0 = [ L ] 1 W = [ L ] 

M / 2 L : M L = [ R R ] M D = C L - ] 

2 / 1 W: 2 V = C L ] 2 3 = C R ] 2 Y = [ + ] 

N / 2 L : N F = [ R - ] N 1 = [ L L ] 

3 / 1 L : 3 Z = [ - ] 3 2 = [ L ] 

0 / 1 W: O P = [ L ] 0 1 = C R ] O H = C + ] 

4 / 2 T : 4 U = [ R R ] 4 L = [ L L ] 4 V = [ - R ] 

From the diagram after constraint propagation we can see that the Vertexes A,B,C,D,G, 
and Η have no interpretations, so they are a good place to look first for an error. From 
the trace generated by propagate-constraints (the lines beginning with a semi
colon), we see that constraint propagation started at Ρ and after seven propagations 
reached some of the suspect Vertexes: 
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A / 2 : (E /2 B/6 C/5) ( (L R +) (- - + ) ) 
8 / 3 : (D/5 A/2) ((R L) (- L) (R - ) ) 
D/3 : (C/5 B/3 M/6) (( ) (- L R) (R - D ) 

A and Β look acceptable, but look at the entry for vertex D. It shows three interpre
tations, and it shows that the neighbors are C, B, and M. Note that line DC, the first 
entry in each of the interpretations, must be either -, - or R. But this is an error, 
because the "correct" interpretation has DC as a + line. Looking more closely, we 
notice that D is in fact a W-type vertex, not a Y vertex as written in the definition. We 
should have: 

(defdiagram arch 

;disaW,notY 

(a W e b c) (p L 0 q) 
(b L d a) (q Τ ρ i r) 

(c Y a d g) (r Τ j s q) 

(d W b m c) (s L r t ) 
(e L a f ) (t W u s k ) 

(f Τ e g n) (u L t 4) 

(g W h f c) (V L 2 4) 
(h Τ g i 0 ) (w W χ 1 y) 

(i Τ h j q) (x L w z ) 

(j Τ i k r) (y Y w 2 z ) 

( k Τ j 1 t ) ( z W 3 X y) 

(1 Τ k m 4) (1 Τ η 0 w) 
(m L 1 d) (2 W V 3 y) 
(η L f 1) (3 L ζ 2) 

( 0 W ρ 1 h) (4 Τ u 1 V ) ) 

By running the problem again and inspecting the trace output, we soon discover the 
real root of the problem: the most natural interpretation of the diagram is beyond the 
scope of the program! There are many interpretations that involve blocks floating in 
air, but if we ground lines OP, TU and XZ, we run into trouble. Remember, we said 
that we were considering trihedral V e r t e x e s only. But vertex 1 would be a quad-hedral 
vertex, formed by the intersection of four planes: the top and back of the base, and 
the bottom and left-hand side of the left pillar. The intuitively correct labeling for the 
diagram would have O l be a concave (-) line and Al be an occluding line, but our 
repertoire of labelings for Τ Vertexes does not allow this. Hence, the diagram cannot 
be labeled consistently. 

Let's go back and consider the error that came up in the first version of the 
diagram. Even though the error no longer occurs on this diagram, we want to make 
sure that it won't show up in another case. Here's the error: 
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»>ERROR: The f i r s t argument to NTH was of the wrong type. 
The function expected a fixnum >= zero. 
While in the function LABELS-FOR <i= CONSISTENT-LABELINGS 

Debugger entered while in the fol lowing funct ion: 

LABELS-FOR ( P . C . = 23) 
Arg 0 (VERTEX): U/6 
Arg 1 (FROM): 4 /4 

Looking at the definition of 1 abel s - fo r , we see that it is looking for the from vertex, 
which in this case is 4, among the neighbors of U. It was not found, so pos became n i l , 
and the function nth complained that it was not given an integer as an argument. So 
this error, if we had pursued it earlier, would have pointed out that 4 was not listed 
as a neighbor of U, when it should have been. Of course, we found that out by other 
means. In any case, there is no bug here to fix—as long as a diagram is guaranteed to 
be consistent, the 1 abel s - fo r bug will not appear again. 

This section has made two points: First, write code that checks the input as 
thoroughly as possible. Second, even when input checking is done, it is still up to 
the user to understand the limitations of the program. 

17.5 History and References 
Guzman (1968) was one of the first to consider the problem of interpreting line 
diagrams. He classified V e r t e x e s , and defined some heuristics for combining infor
mation from adjacent Vertexes. Huffman (1971) and Clowes (1971) independently 
came up with more formal and complete analyses, and David Waltz (1975) extended 
the analysis to handle shadows, and introduced the constraint propagation algo
rithm to cut down on the need for search. The algorithm is sometimes called "Waltz 
filtering" in his honor. With shadows and nontrihedral angles, there are thousands 
of vertex labelings instead of 18, but there are also more constraints, so the constraint 
propagation actually does better than it does in our limited world. Waltz's approach 
and the Huffman-Clowes labels are covered in most introductory AI books, including 
Rich and Knight 1990, Charniak and McDermott 1985, and Winston 1984, Waltz's 
original paper appears in The Psychology of Computer Vision (Winston 1975), an in
fluential volume collecting early work done at MIT. He also contributed a summary 
article on Waltz filtering (Waltz 1990). 

Many introductory AI texts give vision short coverage, but Charniak and McDer
mott (1985) and Tanimoto (1990) provide good overviews of the field. Zucker (1990) 
provides an overview of low-level vision. 

Ramsey and Barrett (1987) give an implementation of a line-recognition program. 
It would make a good project to connect their program to the one presented in this 
chapter, and thereby go all the way from pixels to 3-D descriptions. 
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17.6 Exercises 
This chapter has solved the problem of line-labeling for polyhedra made of trihedral 
V e r t e x e s . The following exercises extend this solution. 

I¿] Exercise 17.1 [h] Use the line-labeling to produce a face labeling. Write a function 
that takes a labeled diagram as input and produces a list of the faces (planes) that 
comprise the diagram. 

@ Exercise 17.2 [h] Use the face labeling to produce a polyhedron labeling. Write 
a function that takes a hst of faces and a diagram and produces a list of polyhedra 
(blocks) that comprise the diagram. 

@ Exercise 17.3 [d] Extend the system to include quad-hedral V e r t e x e s and/or shad
ows. There is no conceptual difficulty in this, but it is a very demanding task to find 
all the possible vertex types and labelings for them. Consult Waltz 1975. 

t¿] Exercise 17.4 [d] Implement a program to recognize lines from pixels. 

@ Exercise 17.5 [d] If you have access to a workstation with a graphical interface, 
implement a program to allow a user to draw diagrams with a mouse. Have the 
program generate output in the form expected by construct-di agram. 



CHAPTER 18 

Search and the 
Game of Othello 

In the beginner's mind there are 
endless possibilities; 

in the expert's there are few. 

-Suzuki Roshi, Zen Master 

G ame playing has been the target of much early work in AI for three reasons. First, 
the rules of most games are formalized, and they can be implemented in a computer 
program rather easily. Second, in many games the interface requirements are trivial. 

The computer need only print out its moves and read in the opponent's moves. This is true for 
games like chess and checkers, but not for ping-pong and basketball, where vision and motor 
skills are crucial. Third, playing a good game of chess is considered by many an intellectual 
achievement. Newell, Shaw, and Simon say, "Chess is the intellectual game par excellence " and 
Donald Michie called chess the "Drosophila melanogaster of machine intelligence," meaning that 
chess is a relatively simple yet interesting domain that can lead to advances in AI, just as study 
of the fruit fly served to advance biology. 
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Today there is less emphasis on game playing in AI. It has been realized that 
techniques that work well in the limited domain of a board game do not necessarily 
lead to intelligent behavior in other domains. Also, as it turns out, the techniques 
that allow computers to play well are not the same as the techniques that good 
human players use. Humans are capable of recognizing abstract patterns learned 
from previous games, and formulating plans of attack and defense. While some 
computer programs try to emulate this approach, the more succesful programs 
work by rapidly searching thousands of possible sequences of moves, making fairly 
superficial evaluations of the worth of each sequence. 

While much previous work on game playing has concentrated on chess and 
checkers, this chapter demonstrates a program to play the game of Othello.^ Othello 
is a variation on the nineteenth-century game Reversi. It is an easy game to program 
because the rules are simpler than chess. Othello is also a rewarding game to 
program, because a simple search technique can yield an excellent player. There 
are two reasons for this. First, the number of legal moves per turn is low, so the 
search is not too explosive. Second, a single Othello move can flip a dozen or more 
opponent pieces. This makes it difficult for human players to visualize the long-range 
consequences of a move. Search-based programs are not confused, and thus do well 
relative to humans. 

The very name "Othello" derives from the fact that the game is so unpredictable, 
like the Moor of Venice. The name may also be an allusion to the line, "Your daughter 
and the Moor are now making the beast with two backs,"^ since the game pieces 
do indeed have two backs, one white and one black. In any case, the association 
between the game and the play carries over to the name of several programs: Cassio, 
lago, and Bill. The last two will be discussed in this chapter. They are equal to or 
better than even champion human players. We will be able to develop a simplified 
version that is not quite a champion but is much better than beginning players. 

18.1 The Rules of the Game 
Othello is played on a 8-by-8 board, which is initially set up with four pieces in the 
center, as shown in figure 18.1. The two players, black and white, alternate turns, 
with black playing first. On each turn, a player places a single piece of his own color 
on the board. No piece can be moved once it is placed, but subsequent moves may 
flip a piece from one color to another. Each piece must be placed so that it brackets 
one or more opponent pieces. That is, when black plays a piece there must be a 
line (horizontal, vertical, or diagonal) that goes through the piece just played, then 
through one or more white pieces, and then to another black piece. The intervening 

^Othello is a registered trademark of CBS Inc. Gameboard design © 1974 CBS Inc. 
^Othelh [I. i. 117] WiUiam Shakespeare. 
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white pieces are flipped over to black. If there are bracketed white pieces in more 
than one direction, they are all flipped. Figure 18.2 (a) indicates the legal moves for 
black with small dots. Figure 18.2 (b) shows the position after black moves to square 
b4. Players alternate turns, except that a player who has no legal moves must pass. 
When neither player has any moves, the game is over, and the player with the most 
pieces on the board wins. This usually happens because there are no empty squares 
left, but it occasionally happens earlier in the game. 

f g h 

O • • o 

Figure 18.1: The Othello Board 

β f g θ f g h 

o • o o • 
O o o o • • o 

o • • • • • 
o • o o • • o 

(b) 

Figure 18.2: Legal Othello Moves 
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18.2 Representation Choices 
In developing an Othello program, we will want to test out various strategies, playing 
those strategies against each other and against human players. We may also want 
our program to allow two humans to play a game. Therefore, our main function, 
othel 10, will be a monitoring function that takes as arguments two strategies. It 
uses these strategies to get each player's moves, and then applies these moves to a 
representation of the game board, perhaps printing out the board as it goes. 

The first choice to make is how to represent the board and the pieces on it. The 
board is an 8-by-8 square, and each square can be filled by a black or white piece or 
can be empty. Thus, an obvious representation choice is to make the board an 8-by-8 
array, where each element of the array is the symbol bl ack, whi te , or ni 1. 

Notice what is happening here: we are following the usual Lisp convention of 
implementing an enumerated type (the type of pieces that can fill a square) as a set 
of symbols. This is an appropriate representation because it supports the primary 
operation on elements of an enumerated type: test for equality using eq. It also 
supports input and output quite handily. 

In many other languages (such as C or Pascal), enumerated types are implemented 
as integers. In Pascal one could declare: 

type piece = (black, white, empty); 

to define pi ece as a set of three elements that is treated as a subtype of the integers. 
The language does not allow for direct input and output of such types, but equality 
can be checked. An advantage of this approach is that an element can be packed into 
a small space. In the Othello domain, we anticipate that efficiency will be important, 
because one way to pick a good move is to look at a large number of possible sequences 
of moves, and choose a sequence that leads toward a favorable result. Thus, we are 
willing to look hard at alternative representations to find an efficient one. It takes 
only two bits to represent one of the three possible types, while it takes many more 
(perhaps 32) to represent a symbol. Thus, we may save space by representing pieces 
as small integers rather than symbols. 

Next, we consider the board. The two-dimensional array seems like such an 
obvious choice that it is hard to imagine a better representation. We could consider 
an 8-element list of 8-element lists, but this would just waste space (for the cons 
cells) and time (in accessing the later elements of the lists). However, we will have to 
implement two other abstract data types that we have not yet considered: the square 
and the direction. We will need, for example, to represent the square that a player 
chooses to move into. This will be a pair of integers, such as 4 ,5 . We could represent 
this as a two-element list, or more compactly as a cons cell, but this still means that 
we may have to generate garbage (create a cons cell) every time we want to refer 
to a new square. Similarly, we need to be able to scan in a given direction from a 
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square, looking for pieces to flip. Directions will be represented as a pair of integers, 
such as +1,-1. One clever possibility is to use complex numbers for both squares and 
directions, with the real component mapped to the horizontal axis and the imaginary 
component mapped to the vertical axis. Then moving in a given direction from a 
square is accomplished by simply adding the direction to the square. But in most 
implementations, creating new complex numbers will also generate garbage. 

Another possibiUty is to represent squares (and directions) as two distinct inte
gers, and have the routines that manipulate them accept two arguments instead of 
one. This would be efficient, but it is losing an important abstraction: that squares 
(and directions) are conceptually single objects. 

A way out of this dilemma is to represent the board as a one-dimensional vector. 
Squares are represented as integers in the range 0 to 63. In most implementations, 
small integers (fixnums) are represented as immediate data that can be manipulated 
without generating garbage. Directions can also be implemented as integers, repre
senting the numerical difference between adjacent squares along that direction. To 
get a feel for this, take a look at the board: 

0 1 2 3 4 5 6 7 
8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 
24 25 26 27 28 29 30 31 
32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 
48 49 50 51 52 53 54 55 
56 57 58 59 60 61 62 63 

You can see that the direction +1 corresponds to movement to the right, +7 corre
sponds to diagonal movement downward and to the left, +8 is downward, and +9 is 
diagonally downward and to the right. The negations of these numbers (-1, -7, -8, -9) 
represent the opposite directions. 

There is one complication with this scheme: we need to know when we hit the 
edge of the board. Starting at square 0, we can move in direction +1 seven times to 
arrive at the right edge of the board, but we aren't allowed to move in that direction 
yet again to arrive at square 8. It is possible to check for the edge of the board by 
considering quotients and remainders modulo 8, but it is somewhat complicated and 
expensive to do so. 

A simpler solution is to represent the edge of the board explicitly, by using a 100-
element vector instead of a 64-element vector. The outlying elements are filled with a 
marker indicating that they are outside the board proper. This representation wastes 
some space but makes edge detection much simpler. It also has the minor advantage 
that legal squares are represented by numbers in the range 11-88, which makes them 
easier to understand while debugging. Here's the new 100-element board: 
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0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 16 17 18 19 
20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 
40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 
70 71 72 73 74 75 76 77 78 79 
80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 

The horizontal direction is now ± 1 , vertical is ± 1 0 , and the diagonals are ± 9 and 
± 1 1 . We'll tentatively adopt this latest representation, but leave open the possibility 
of changing to another format. With this much decided, we are ready to begin. 
Figure 18.3 is the glossary for the complete program. A glossary for a second version 
of the program is on page 623. 

What follows is the code for directions and pieces. We explicitly define the type 
p iece to be a number from empty to ou ter (0 to 3), and define the function name-of 
to map from a piece number to a character: a dot for empty, @ for black, 0 for white, 
and a question mark (which should never be printed) for outer . 

(defconstant a l l -d i rec t i ons ' ( - 1 1 -10 - 9 - 1 1 9 10 I D ) 

(defconstant empty 0 "An empty square") 
(defconstant black 1 "A black piece") 
(defconstant white 2 "A white piece") 
(defconstant outer 3 "Marks squares outside the 8x8 board") 

(deftype piece () ' ( in teger .empty .outer)) 

(defun name-of (piece) (char " . @ 0 ? " piece)) 

(defun opponent (player) ( i f (eql player black) white black)) 

And here is the code for the board. Note that we introduce the function b re f , 
for "board reference" rather than using the built-in function a re f . This facilitates 
possible changes to the representation of boards. Also, even though there is no 
contiguous range of numbers that represents the legal squares, we can define the 
constant a 11 - squa res to be a list of the 64 legal squares, computed as those numbers 
from 11 to 88 whose value mod 10 is between 1 and 8. 

(deftype board () ' (s imple-array piece (100))) 

(defun bref (board square) (aref board square)) 
(defsetf bref (board square) (va l ) 

' ( se t f (aref .board .square) . va l ) ) 
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Top-Level Function 
Othello Play a game of Othello. Return the score. 

Constants 
empty 0 represents an empty square. 
black 1 represents a black piece. 
white 2 represents a white piece. 
outer 3 represents a piece outside the 8 x 8 board. 
a l l -d i rec t ions A list of integers representing the eight directions. 
al l -squares A list of all legal squares. 
winning-value The best possible evaluation. 
los ing-va lue The worst possible evaluation. 

Data Types 
piece An integer from empty to outer. 
board A vector of 100 pieces. 

Major Functions 
get-move Call the player's strategy function to get a move. 
make-move Update board to reflect move by player. 
human A strategy that prompts a human player. 
random-strategy Make any legal move. 
maximi ze-di fference A strategy that maximizes the difference in pieces. 
maximizer Return a strategy that maximizes some measure. 
weighted-squares Sum of the weights of player's squares minus opponent's. 
modified-weighted-squares Like above, but treating corners better. 
mi ηimax Find the best move according to EVAL·FN, searching PLY levels. 
minimax-searcher Return a strategy that uses mi η i max to search. 
alpha-beta Find the best move according to EVAL-FN, searching PLY levels. 
alpha-beta-searcher Return a strategy that uses al pha - beta to search. 

Auxiliary Functions 
bref Reference to a position on the board. 
copy-board Make a new board. 
i n i t ia l -board Return a board, empty except for four pieces in the middle. 
print-board Print a board, along with some statistics. 
count-difference Count player's pieces minus opponent's pieces. 
name-of A character used to print a piece. 
opponent The opponent of black is white, and vice-versa. 
va l id -p A syntactically vahd square. 
legal-p A legal move on the board. 
make-f l ips Make any flips in the given direction. 
would- f l ip? Would this move result in any flips in this direction? 
f ind-bracket ing-piece Return the square number of the bracketing piece. 
any-legal-move? Does player have any legal moves in this position? 
next-to-play Compute the player to move next, or NIL if nobody can move. 
legal-moves Returns a list of legal moves for player. 
f ina l -va lue Is this a win, loss, or draw for player? 
neighbors Return a list of all squares adjacent to a square. 
swi tch-st rategies Play one strategy for a while, then switch. 

Previously Defined Functions 
random-elt Choose a random element from a sequence, (pg. 36) 

Figure 18.3: Glossary for the Othello Program 
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(defun copy-board (board) 

(copy-seq board)) 

(defconstant a l l -squares 

(loop for i from 11 to 88 when (<= 1 (mod i 10) 8) co l lect i ) ) 

(defun in i t i a l -board () 

"Return a board, empty except for four pieces in the middle." 

Boards are 100-element vectors, with elements 11-88 used, 

and the others marked with the sentinel OUTER. I n i t i a l l y 

the 4 center squares are taken, the others empty, 

( let ((board (make-array 100 :element-type 'piece 

: in i t ia l -e lement outer)) ) 

(do l i s t (square a l l - squares ) 

(set f (bref board square) empty)) 

(set f (bref board 44) white (bref board 45) black 

(bref board 54) black (bref board 55) white) 

board)) 

(defun print-board (board) 

"Pr int a board, along with some s t a t i s t i c s . " 

(format t "~2& 1 2 3 4 5 6 7 8 [~c=~2a ~c=''2a (~@d)]" 

(name-of black) (count black board) 

(name-of white) (count white board) 

(count-difference black board)) 

(loop for row from 1 to 8 do 

(format t "-& ~d " (* 10 row)) 

(loop for col from 1 to 8 

for piece = (bref board (+ col (* 10 row))) 

do (format t " "c " (name-of p iece)) ) ) 

(format t "~2&")) 

(defun count-difference (player board) 

"Count p layer ' s pieces minus opponent's p ieces . " 

(- (count player board) 

(count (opponent player) board))) 

Now let's take a look at the initial board, as it is printed by p r i n t - boa rd , and by a raw 
wri te (I added the line breaks to make it easier to read): 
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> (write ( in i t i a l -board) > (pr int-board ( i n i t i a l -boa rd ) ) 
rarray t ) 

#(3 3 3 3 3 3 3 3 3 3 1 2 3 4 5 6 7 8 C®=2 0=2 (-^0)1 
3 0 0 0 0 0 0 0 0 3 10 
3 0 0 0 0 0 0 0 0 3 20 
3 0 0 0 0 0 0 0 0 3 30 
3 0 0 0 2 1 0 0 0 3 4 0 . . . 0 @ . . . 
3 0 0 0 1 2 0 0 0 3 50 . . . ® 0 . . . 
3 0 0 0 0 0 0 0 0 3 60 
3 0 0 0 0 0 0 0 0 3 70 
3 0 0 0 0 0 0 0 0 3 80 
3 3 3 3 3 3 3 3 3 3) 

#<ART-2B-100 -72570734> NIL 

Notice that p r i nt - boa rd provides some additional information: the number of pieces 
that each player controls, and the difference between these two counts. 

The next step is to handle moves properly: given a board and a square to move 
to, update the board to reflect the effects of the player moving to that square. This 
means flipping some of the opponent's pieces. One design decision is whether the 
procedure that makes moves, make-move, will be responsible for checking for error 
conditions. My choice is that ma ke - move assumes it will be passed a legal move. That 
way, a strategy can use the function to explore sequences of moves that are known to 
be valid without slowing ma ke - move down. Of course, separate procedures will have 
to insure that a move is legal. Here we introduce two terms: a valid move is one that 
is syntactically correct: an integer from 11 to 88 that is not off the board. A legal move 
is a valid move into an empty square that will flip at least one opponent. Here's the 
code: 

(defun va l id -p (move) 
"Val id moves are numbers in the range 11-88 that end in 1-8. " 
(and ( integerp move) (<= 11 move 88) (<= 1 (mod move 10) 8 ) ) ) 

(defun lega l -p (move player board) 
"A Legal move must be into an empty square, and i t must 
f l i p at least one opponent p iece." 
(and (eql (bref board move) empty) 

(some #'(lambda (d i r ) (would- f l ip? move player board d i r ) ) 
a l l - d i r ec t i ons ) ) ) 

(defun make-move (move player board) 
"Update board to ref lect move by player" 

F i r s t make the move, then make any f l i p s 
(set f (bref board move) player) 
(do l i s t (d i r a l l - d i rec t i ons ) 

(make-f l ips move player board d i r ) ) 
board) 
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Now all we need is to make-fl i p s . To do that, we search in all directions for a 
bracketing piece: a piece belonging to the player who is making the move, which 
sandwiches a string of opponent pieces. If there are no opponent pieces in that 
direction, or if an empty or outer piece is hit before the player's piece, then no flips 
are made. Note that wou ld - f 1 i p ? is a semipredicate that returns false if no flips 
would be made in the given direction, and returns the square of the bracketing piece 
if there is one. 

(defun make-f l ips (move player board d i r ) 
"Make any f l i p s in the given d i rec t ion . " 
( let ((bracketer (would- f l ip? move player board d i r ) ) ) 

(when bracketer 
(loop for c from (+ move d i r ) by d i r unti l (eql c bracketer) 

do (set f (bref board c) p layer ) ) ) ) ) 

(defun would- f l ip? (move player board d i r ) 
"Would th i s move resul t in any f l i p s in th i s d i rec t ion? 
I f s o . return the square number of the bracketing p iece." 

A f l i p occurs i f , s tar t ing at the adjacent square, c. there 
i s a s t r ing of at least one opponent p ieces, bracketed by 
one of p layer ' s pieces 

( let ( (c (+ move d i r ) ) ) 
(and (eql (bref board c) (opponent p layer)) 

( f ind-bracket ing-piece (+ c d i r ) player board d i r ) ) ) ) 

(defun f ind-bracket ing-piece (square player board d i r ) 
"Return the square number of the bracketing p iece." 
(cond ((eql (bref board square) player) square) 

((eql (bref board square) (opponent p layer)) 
( f ind-bracket ing-piece (+ square d i r ) player board d i r ) ) 

(t n i l ) ) ) 

Finally we can write the function that actually monitors a game. But first we are 
faced with one more important choice: how will we represent a player? We have 
already distinguished between black and white's pieces, but we have not decided 
how to ask black or white for their moves. I choose to represent player's strategies 
as functions. Each function takes two arguments: the color to move (black or white) 
and the current board. The function should return a legal move number. 

(defun Othello (b l -s t ra tegy wh-strategy Äoptional (pr int t ) ) 
"Play a game of Othel lo. Return the score, where a pos i t i ve 
difference means black (the f i r s t player) w ins . " 
( le t ((board ( i n i t i a l -boa rd ) ) ) 

(loop for player = black 
then (next- to-play board player pr in t ) 

for strategy = ( i f (eql player black) 
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bl -s t ra tegy 
wh-strategy) 

unti l (null player) 
do (get-move strategy player board p r in t ) ) 

(when pr int 
(format t "~&The game i s over. Final r esu l t : " ) 
(pr int-board board)) 

(count-difference black board))) 

We need to be able to determine who plays next at any point. The rules say that 
players alternate turns, but if one player has no legal moves, the other can move 
again. When neither has a legal move, the game is over. This usually happens 
because there are no empty squares left, but it sometimes happens earlier in the 
game. The player with more pieces at the end of the game wins. If neither player has 
more, the game is a draw. 

(defun next-to-play (board previous-player pr in t ) 
"Compute the player to move next, or NIL i f nobody can move." 
( le t ((opp (opponent prev ious-p layer) ) ) 

(cond ((any-legal-move? opp board) opp) 
((any-legal-move? previous-player board) 

(when pr int 
(format t ""Ä^C has no moves and must p a s s . " 

(name-of opp))) 
previous-player) 

(t n i l ) ) ) ) 

(defun any-legal-move? (player board) 
"Does player have any legal moves in th i s pos i t i on? " 
(some #'(lambda (move) ( lega l -p move player board)) 

a l l - squares ) ) 

Note that the argument p r i n t (of O t h e l l o , n e x t - t o - p l a y , and below, get-move) 
determines if information about the progress of the game will be printed. For an 
interactive game, p r i nt should be true, but it is also possible to play a "batch" game 
with p r i nt set to false. 

In ge t - move below, the player's strategy function is called to determine his move. 
Illegal moves are detected, and proper moves are reported when p r i n t is true. The 
strategy function is passed a number representing the player to move (black or white) 
and a copy of the board. If we passed the real game board, the function could cheat 
by changing the pieces on the board! 
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(defun get-move (strategy player board pr in t ) 
"Call the p laye r ' s strategy function to get a move. 
Keep ca l l i ng unti l a legal move i s made." 
(when pr int (pr int-board board)) 
( le t ((move (funcal l strategy player (copy-board board)))) 

(cond 
((and (va l id -p move) ( lega l -p move player board)) 
(when pr int 

(format t "'^&'Ό moves to ~ d . " (name-of player) move)) 
(make-move move player board)) 

(t (warn " I l l ega l move: ~d" move) 
(get-move strategy player board p r i n t ) ) ) ) ) 

Here we define two simple strategies: 

(defun human (player board) 
"A human player for the game of Othel lo" 
(declare ( ignore board)) 
(format t "~&~c to move: " (name-of p layer)) 
(read)) 

(defun random-strategy (player board) 
"Make any legal move." 
(random-elt (legal-moves player board))) 

(defun legal-moves (player board) 
"Returns a l i s t of legal moves for player" 
(loop for move in a l l -squares 

when ( lega l -p move player board) co l lect move)) 

We are now in a position to play the game. The expression 
(o the l 1 0 # * human # ' human) will let two people play against each other. Alternately, 
(o the l l o # ' random-s t ra tegy # 'human) will allow us to match our wits against a 
particularly poor strategy. The rest of this chapter shows how to develop a better 
strategy. 

18.3 Evaluating Positions 

The random-move strategy is, of course, a poor one. We would like to make a good 
move rather than a random move, but so far we don't know what makes a good 
move. The only positions we are able to evaluate for sure are final positions: when 
the game is over, we know that the player with the most pieces wins. This suggests a 
strategy: choose the move that maximizes count-di f f erence, the piece differential. 
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The function maxi mi ze -di f f erence does just that. It calls maxi mi zer, a higher-order 
function that chooses the best move according to an arbitrary evaluation function. 

(defun maximize-difference (player board) 
"A strategy that maximizes the dif ference in p ieces . " 
(funcall (maximizer # 'count-di f ference) player board)) 

(defun maximizer (eval - fn) 
"Return a strategy that wi l l consider every legal move, 
apply EVAL-FN to each resu l t ing board, and choose 
the move for which EVAL-FN returns the best score. 
FN takes two arguments: the player-to-move and board" 
#*(lambda (player board) 

( le t * ((moves (legal-moves player board)) 
(scores (mapcar #'(lambda (move) 

(funcal l 
eva l - fn 
player 
(make-move move player 

(copy-board board)))) 
moves)) 

(best (apply #*max scores ) ) ) 
(e l t moves (pos i t ion best sco res ) ) ) ) ) 

© Exercise 18.1 Playsomegameswithmaximize-differenceagainstrandom-strategy 
and human. How good is maximize-di f ference? 

Those who complete the exercise will quickly see that the maximi ze -di f f erence 
player does better than random, and may even beat human players in their first game 
or two. But most humans are able to improve, learning to take advantage of the 
overly greedy play of maximi ze -di f f erence. Humans learn that the edge squares, 
for example, are valuable because the player dominating the edges can surround the 
opponent, while it is difficult to recapture an edge. This is especially true of corner 
squares, which can never be recaptured. 

Using this knowledge, a clever player can temporarily sacrifice pieces to obtain 
edge and corner squares in the short run, and win back pieces in the long run. 
We can approximate some of this reasoning with the weighted-squa res evaluation 
function. Like count -d i f fe rence , it adds up all the player's pieces and subtracts 
the opponents, but each piece is weighted according to the square it occupies. Edge 
squares are weighted highly, corner squares higher still, and squares adjacent to the 
corners and edges have negative weights, because occupying these squares often 
gives the opponent a means of capturing the desirable square. Figure 18.4 shows 
the standard nomenclature for edge squares: X, A, B, and C. In general, X and C 
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squares are to be avoided, because taking them gives the opponent a chance to take 
the corner. The wei ghted-squares evaluation function reflects this. 

a b c d e f g h 

1 c A Β Β A C 
2 c X X c 
3 A A 

4 Β Β 

5 Β Β 

6 A A 

7 C X X C 

8 c A Β Β A c 

Figure 18.4: Names for Edge Squares 

(defparameter ^weights* 
'#(0 0 0 0 0 0 

0 120 -20 20 5 5 
0 -20 -40 -5 -5 -5 
0 20 -5 15 3 3 

5 - 5 3 3 3 
5 - 5 3 3 3 

20 -5 15 3 3 

0 0 0 0 
20 -20 120 0 

-40 -20 0 
-5 
-5 
-5 
-5 

-5 
15 

3 
3 

15 

20 0 
5 0 
5 0 

20 0 
-20 -40 -5 -5 -5 -5 -40 -20 0 
120 -20 20 5 5 20 -20 120 0 

0 0 0 0 0 0 0 0 0)) 

(defun weighted-squares (player board) 
"Sum of the weights of p layer ' s squares minus opponent 's . " 
( let ((opp (opponent p layer ) ) ) 

(loop for i in a l l -squares 
when (eql (bref board i ) player) 
sum (aref *weights* i ) 
when (eql (bref board i ) opp) 
sum (- (aref ^weights* i ) ) ) ) ) 

@ Exercise 18.2 Compare strategies by evaluating the two forms below. What hap
pens? Is this a good test to determine which strategy is better? 
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(Othello (maximizer #'weighted-squares) 
(maximizer #*count-difference) n i l ) 

(Othello (maximizer #'count-difference) 
(maximizer #'weighted-squares) n i l ) 

18.4 Searching Ahead: Minimax 
Even the weighted-squares strategy is no match for an experienced player. There 
are two ways we could improve the strategy. First, we could modify the evaluation 
function to take more information into account. But even without changing the 
evaluation function, we can improve the strategy by searching ahead. Instead of 
choosing the move that leads immediately to the highest score, we can also consider 
the opponent's possible replies, our replies to those replies, and so on. By searching 
through several levels of moves, we can steer away from potential disaster and find 
good moves that were not immediately apparent. 

Another way to look at the maxi mi ze r function is as a search function that searches 
only one level, or ply, deep: 

The top of the tree is the current board position, and the squares below that indicate 
possible moves. The maxi mi zer function evaluates each of these and picks the best 
move, which is underlined in the diagram. 

Now let's see how a 3-ply search might go. The first step is to apply maxi mi zer to 
the positions just above the bottom of the tree. Suppose we get the following values: 
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Each position is shown as having two possible legal moves, which is unreahstic 
but makes the diagram fit on the page. In a real game, five to ten legal moves per 
position is typical. The values at the leaves of the tree were computed by applying 
the evaluation function, while the values one level up were computed by maxi mi zer. 
The result is that we know what our best move is for any of the four positions just 
above the bottom of the tree. 

Going up a level, it is the opponent's turn to move. We can assume the opponent 
will choose the move that results in the minimal value to us, which would be the 
maximal value to the opponent. Thus, the opponent's choices would be the 10- and 
9-valued positions, avoiding the 20- and 23-valued positions. 
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Now it is our turn to move again, so we apply maxi mi zer once again to get the final 
value of the top-level position: 

If the opponent plays as expected, we will always follow the left branch of the tree 
and end up at the position with value 10. If the opponent plays otherwise, we will 
end up at a position with a better value. 

This kind of search is traditionally called a minimax search, because of the alternate 
application of the maxi mi zer and a hypothetical mi ni mi zer function. Notice that only 
the leaf positions in the tree are looked at by the evaluation function. The value of all 
other positions is determined by minimizing and maximizing. 

We are almost ready to code the minimax algorithm, but first we have to make 
a few design decisions. First, we could write two functions, mi nimax and maxi mi n, 
which correspond to the two players' analyses. However, it is easier to write a single 
function that maximizes the value of a position for a particular player. In other words, 
by adding the player as a parameter, we avoid having to write two otherwise identical 
functions. 

Second, we have to decide if we are going to write a general minimax searcher 
or an Othello-specific searcher. I decided on the latter for efficiency reasons, and 
because there are some Othello-specific complications that need to be accounted for. 
First, it is possible that a player will not have any legal moves. In that case, we want 
to continue the search with the opponent to move. If the opponent has no moves 
either, then the game is over, and the value of the position can be determined with 
finality by counting the pieces. 

Third, we need to decide the interaction between the normal evaluation function 
and this final evaluation that occurs when the game is over. We could insist that 
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each evaluation function determine when the game is over and do the proper com
putation. But that overburdens the evaluation functions and may lead to wasteful 
checking for the end of game. Instead, I implemented a separate f i nal - val ue eval
uation function, which returns 0 for a draw, a large positive number for a win, and 
a large negative number for a loss. Because fixnum arithmetic is most efficient, the 
constants m o s t - p o s i t i v e - f i x n u m and m o s t - n e g a t i v e - f i x n u m are used. The evalu
ation functions must be careful to return numbers that are within this range. All 
the evaluation functions in this chapter will be within range if fixnums are 20 bits 
or more. 

In a tournament, it is not only important who wins and loses, but also by how 
much. If we were trying to maximize the margin of victory, then f i na 1 - va 1 ue would 
be changed to include a small factor for the final difference. 

(defconstant winning-value most-posit ive-f ixnum) 
(defconstant los ing-va lue most-negative-fixnum) 

(defun f ina l -va lue (player board) 
" I s th is a win. l o s s , or draw for p layer?" 
(case (Signum (count-difference player board)) 

(-1 los ing-va lue) 
( 0 0) 
(+1 winning-value))) 

Fourth, and finally, we need to decide on the parameters for the minimax function. 
Like the other evaluation functions, it needs the player to move and the current board 
as parameters. It also needs an indication of how many ply to search, and the static 
evaluation function to apply to the leaf positions. Thus, minimax will be a function 
of four arguments. What will it return? It needs to return the best move, but it also 
needs to return the value of that move, according to the static evaluation function. 
We use multiple values for this. 

(defun minimax (player board ply eval - fn) 
"Find the best move, for PLAYER, according to EVAL-FN. 
searching PLY levels deep and backing up va lues . " 
( i f (= ply 0) 

(funcall eval - fn player board) 
( let ((moves (legal-moves player board))) 

( i f (null moves) 
( i f (any-legal-move? (opponent player) board) 

(- (minimax (opponent player) board 
(- ply 1) eva l - fn ) ) 

( f ina l -va lue player board)) 
( let ((best-move n i l ) 

(best-val n i l ) ) 
(do l i s t (move moves) 
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( le t * ((board2 (make-move move player 
(copy-board board))) 

(val (- (minimax 
(opponent player) board2 
(- ply 1) eva l - f n ) ) ) ) 

(when (or (null bes t -va l ) 
(> val bes t -va l ) ) 

(set f best-val va l ) 
(set f best-move move)))) 

(values best-val best-move)))))) 

The mi η i max function cannot be used as a strategy function as is, because it takes too 
many arguments and returns too many values. The functional minimax-searcher 
returns an appropriate strategy. Remember that a strategy is a fimction of two 
arguments: the player and the board, get-move is responsible for passing the right 
arguments to the function, so the strategy need not worry about where the arguments 
come from. 

(defun minimax-searcher (ply eva l - fn) 
"A strategy that searches PLY leve ls and then uses EVAL-FN." 
#*(lambda (player board) 

(mult ip le-value-bind (value move) 
(minimax player board ply eva l - fn ) 

(declare ( ignore value)) 
move))) 

We can test the minimax strategy, and see that searching ahead 3 ply is indeed better 
than looking at only 1 ply. I show only the final result, which demonstrates that it is 
indeed an advantage to be able to look ahead: 

> (Othello (minimax-searcher 3 #*count-dif ference) 
(maximizer # 'count-d i f ference)) 

The game i s over. Final resu l t : 

1 2 3 4 5 6 7 8 [®=53 0=0 (+53)] 

20®®®@®@®@ 
3 0 @ @ @ @ ® ® @ @ 
4 0 @ @ @ @ @ @ @ @ 
5 0 @ @ @ @ @ @ @ @ 
60 . . @ ® @ ® @ @ 
70 . . . @ @ @ @ ® 
80 . . . . ® ® . . 



18,5 SMARTER SEARCHING: ALPHA-BETA SEARCH 615 

18.5 Smarter Searching: Alpha-Beta Search 
The problem with a full minimax search is that it considers too many positions. It 
looks at every line of play, including many improbable ones. Fortunately, there is a 
way to find the optimal line of play without looking at every possible position. Let's 
go back to our familiar search tree: 

Here we have marked certain positions with question marks. The idea is that the 
whole search tree evaluates to 10 regardless of the value of the positions labeled ? i . 
Consider the position labeled ?i. It does not matter what this position evaluates to, 
because the opponent will always choose to play toward the 10-position, to avoid the 
possibility of the 15. Thus, we can cut off the search at this point and not consider 
the ?-position. This kind of cutoff has historically been called a beta cutoff. 

Now consider the position labeled ? 4 . It does not matter what this position 
evaluates to, because we will always prefer to choose the 10 position at the left 
branch, rather than giving the opponent a chance to play to the 9-position. This is an 
alpha cutoff. Notice that it cuts off a whole subtree of positions below it (labeled ? 2 
and ? 3 ) . 

In general, we keep track of two parameters that bound the true value of the 
current position. The lower bound is a value we know we can achieve by choosing a 
certain line of play. The idea is that we need not even consider moves that will lead 
to a value lower than this. The lower bound has traditionally been called alpha, but 
we will name it achi evabl e. The upper bound represents a value the opponent can 
achieve by choosing a certain line of play. It has been called beta, but we will call it 
cutoff. Again, the idea is that we need not consider moves with a higher value than 
this (because then the opponent would avoid the move that is so good for us). The 
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alpha-beta algorithm is just minimax, but with some needless evaluations pruned by 
these two parameters. 

In deeper trees with higher branching factors, many more evaluations can be 
pruned. In general, a tree of depth d and branching factor b requires b^ evaluations 
for full minimax, and as few as 6^/^ evaluations with alpha-beta minimax. 

To implement alpha-beta search, we add two more parameters to the function 
minimax and rename it a lpha-beta , achievable is the best score the player can 
achieve; it is what we want to maximize. The c u t o f f is a value that, when exceeded, 
will make the opponent choose another branch of the tree, thus making the rest of 
the current level of the tree irrelevant. The test unti 1 (>= achi evabl e c u t o f f ) in 
the penultimate line of minimax does the cutoff; all the other changes just involve 
passing the parameters around properly. 

(defun alpha-beta (player board achievable cutoff ply eva l - fn) 
"Find the best move, for PLAYER, according to EVAL-FN, 
searching PLY leve ls deep and backing up va lues, 
using cutoffs whenever p o s s i b l e . " 
( i f (= ply 0) 

(funcal l eval - fn player board) 
( le t ((moves (legal-moves player board))) 

( i f (null moves) 
( i f (any-legal-move? (opponent player) board) 

(- (alpha-beta (opponent player) board 
(- cutoff) (- achievable) 
(- ply 1) eva l - fn ) ) 

( f ina l -va lue player board)) 
( let ((best-move ( f i r s t moves))) 

(loop for move in moves do 
( le t * ((boardZ (make-move move player 

(copy-board board))) 
(val (- (alpha-beta 

(opponent player) board2 
(- cutoff) (- achievable) 
(- ply 1) eva l - f n ) ) ) ) 

(when (> val achievable) 
(set f achievable va l ) 
(set f best-move move))) 

unt i l (>= achievable cutof f ) ) 
(values achievable best-move)))))) 

(defun alpha-beta-searcher (depth eva l - fn) 
"A strategy that searches to DEPTH and then uses EVAL-FN." 
#·(lambda (player board) 

(mult ip le-value-bind (value move) 
(alpha-beta player board los ing-va lue winning-value 

depth eva l - fn ) 
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(declare ( ignore value)) 
move))) 

It must be stressed that a 1 pha - beta computes the exact same result as the full-search 
version of mi η i max. The only advantage of the cutoffs is making the search go faster 
by considering fewer positions. 

18.6 An Analysis of Some Games 

Now is a good time to stop and analyze where we have gone. We've demonstrated a 
program that can play a legal game of Othello, and some strategies that may or may 
not play a good game. First, we'll look at some individual games to see the mistakes 
made by some strategies, and then we'll generate some statistics for series of games. 

Is the weighted-squares measure a good one? We can compare it to a strategy of 
maximizing the number of pieces. Such a strategy would of course be perfect if it 
could look ahead to the end of the game, but the speed of our computers limits us 
to searching only a few ply, even with cutoffs. Consider the following game, where 
black is maximizing the difference in the number of pieces, and white is maximizing 
the weighted sum of squares. Both search to a depth of 4 ply: 

> ( O t h e l l o (alpha-beta-searcher 4 # 'count-di f ference) 
(alpha-beta-searcher 4 #*weighted-squares)) 

Black is able to increase the piece difference dramatically as the game progresses. 
After 17 moves, white is down to only one piece: 

1 2 3 4 5 6 7 8 [@=20 0=1 (+19)] 
10 0 @ 
20 . ® . . . @ @ . 
30 @ @ @ @ @ @ . . 
40 . @ . ® ® . . . 
50 ® @ @ ® @ ® . . 

60 . @ 
70 
80 

Although behind by 19 points, white is actually in a good position, because the piece 
in the corner is safe and threatens many of black's pieces. White is able to maintain 
good position while being numerically far behind black, as shown in these positions 
later in the game: 
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[e=32 0=15 (+17)] 1 2 3 4 5 6 7 8 
10 0 0 0 0 @ @ 0 0 
20 @ @ 0 @ @ @ @ @ 

30 @ @ 0 0 ® 0 @ @ 

40 0 0 @ @ @ @ @ @ 

50 @ 0 @ @ @ @ 

60 @ @ 0 @ ® 0 
70 @ . . @ @ . 

80 

1 2 3 4 5 6 7 8 
10 0 0 0 0 @ @ 0 0 
20 @ @ 0 @ @ @ @ @ 

30 @ @ 0 0 ® 0 @ @ 

40 0 ® 0 ® @ @ @ @ 

50 0 ® 0 ® @ @ @ . 

60 0 @ 0 ® @ @ 

70 0 ® @ @ @ . 

80 0 ® 0 . 

[®=34 0=19 (+15)] 

After some give-and-take, white gains the advantage for good by capturing eight 
pieces on a move to square 85 on the third-to-last move of the game: 

[@=31 0=30 (+1)] 1 2 3 4 5 6 7 8 
10 0 0 0 0 @ @ 0 0 
20 @ @ 0 0 @ @ @ 0 
30 ® ® 0 0 0 ® @ 0 
40 0 ® 0 0 0 ® @ 0 
50 0 @ 0 @ 0 ® @ 0 
60 0 @ 0 @ @ @ @ 0 
70 0 @ @ @ @ @ 0 0 
80 0 @ @ @ . . • 0 

0 moves to 85. 

1 2 3 4 5 6 7 8 
10 0 0 0 0 ® ® 0 0 
20 ® @ 0 0 ® ® @ 0 
30 @ ® 0 0 0 ® @ 0 
40 0 ® 0 0 0 ® @ 0 
50 0 ® 0 @ 0 @ @ 0 
60 0 ® 0 @ 0 ® 0 0 
70 0 ® @ 0 0 0 0 0 
80 0 0 0 0 0 . • 0 

® moves to 86. 

[®=23 0=39 ( -16) ] 
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1 2 3 4 5 6 7 8 [@=26 0=37 (-11)] 
10 0 0 0 0 @ @ 0 0 
2 0 @ @ 0 0 ® @ @ 0 
3 0 ® ® 0 0 0 @ @ 0 
40 0 @ 0 0 0 ® ® 0 
50 0 @ 0 ® 0 ® @ 0 
60 0 ® 0 ® 0 ® 0 0 
70 0 @ ® 0 ® ® 0 0 
80 0 0 0 0 0 ® . 0 

0 moves to 87. 
The game i s over. Final resu l t : 

1 2 3 4 5 6 7 8 
10 0 0 0 0 @ ® 0 0 
2 0 @ @ 0 0 ® @ ® 0 
3 0 ® ® 0 0 0 @ ® 0 
40 0 ® 0 0 0 ® ® 0 
50 0 ® 0 ® 0 ® ® 0 
60 0 @ 0 ® 0 ® 0 0 
70 0 ® ® 0 ® 0 0 0 
80 0 0 0 0 0 0 0 0 

-16 

[@=24 0=40 (-16)] 

White ends up winning by 16 pieces. Black's strategy was too greedy: black was 
willing to give up position (all four corners and all but four of the edge squares) for 
temporary gains in material. 

Increasing the depth of search does not compensate for a faulty evaluation func
tion. In the following game, black's search depth is increased to 6 ply, while white's 
is kept at 4. The same things happen, although black's doom takes a bit longer to 
unfold. 

> ( O t h e l l o ( a l p h a - b e t a - s e a r c h e r 6 # ' c o u n t - d i f f e r e n c e ) 

( a l p h a - b e t a - s e a r c h e r 4 # ' w e i g h t e d - s q u a r e s ) ) 

Black slowly builds up an advantage: 

1 2 3 4 5 6 7 8 [®=21 0=8 (+13)] 
10 . . @ @ @ @ @ 
20 . ® . @ 0 ® . 
30 0 @ @ 0 ® 0 0 
40 . @ . @ 0 ® 0 
50 . @ ® ® @ ® . 
60 . @ . ® . 0 . 
70 
80 
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But at this point white has clear access to the upper left corner, and through that 
corner threatens to take the whole top edge. Still, black maintains a material edge as 
the game goes on: 

1 2 3 4 5 6 7 8 [®=34 0=11 (+23)] 
10 0 . @ @ ® ® @ . 
20 . 0 0 @ @ @ . . 
30 0 @ 0 0 @ @ ® ® 
4 0 ® ® ® @ 0 ® @ . 
5 0 @ ® @ ® ® 0 @ . 
6 0 ® ® ® ® ® ® 0 0 
70 ® . . ® . . ® 0 
80 

But eventually white's weighted-squares strategy takes the lead: 

1 2 3 4 5 6 7 8 [®=23 0=27 ( -4) ] 
10 0 0 0 0 0 0 0 0 
20 @ @ 0 ® ® ® . . 
30 0 ® 0 0 ® @ ® @ 
40 0 @ 0 ® 0 @ @ . 
50 0 @ 0 @ @ 0 ® . 
60 0 0 0 @ ® @ 0 0 
70 0 . 0 ® . . ® 0 
80 0 

and is able to hold on to win: 

1 2 3 4 5 6 7 8 [®=24 0=40 ( -16) ] 
10 0 0 0 0 0 0 0 0 
2 0 @ @ 0 ® 0 0 @ ® 
30 0 @ 0 0 ® ® ® @ 
40 0 ® 0 0 @ ® ® 0 
50 0 0 @ ® 0 ® 0 0 
60 0 0 0 @ 0 ® ® 0 
70 0 0 0 0 ® ® 0 0 
80 0 0 0 0 0 ® ® 0 

-16 

This shows that brute-force searching is not a panacea. While it is helpful to be able 
to search deeper, greater gains can be made by making the evaluation function more 
accurate. There are many problems with the weighted-squares evaluation function. 
Consider again this position from the first game above: 
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1 2 3 4 5 6 7 8 [@=20 0=1 (+19)] 
10 0 @ 
20 . @ . . . @ ® . 
30 ® @ @ @ ® @ . . 
40 . ® . @ @ . . . 
50 @ @ ® @ @ ® . . 
60 . ® 
70 
80 

Here white, playing the weighted-squares strategy, chose to play 66. This is probably 
a mistake, as 13 would extend white's dominance of the top edge, and allow white to 
play again (since black would have no legal moves). Unfortunately, white rejects this 
move, primarily because square 12 is weighted as -20. Thus, there is a disincentive 
to taking this square. But 12 is weighted -20 because it is a bad idea to take such a 
square when the corner is empty—the opponent will then have a chance to capture 
the corner, regaining the 12 square as well. Thus, we want squares like 12 to have a 
negative score when the corner is empty, but not when it is already occupied. The 
modi f i ed - wei ghted - squa res evaluation function does just that. 

(defun modified-weighted-squares (player board) 
"Like WEIGHTED-SQUARES, but don' t take off for moving 
near an occupied corner." 
( let ((w (weighted-squares player board))) 

(do l i s t (corner ' ( 1 1 18 81 88)) 
(when (not (eql (bref board corner) empty)) 

(do l i s t (c (neighbors corner)) 
(when (not (eql (bref board c) empty)) 

( inc f w (* (- 5 (aref *weights* c ) ) 
( i f (eql (bref board c) player) 

+1 - 1 ) ) ) ) ) ) ) 
w)) 

( le t ((neighbor-table (make-array 100 l in i t ia l -e lement n i l ) ) ) 
; ; I n i t i a l i z e the neighbor table 
(do l i s t (square a l l - squares) 

(do l i s t (d i r a l l - d i rec t i ons ) 
( i f (va l id-p (+ square d i r ) ) 

(push (+ square d i r ) 
(aref neighbor-table square) ) ) ) ) 

(defun neighbors (square) 
"Return a l i s t of a l l squares adjacent to a square." 
(aref neighbor-table square))) 
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18.7 The Tournament Version of Othello 

While the othel 1 o function serves as a perfectly good moderator for casual play, 
there are two points that need to be fixed for tournament-level play. First, tournament 
games are played under a strict time limit: a player who takes over 30 minutes total 
to make all the moves forfeits the game. Second, the standard notation for Othello 
games uses square names in the range a l to h8, rather than in the 11 to 88 range that 
we have used so far. a l is the upper left corner, a8 is the lower left corner, and h8 is 
the lower right corner. We can write routines to translate between this notation and 
the one we were using by creating a table of square names. 

( le t ((square-names 
(cross-product #'symbol 

' ( ? a b c d e f g h ? ) 
' ( 7 1 2 3 4 5 6 7 8 ? ) ) ) ) 

(defun h8->88 (s t r ) 
"Convert from alphanumeric to numeric square notat ion. " 
(or (pos i t ion (s t r ing s t r ) square-names rtest # ' s t r i ng -equa l ) 

s t r ) ) 

(defun 88->h8 (num) 
"Convert from numeric to alphanumeric square notat ion. " 
( i f (va l id-p num) 

(e l t square-names num) 
num))) 

(defun cross-product (fn x l i s t y l i s t ) 
"Return a l i s t of al l (fn χ y) va lues . " 
(mappend #*(lambda (y) 

(mapcar #'(lambda (x) (funcal l fn χ y ) ) 
x l i s t ) ) 

y l i s t ) ) 

Note that these routines return their input unchanged when it is not one of the 
expected values. This is to allow commands other than moving to a particular 
square. For example, we will add a feature that recognizes res i gn as a move. 

The h uma η player needs to be changed slightly to read moves in this format. While 
we're at it, we'll also print the list of possible moves: 

(defun human (player board) 
"A human player for the game of Othel lo" 
(format t "~&~c to move " a : " (name-of player) 

(mapcar #*88->h8 (legal-moves player board))) 
(h8->88 (read))) 
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Top-Level Functions 
Othello-series Play a series of Ν games. 
random-Othello-series Play a series of games, starting from a random position. 
round-robin Play a tournament among strategies. 

Special Variables 
*clock* A copy of the game clock (tournament version only). 
*board* A copy of the game board (tournament version only). 
*move-number* Number of moves made (tournament version only). 
*ply-boards* A vector of boards; used as a resource to avoid consing. 

Data Structures 
node Holds a board and its evaluation. 

Main Functions 
alpha-beta2 Sorts moves by static evaluation. 
alpha-beta-searcher2 Strategy using a 1 pha - beta2. 
alpha-beta3 Uses the killer heuristic. 
alpha-beta-searcher3 Strategy using a 1 pha - beta3. 
lago-eval Evaluation function based on Rosenbloom's program. 
lago Strategy using lago-eval. 

Auxiliary Functions 
h8->88 Convert from alphanumeric to numeric square notation. 
88->h8 Convert from numeric to alphanumeric square notation. 
time-string Convert internal time units to a mm.ss string. 
switch-strategies Play one strategy for a while, then another. 
mobil ity A strategy that counts the number of legal moves. 
legal-nodes A list of legal moves sorted by their evaluation. 
negate-node Set the value of a node to its negative. 
put - f i rs t Put the killer move first, if it is legal. 

Previously Defined Fimctions 
cross-product Apply fn to all pairs of arguments, (pg. 47) 
symbol Build a symbol by concatenating components. 

Figure 18.5: Glossary for the Tournament Version of Othello 

The othel 10 function needn't worry about notation, but it does need to monitor the 
time. We make up a new data structure, the clock, which is an array of integers 
saying how much time (in internal units) each player has left. For example, (aref 
cl ock bl ack) is the amount of time black has left to make all his moves. In Pascal, 
we would declare the clock array as arrayCbl ack. .white], but in Common Lisp all 
arrays are zero-based, so we need an array of three elements to allow the subscript 
black, which is 2. 

The clock is passed to get - move and print - boa rd but is otherwise unused. I could 
have complicated the main game loop by adding tests for forfeits because of expired 
time and, as we shall see later, resignation by either player. However, I felt that would 
add a great deal of complexity for rarely used options. Instead, I wrap the whole game 
loop, along with the computation of the final score, in a catch special form. Then, if 
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get-move encounters a forfeit or resignation, it can throw an appropriate final score: 
64 or -64, depending on which player forfeits. 

(defvar *move-number* 1 "The number of the move to be played") 

(defun Othello (b l -s t ra tegy wh-strategy 
Äoptional (pr int t ) (minutes 30)) 

"Play a game of Othel lo. Return the score, where a pos i t i ve 
difference means black, the f i r s t p layer, w ins . " 
( le t ((board ( i n i t i a l -boa rd ) ) 

(clock (make-array (+ 1 (max black white)) 
: in i t ia l -e lement 
(* minutes 60 

in terna l - t ime-uni ts -per-second)) ) ) 
(catch 'game-over 

(loop for *move-number* from 1 
for player = black then (next- to-play board player pr in t ) 
for strategy = ( i f (eql player black) 

b l -s t ra tegy 
wh-strategy) 

unt i l (null player) 
do (get-move strategy player board pr int c lock)) 

(when pr int 
(format t "~&The game i s over. Final r e s u l t : " ) 
(pr int-board board c lock)) 

(count-difference black board))) ) 

Strategies now have to comply with the time-limit rule, so they may want to look at 
the time remaining. Rather than passing the clock in as an argument to the strategy, I 
decided to store the clock in the special variable * c l ock*. The new version of othel 10 
also keeps track of the *move-number*. This also could have been passed to the 
strategy functions as a parameter. But adding these extra arguments would require 
changes to all the strategies we have developed so far. By storing the information in 
special variables, strategies that want to can look at the clock or the move number, 
but other strategies don't have to know about them. 

We still have the security problem-we don't want a strategy to be able to set the 
opponent's remaining time to zero and thereby win the game. Thus, we use * c l ock* 
only as a copy of the "real" game clock. The function repl ace copies the real clock 
into * c l ock*, and also copies the real board into * b o a r d * . 

(defvar *c lock* (make-array 3) "A copy of the game c lock") 
(defvar *board* ( in i t i a l -board ) "A copy of the game board") 
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(defun get-move (strategy player board pr int clock) 
"Call the p layer ' s strategy function to get a move. 
Keep ca l l i ng unti l a legal move i s made." 

Note we don' t pass the strategy function the REAL board. 
; ; I f we d id , i t could cheat by changing the pieces on the board, 
(when pr int (pr int-board board c lock)) 
(replace *c lock* clock) 
( le t * ((to (get - in terna l - rea l - t ime)) 

(move (funcall strategy player (replace *board* board))) 
(tl (get - in terna l - rea l - t ime)) ) 

(decf (e l t clock player) (- tl tO)) 
(cond 

( « (e l t clock player) 0) 
(format t " "Ä^c has no time le f t and f o r f e i t s . " 

(name-of p layer)) 
(THROW 'game-over ( i f (eql player black) -64 64)) ) 

((eq move ' res ign ) 
(THROW 'game-over ( i f (eql player black) -64 64)) ) 

((and (va l id-p move) ( lega l -p move player board)) 
(when pr int 

(format t "^Ä 'O moves to ~ a . " 
(name-of player) (88->h8 move))) 

(make-move move player board)) 
(t (warn " I l l ega l move: ~a" (88->h8 move)) 

(get-move strategy player board pr int c l ock ) ) ) ) ) 

Finally, the function p r i n t - boa rd needs to print the time remaining for each player; 
this requires an auxiliary function to get the number of minutes and seconds from an 
internal-format time interval. Note that we make the arguments optional, so that in 
debugging one can say just ( p r i n t - boa rd ) to see the current situation. Also note the 
esoteric format option: " ~2 / Od" prints a decimal number using at least two places, 
padding on the left with zeros. 

(defun print-board (Äoptional (board *board*) clock) 
"Pr int a board, along with some s t a t i s t i c s . " 

F i r s t pr int the header and the current score 
(format t "~2& a b c d e f g h [~c=~2a ~c=~2a ("©d)]" 

(name-of black) (count black board) 
(name-of white) (count white board) 
(count-difference black board)) 

Pr int the board i t s e l f 
(loop for row from 1 to 8 do 

(format t "~& ~d " row) 
(loop for col from 1 to 8 

for piece = (bref board (+ col (* 10 row))) 
do (format t "~c " (name-of p iece)) ) ) 
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; : F ina l ly pr int the time remaining for each player 
(when clock 

(format t " ["'c='"a ~c=~a]~2&" 
(name-of black) ( t ime-str ing (e l t clock black)) 
(name-of white) ( t ime-str ing (e l t clock whi te) ) ) ) ) 

(defun t ime-str ing (time) 
"Return a s t r ing representing th i s internal time in min isecs. 
(mult iple-value-bind (min sec) 

( f loor (round time internal- t ime-uni ts-per-second) 60) 
(format ni l ""Zdrz/Od" min sec) ) ) 

18.8 Playing a Series of Games 
A single game is not enough to establish that one strategy is better than another. The 
following function allows two strategies to compete in a series of games: 

(defun O t h e l l o - s e r i e s (s t ra tegy l strategy2 n-pa i rs ) 
"Play a ser ies of 2*n-pa i rs games, swapping s i d e s . " 
( le t ( (scores (loop repeat n-pai rs 

c o l l e c t ( O t h e l l o s t ra tegyl strategy2 n i l ) 
c o l l e c t ( - ( O t h e l l o strategy2 st rategyl n i l ) ) ) ) ) 

Return the number of wins, (1 /2 for a t i e ) , 
the total of thepoint d i f ferences, and the 
scores themselves, a l l from s t r a t e g y l ' s point of view, 

(values (+ (count- i f # 'p lusp scores) 
( / (count- i f #*zerop scores) 2)) 

(apply # ' + scores) 
scores ) ) ) 

Let's see what happens when we use it to pit the two weighted-squares functions 
against each other in a series of ten games: 

> ( o t h e l l o - s e r i e s 
(alpha-beta-searcher 2 #*modified-weighted-squares) 
(alpha-beta-searcher 2 #'weighted-squares) 5) 

0 
60 
(-28 40 -28 40 -28 40 -28 40 -28 40) 

Something is suspicious here—the same scores are being repeated. A little thought 
reveals why: neither strategy has a random component, so the exact same game 
was played five times with one strategy going first, and another game was played 
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five times when the other strategy goes first! A more accurate appraisal of the two 
strategies' relative worth would be gained by starting each game from some random 
position and playing from there. 

Think for a minute how you would design to run a series of games starting from a 
random position. One possibility would be to change the function othel 1 o to accept 
an optional argument indicating the initial state of the board. Then othel 1 o- s e r i es 
could be changed to somehow generate a random board and pass it to othel 1 o. While 
this approach is feasible, it means changing two existing working functions, as well 
as writing another function, generate - random-board. But we couldn't generate just 
any random board: it would have to be a legal board, so it would have to call othel 1 o 
and somehow get it to stop before the game was over. 

An alternative is to leave both Othello and o t h e l l o - s e r i e s alone and build 
another function on top of it, one that works by passing in two new strategies: 
strategies that make a random move for the first few moves and then revert to 
the normal specified behavior. This is a better solution because it uses existing 
functions rather than modifying them, and because it requires no new functions 
besides switch-s t ra tegies , which could prove useful for other purposes, and 
random-othel l o - s e r i es, which does nothing more than call othel l o - s e r i es with 
the proper arguments. 

(defun random-Othello-series (s t ra tegy l strategy2 
n-pai rs Äoptional (n-random 10)) 

"Play a ser ies of 2*n games, s tar t ing from a random pos i t i on . " 
(o the l lo -ser ies 

(swi tch-st rategies #'random-strategy n-random s t ra tegy l ) 
(swi tch-st rategies #*random-strategy n-random strategy2) 
n -pa i rs ) ) 

(defun swi tch-st rategies (s t rategyl m strategy2) 
"Make a new strategy that plays s t rategyl for m moves, 
then plays according to s t ra tegy2. " 
#'(lambda (player board) 

(funcall ( i f (<= *move-number* m) st rategyl strategy2) 
player board))) 

There is a problem with this kind of series: it may be that one of the strategies just 
happens to get better random positions. A fairer test would be to play two games 
from each random position, one with the each strategy playing first. One way to 
do that is to alter othel 1 o - s e r i es so that it saves the random state before playing 
the first game of a pair, and then restores the saved random state before playing the 
second game. That way the same random position will be duplicated. 
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(defun Othello-series (strategyl strategy2 n-pairs) 
"Play a series of 2*n-pairs games, swapping s ides . " 
( let ((scores 

(loop repeat n-pairs 
for random-state = (make-random-state) 
col lect ( O t h e l l o strategyl strategy2 n i l ) 
do (setf *random-state* random-state) 
col lect (- (Othello strategy2 strategyl n i l ) ) ) ) ) 

Return the number of wins (1 /2 for a t i e ) , 
the total of the point differences, and the 
scores themselves, al l from s t ra tegy l 's point of view, 

(values (+ (count-if #*plusp scores) 
(/ (count-if #*zerop scores) 2)) 

(apply #'+ scores) 
scores))) 

Now we are in a position to do a more meaningful test. In the following, the weighted-
squares strategy wins 4 out of 10 games against the modified strategy, losing by a 
total of 76 pieces, with the actual scores indicated. 

> (random-Othello-series 
(alpha-beta-searcher 2 #'weighted-squares) 
(alpha-beta-searcher 2#'modified-weighted-squares) 
5) 

4 
-76 
(-8 -40 22 -30 10 -10 12 -18 4 -18) 

The random- othel lo-series function is useful for comparing two strategies. When 
there are more than two strategies to be compared at the same time, the following 
function can be useful: 

(defun round-robin (strategies n-pairs &optional 
(n-random 10) (names strategies)) 

"Play a tournament among the s t rategies. 
N-PAIRS = games each strategy plays as each color against 
each opponent. So with Ν s t rategies, a total of 
N*(N-1)*N-PAIRS games are played." 
( le t * ((N (length strategies)) 

( tota ls (make-array Ν .-initial-element 0 ) ) 
(scores (make-array ( l i s t Ν Ν) 

:i ni t i al-element 0 ) ) ) 
Play the games 

(dotimes ( I N ) 
(loop for j from (+ i 1) to (- Ν 1) do 

( le t * ((wins (random-Othello-series 
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(e l t s t ra teg ies i ) 
(e l t s t ra teg ies j ) 
n-pairs n-random)) 

( losses (- (* 2 n-pa i rs) w ins) ) ) 
( inc f (aref scores i j ) wins) 
( incf (aref scores j i ) l osses ) 
( incf (aref to ta ls i ) wins) 
( inc f (aref to ta ls j ) l o s s e s ) ) ) ) 

Pr int the resu l ts 
(dotimes (i N) 

(format t "~ra~20T ~4f: " (e l t names i ) (e l t to ta ls i ) ) 
(dotimes (j N) 

(format t "~4f " ( i f (= i j ) 
(aref scores i j ) ) ) ) ) ) ) 

Here is a comparison of five strategies that search only 1 ply: 

(defun mobil i ty (player board) 
"The number of moves a player h a s . " 
( length (legal-moves player board))) 

> (round-robin 
( l i s t (maximizer # 'count-di f ference) 

(maximizer # 'mobi l i ty ) 
(maximizer #*weighted-squares) 
(maximizer #'modif ied-weighted-squares) 
#'random-strategy) 

5 10 
' (count-di f ference mobil i ty weighted modified-weighted random)) 

COUNT-DIFFERENCE 12 .5 : - - - 3.0 2.5 0.0 7.0 
MOBILITY 20 .5 : 7.0 - - - 1.5 5.0 7.0 
WEIGHTED 28 .0 : 7.5 8.5 - - - 3.0 9.0 
MODIFIED-WEIGHTED 3 1 . 5 : 10.0 5.0 7.0 - - - 9.5 
RANDOM 7 . 5 : 3.0 3.0 1.0 0.5 - - -

The parameter η-pai rs is 5, meaning that each strategy plays five games as black 
and five as white against each of the other four strategies, for a total of 40 games 
for each strategy and 100 games overall. The first line of output says that the count-
difference strategy won 12.5 of its 40 games, including 3 against the mobility strategy, 
2.5 against the weighted strategy, none against the modified weighted, and 7 against 
the random strategy. The fact that the random strategy manages to win 7.5 out of 40 
games indicates that the other strategies are not amazingly strong. Now we see what 
happens when the search depth is increased to 4 ply (this will take a while to run): 
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> (round-robiη 
( l i s t (alpha-beta-searcher 4 #*count-dif ference) 

(alpha-beta-searcher 4 #'weighted-squares) 
(alpha-beta-searcher 4 #'modif ied-weighted-squares) 
#'random-strategy) 

5 10 
' (count-di f ference weighted modified-weighted random)) 

COUNT-DIFFERENCE 12 .0 : - - - 2.0 0.0 10.0 
WEIGHTED 2 3 . 5 : 8.0 . . . 5.5 10.0 
MODIFIED-WEIGHTED 2 4 . 5 : 10.0 4 .5 . . . 10.0 
RANDOM 0 . 0 : 0.0 0.0 0.0 

Here the random strategy does not win any games—an indication that the other 
strategies are doing something right. Notice that the modified weighted-squares 
has only a slight advantage over the weighted-squares, and in fact it lost their head-
to-head series, four games to five, with one draw. So it is not clear which strategy 
is better. 

The output does not break down wins by black or white, nor does it report the 
numerical scores. I felt that that would clutter up the output too much, but you're 
welcome to add this information. It turns out that white wins 23 (and draws 1) of 
the 40 games played between 4-ply searching strategies. Usually, Othello is a fairly 
balanced game, because black has the advantage of moving first but white usually 
gets to play last. It is clear that these strategies do not play well in the operung game, 
but for the last four ply they play perfectly. This may explain white's slight edge, or 
it may be a statistical aberration. 

18.9 More Efficient Searching 

The alpha-beta cutoffs work when we have established a good move and another 
move proves to be not as good. Thus, we will be able to make cutoffs earlier if we 
ensure that good moves are considered first. Our current algorithm loops through 
the list of 1 egal -moves, but 1 egal -moves makes no attempt to order the moves in any 
way. We will call this the random-ordering strategy (even though the ordering is not 
random at all-square 11 is always considered first, then 12, etc.). 

One way to try to generate good moves first is to search highly weighted squares 
first. Since 1 egal -moves considers squares in the order defined by a l l -squares, all 
we have to do is redefine the list al 1 -squares^: 

^Remember, when a constant is redefined, it may be necessary to recompile any functions 
that use the constant. 
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(defconstant a l l -squares 
(sor t (loop for i from 11 to 88 

when (<= 1 (mod i 10) 8) col lect i ) 
#*> :key #'(lambda (sq) (e l t *weights* sq ) ) ) ) 

Now the corner squares will automatically be considered first, followed by the other 
highly weighted squares. We call this the static-ordering strategy, because the ordering 
is not random, but it does not change depending on the situation. 

A more informed way to try to generate good moves first is to sort the moves 
according to the evaluation function. This means making more evaluations. Previ
ously, only the boards at the leaves of the search tree were evaluated. Now we need 
to evaluate every board. In order to avoid evaluating a board more than once, we 
make up a structure called a node, which holds a board, the square that was taken to 
result in that board, and the evaluation value of that board. The search is the same 
except that nodes are passed around instead of boards, and the nodes are sorted by 
their value. 

(defstruct (node) square board value) 

(defun alpha-beta-searcher2 (depth eval - fn) 
"Return a strategy that does A-B search with sorted moves." 
#'(lambda (player board) 

(mult ip le-value-bind (value node) 
(alpha-beta2 

player (make-node :board board 
.-value (funcal l eva l - fn player board)) 

los ing-va lue winning-value depth eval - fn) 
(declare ( ignore value)) 
(node-square node)))) 

(defun alpha-beta2 (player node achievable cutoff ply eva l - fn) 
"A-B search, sor t ing moves by eva l - fn " 
; ; Returns two va lues: achievable-value and move-to-make 
( i f (= ply 0) 

(values (node-value node) node) 
( le t * ((board (node-board node)) 

(nodes ( legal-nodes player board eva l - fn ) ) ) 
( i f (null nodes) 

( i f (any-legal-move? (opponent player) board) 
(values (- (alpha-beta2 (opponent player) 

(negate-value node) 
(- cutoff) (- achievable) 
(- ply 1) eva l - fn ) ) 

n i l ) 
(values ( f ina l -va lue player board) n i l ) ) 

( let ((best-node ( f i r s t nodes))) 
(loop for move in nodes 
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for val = (- (alpha-betaZ 
(opponent player) 
(negate-value move) 
(- cutoff) (- achievable) 
(- ply 1) eva l - fn ) ) 

do (when (> val achievable) 
(set f achievable va l ) 
(set f best-node move)) 

unt i l (>= achievable cutof f ) ) 
(values achievable best -node)) ) ) ) ) 

(defun negate-value (node) 
"Set the value of a node to i t s negat ive." 
(set f (node-value node) (- (node-value node))) 
node) 

(defun legal-nodes (player board eval - fn) 
"Return a l i s t of legal moves, each one packed into a node." 
( let ((moves (legal-moves player board))) 

(sor t (map-into 
moves 
#*(lambda (move) 

( let ((new-board (make-move move player 
(copy-board board)))) 

(make-node 
: squa re move .-board new-board 
:value (funcal l eva l - fn player new-board)))) 

moves) 
# ' > :key # 'node-value)) ) 

(Note the use of the function map - i nto. This is part of ANSI Common Lisp, but if it 
is not a part of your implementation, a definition is provided on page 857.) 

The following table compares the performance of the random-ordering strategy, 
the sorted-ordering strategy and the static-ordering strategy in the course of a single 
game. All strategies search 6 ply deep. The table measures the number of boards 
investigated, the number of those boards that were evaluated (in all cases the evalua
tion function was modi f i ed - wei ghted - squa res ) and the time in seconds to compute 
a move. 
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random order sorted order static order 
boards evals sees boards evals sees boards evals sees 

13912 10269 69 5556 5557 22 2365 1599 19 
9015 6751 56 6571 6572 25 3081 2188 18 
9820 7191 46 11556 11557 45 5797 3990 31 
4195 3213 20 5302 5303 17 2708 2019 15 

10890 7336 60 10709 10710 38 3743 2401 23 
13325 9679 63 6431 6432 24 4222 2802 24 
13163 9968 58 9014 9015 32 6657 4922 31 
16642 12588 70 9742 9743 33 10421 7488 51 
18016 13366 80 11002 11003 37 9508 7136 41 
23295 17908 104 15290 15291 48 26435 20282 111 
34120 25895 143 22994 22995 75 20775 16280 78 
56117 43230 224 46883 46884 150 48415 36229 203 
53573 41266 209 62252 62253 191 37803 28902 148 
43943 33184 175 31039 31040 97 33180 24753 133 
51124 39806 193 45709 45710 135 19297 15064 69 
24743 18777 105 20003 20004 65 15627 11737 66 

1.0 1.0 1.0 .81 1.07 .62 .63 .63 .63 

The last two lines of the table give the averages and the averages normalized to the 
random-ordering strategy's performance. The sorted-ordering strategy takes only 
62% of the time of the random-ordering strategy, and the static-ordering takes 63 %. 
These times are not to be trusted too much, because a large-scale garbage collection 
was taking place during the latter part of the game, and it may have thrown off the 
times. The board and evaluation count may be better indicators, and they both show 
the static-ordering strategy doing the best. 

We have to be careful how we evaluate these results. Earlier I said that alpha-beta 
search makes more cutoffs when it is presented first with better moves. The actual 
truth is that it makes more cutoffs when presented first with moves that the evaluation 
function thinks are better. In this case the evaluation function and the static-ordering 
strategy are in strong agreement on what are the best moves, so it is not surprising 
that static ordering does so well. As we develop evaluation functions that vary from 
the weighted-squares approach, we will have to run experiments again to see if the 
static-ordering is still the best. 

18.10 It Pays to Precycle 

The progressive city of Berkeley, California, has a strong recycling program to reclaim 
glass, paper, and aluminum that would otherwise be discarded as garbage. In 1989, 
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Berkeley instituted a novel program of precycling: consumers are encouraged to avoid 
buying products that come in environmentally wasteful packages. 

Your Lisp system also has a recycling program: the Lisp garbage collector auto
matically recycles any unused storage. However, there is a cost to this program, and 
you the consumer can get better performance by precycling your data. Don't buy 
wasteful data structures when simpler ones can be used or reused. You, the Lisp 
programmer, may not be able to save the rain forests or the ozone layer, but you can 
save valuable processor time. 

We saw before that the search routines look at tens of thousands of boards per 
move. Currently, each board position is created anew by copy-board and discarded 
soon thereafter. We could avoid generating all this garbage by reusing the same board 
at each ply. We'd still need to keep the board from the previous ply for use when 
the search backs up. Thus, a vector of boards is needed. In the following we assume 
that we will never search deeper than 40 ply. This is a safe assumption, as even the 
fastest Othello programs can only search about 15 ply before running out of time. 

(defvar *p ly -boards* 
(apply #*vector (loop repeat 40 co l lect ( i n i t i a l - boa rd ) ) ) ) 

Now that we have sharply limited the number of boards needed, we may want to 
reevaluate the implementation of boards. Instead of having the board as a vector of 
pieces (to save space), we may want to implement boards as vectors of bytes or full 
words. In some implementations, accessing elements of such vectors is faster. (In 
other implementations, there is no difference.) 

An implementation using the vector of boards will be done in the next section. 
Note that there is another alternative: use only one board, and update it by making 
and retracting moves. This is a good alternative in a game like chess, where a move 
only alters two squares. In Othello, many squares can be altered by a move, so 
copying the whole board over and making the move is not so bad. 

It should be mentioned that it is worth looking into the problem of copying a 
position from one board to another. The function repl ace copies one sequence (or 
part of it) into another, but it is a generic function that may be slow. In particular, if 
each element of a board is only 2 bits, then it may be much faster to use displaced 
arrays to copy 32 bits at a time. The advisability of this approach depends on the 
implementation, and so it is not explored further here. 

18.11 Killer Moves 
In section 18.9, we considered the possibility of searching moves in a different 
order, in an attempt to search the better moves first, thereby getting more alpha-beta 
pruning. In this section, we consider the killer heunstic, which states that a move that 



18.11 KILLER MOVES 635 

has proven to be a good one in one line of play is also likely to be a good one in another 
line of play. To use chess as perhaps a more familiar example, suppose I consider 
one move, and it leads to the opponent replying by capturing my queen. This is a 
killer move, one that I would like to avoid. Therefore, when I consider other possible 
moves, I want to immediately consider the possibility of the opponent making that 
queen-capturing move. 

The function a lpha-beta3 adds the parameter ki 11 er, which is the best move 
found so far at the current level. After we determine the l ega l -moves, we use 
p u t - f i r s t to put the killer move first, if it is in fact a legal move. When it comes 
time to search the next level, we keep track of the best move in k i H e r 2 . This 
requires keeping track of the value of the best move in ki 11 e r 2 - va 1 . Everything else 
is unchanged, except that we get a new board by recycling the *pl y - b o a r d s * vector 
rather than by allocating fresh ones. 

(defun alpha-betaS (player board achievable cutoff ply eval - fn 
k i l l e r ) 

"A-Β search, putt ing k i l l e r move f i r s t . " 
( i f (= ply 0) 

(funcall eval - fn player board) 
( let ((moves (pu t - f i r s t k i l l e r (legal-moves player board)))) 

( i f (null moves) 
( i f (any-legal-move? (opponent player) board) 

(- (alpha-betaS (opponent player) board 
(- cutoff) (- achievable) 
(- ply 1) eval - fn n i l ) ) 

( f ina l -va lue player board)) 
( le t ((best-move ( f i r s t moves)) 

(new-board (aref *p ly -boards* p ly ) ) 
( k i l l e r2 n i l ) 
(k i l l e r2 -va l winning-value)) 

(loop for move in moves 
do (mult ip le-value-bind (val reply) 

(alpha-betaS 
(opponent player) 
(make-move move player 

(replace new-board board)) 
(- cutoff) (- achievable) 
(- ply 1) eval - fn k i l l e r2 ) 

(set f val (- va l ) ) 
(when (> val achievable) 

(set f achievable va l ) 
(set f best-move move)) 

(when (and reply (< val k i l l e r 2 - v a l ) ) 
(set f k i l l e r2 reply) 
(set f k i l l e r2 -va l va l ) ) ) 

unti l (>= achievable cutof f ) ) 
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(values achievable best-move)))))) 

(defun alpha-beta-searcher3 (depth eva l - fn) 
"Return a strategy that does A-B search with k i l l e r moves." 
#'(lambda (player board) 

(mult iple-value-bind (value move) 
(alpha-betaS player board los ing-va lue winning-value 

depth eval - fn n i l ) 
(declare ( ignore value)) 
move))) 

(defun pu t - f i r s t ( k i l l e r moves) 
"Move the k i l l e r move to the front of moves, 
i f the k i l l e r move i s in fact a legal move." 
( i f (member k i l l e r moves) 

(cons k i l l e r (delete k i l l e r moves)) 
moves)) 

Another experiment on a single game reveals that adding the killer heuristic to static-
ordering search (again at 6-ply) cuts the number of boards and evaluations, and the 
total time, all by about 20%. To summarize, alpha-beta search at 6 ply with random 
ordering takes 105 seconds per move (in our experiment), adding static-ordering cuts 
it to 66 seconds, and adding killer moves to that cuts it again to 52 seconds. This 
doesn't include the savings that alpha-beta cutoffs give over full minimax search. At 
6 ply with a branching factor of 7, full minimax would take about nine times longer 
than static ordering with killers. The savings increase with increased depth. At 
7 ply and a branching factor of 10, a small experiment shows that static-ordering 
with killers looks at only 28,000 boards in about 150 seconds. Full minimax would 
evaluate 10 million boards and take 350 times longer. The times for full minimax are 
estimates based on the number of boards per second, not on an actual experiment. 

The algorithm in this section just keeps track of one killer move. It is of course 
possible to keep track of more than one. The Othello program Bill (Lee and Mahajan 
1990b) merges the idea of killer moves with legal move generation: it keeps a list of 
possible moves at each level, sorted by their value. The legal move generator then 
goes down this list in sorted order. 

It should be stressed once again that all this work on alpha-beta cutoffs, ordering, 
and killer moves has not made any change at all in the moves that are selected. We 
still end up choosing the same move that would be made by a full minimax search to 
the given depth, we are just doing it faster, without looking at possibilities that we 
can prove are not as good. 
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18.12 Championship Programs: lago and Bill 
As mentioned in the introduction, the unpredictability of Othello makes it a difficult 
game for humans to master, and thus programs that search deeply can do compar
atively well. In fact, in 1981 the reigning champion, Jonathan Cerf, proclaimed "In 
my opinion the top programs . . . are now equal (if not superior) to the best human 
players." In discussing Rosenbloom's lago program (1982), Cerf went on to say "I 
understand Paul Rosenbloom is interested in arranging a match against me. Unfor
tunately my schedule is very full, and I'm going to see that it remains that way for the 
foreseeable future." 

In 1989, another program. Bill (Lee and Mahajan 1990) beat the highest rated 
American Othello player, Brian Rose, by a score of 56-8. Bill's evaluation function is 
fast enough to search 6-8 ply under tournament conditions, yet it is so accurate that 
it beats its creator, Kai-Fu Lee, searching only 1 ply. (However, Lee is only a novice 
Othello player; his real interest is in speech recognition; see Waibel and Lee 1991.) 
There are other programs that also play at a high level, but they have not been written 
up in the AI literature as lago and Bill have. 

In this section we present an evaluation function based on lago's, although it also 
contains elements of Bill, and of an evaluation function written by Eric Wef aid in 1989. 
The evaluation function makes use of two main features: mobilityänd edge stability. 

Mobility 

Both lago and Bill make heavy use of the concept of mobility. Mobility is a measure of 
the ability to make moves; basically, the more moves one can make, the better. This 
is not quite true, because there is no advantage in being able to make bad moves, 
but it is a useful heuristic. We define current mobility as the number of legal moves 
available to a player, and potential mobility as the number of blank squares that are 
adjacent to opponent's pieces. These include the legal moves. A better measure of 
mobility would try to count only good moves. The following function computes both 
current and potential mobility for a player: 

(defun mobil i ty (player board) 
"Current mobil i ty i s the number of legal moves. 
Potential mobi l i ty i s the number of blank squares 
adjacent to an opponent that are not legal moves. 
Returns current and potential mobi l i ty for p layer . " 
( let ((opp (opponent p layer)) 

(current 0) ; p layer ' s current mobil i ty 
(potential 0)) ; p layer ' s potential mobi l i ty 

(do l i s t (square a l l - squares ) 
(when (eql (bref board square) empty) 

(cond ( ( lega l -p square player board) 
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( inc f current)) 
((some #·(lambda (sq) (eql (bref board sq) opp)) 

(neighbors square)) 
( inc f po ten t ia l ) ) ) ) ) 

(values current (+ current po ten t ia l ) ) ) ) 

Edge Stability 

Success at Othello often hinges around edge play, and both lago and Bill evaluate 
the edges carefully. Edge analysis is made easier by the fact that the edges are fairly 
independent of the interior of the board: once a piece is placed on the edge, no 
interior moves can flip it. This independence allows a simplifying assumption: to 
evaluate a position's edge strength, evaluate each of the four edges independently, 
without consideration of the interior of the board. The evaluation can be made more 
accurate by considering the X-squares to be part of the edge. 

Even evaluating a single edge is a time-consuming task, so Bill and lago compile 
away the evaluation by building a table of all possible edge positions. An "edge" 
according to Bill is ten squares: the eight actual edge squares and the two X-squares. 
Since each square can be black, white, or empty, there are 3^^ or 59,049 possible edge 
positions—a large but manageable number. 

The value of each edge position is determined by a process of succesive approx
imation. Just as in a minimax search, we will need a static edge evaluation function 
to determine the value of a edge position without search. This static edge evaluation 
function is appHed to every possible edge position, and the results are stored in a 
59,049 element vector. The static evaluation is just a weighted sum of the occupied 
squares, with different weights given depending on if the piece is stable or unstable. 

Each edge position's evaluation can be improved by a process of search. lago 
uses a single ply search: given a position, consider all moves that could be made 
(including no move at all). Some moves will be clearly legal, because they flip pieces 
on the edge, but other moves will only be legal if there are pieces in the interior of 
the board to flip. Since we are only considering the edge, we don't know for sure if 
these moves are legal. They will be assigned probabilities of legality. The updated 
evaluation of a position is determined by the values and probabilities of each move. 
This is done by sorting the moves by value and then summing the product of the 
value times the probability that the move can be made. This process of iterative 
approximation is repeated five times for each position. At that point, Rosenbloom 
reports, the values have nearly converged. 

In effect, this extends the depth of the normal alpha-beta search by including an 
edge-only search in the evaluation function. Since each edge position with η pieces 
is evaluated as a function of the positions with η -h 1 pieces, the search is complete-it 
is an implicit 10-ply search. 
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Calculating edge stability is a bit more complicated than the other features. The 
first step is to define a variable, *eclge - table*, which will hold the evaluation of each 
edge position, and a constant, edge-and-x-1 i s t s , which is a list of the squares on 
each of the four edges. Each edge has ten squares because the X-squares are included. 

(defvar *edge-table* (make-array (expt 3 10)) 
"Array of values to player-to-move for edge p o s i t i o n s . " ) 

(defconstant edge-and-x-1 is ts 
' ( (22 11 12 13 14 15 16 17 18 27) 

(72 81 82 83 84 85 86 87 88 77) 
(22 11 21 31 41 51 61 71 81 72) 
(27 18 28 38 48 58 68 78 88 77)) 

"The four edges (with their X -squa res ) . " ) 

Now for each edge we can compute an index into the edge table by building a 10-digit 
base-3 number, where each digit is 1 if the corresponding edge square is occupied by 
the player, 2 if by the opponent, and 0 if empty. The function edge - i ndex computes 
this, and edge - stabi 1 i ty sums the values of the four edge indexes. 

(defun edge-index (player board squares) 
"The index counts 1 for player; 2 for opponent, 
on each square---summed as a base 3 number." 
( let (( index 0)) 

(do l i s t (sq squares) 
(setq index (+ (* index 3) 

(cond ((eql (bref board sq) empty) 0) 
((eql (bref board sq) player) 1) 
(t 2 ) ) ) ) ) 

index)) 

(defun edge-s tab i l i t y (player board) 
"Total edge evaluation for player to move on board." 
(loop for edge- l i s t in edge-and-x-1 is ts 

sum (aref *edge-table* 
(edge-index player board e d g e - l i s t ) ) ) ) 

The function edge - stabi 1 i ty is all we will need in lago's evaluation function, but we 
still need to generate the edge table. Since this needs to be done only once, we don't 
have to worry about efficiency. In particular, rather than invent a new data structure 
to represent edges, we will continue to use complete boards, even though they will 
be mostly empty. The computations for the edge table will be made on the top edge, 
from the point of view of black, with black to play. But the same table can be used for 
white, or for one of the other edges, because of the way the edge index is computed. 

Each position in the table is first initialized to a static value computed by a kind 
of weighted-squares metric, but with different weights depending on if a piece is in 



640 SEARCH AND THE GAME OF OTHELLO 

danger of being captured. After that, each position is updated by considering the 
possible moves that can be made from the position, and the values of each of these 
moves. 

(defconstant top-edge ( f i rs t edge-and-x-lists)) 

(defun init-edge-table () 
"Initialize *edge-table*. starting from the empty board." 

Init ial ize the stat ic values 
(loop for n-pieces from 0 to 10 do 

(map-edge-n-pieces 
#*(lambda (board index) 

(setf (aref *edge-table* index) 
(static-edge-stability black board))) 

black (initial-board) n-pieces top-edge 0)) 
Now iterate five times trying to improve: 

(dotimes (i 5) 
;; Do the indexes with most pieces f i rs t 
(loop for n-pieces from 9 downto 1 do 

(map-edge-n-pieces 
#'(lambda (board index) 

(setf (aref *edge-table* index) 
(possible-edge-moves-value 

black board index))) 
black (initial-board) n-pieces top-edge 0 ) ) ) ) 

The function map-edge-n-pieces iterates through all edge positions with a total of 
η pieces (of either color), applying a function to each such position. It also keeps a 
running count of the edge index as it goes. The function should accept two arguments: 
the board and the index. Note that a single board can be used for all the positions 
because squares are reset after they are used. The function has three cases: if the 
number of squares remaining is less than n, then it will be impossible to place η pieces 
on those squares, so we give up. If there are no more squares then η must also be 
zero, so this is a valid position, and the function f η is called. Otherwise we first try 
leaving the current square blank, then try filling it with player's piece, and then with 
the opponent's piece, in each case calling map-edge-η-pi eces recursively. 

(defun map-edge-n-pieces (fn player board η squares index) 
"Call fn on all edges with η pieces." 
;; Index counts 1 for player; 2 for opponent 
(cond 

((< (length squares) n) ni l ) 
((null squares) (funcall fn board index)) 
(t ( let ((index3 (* 3 index)) 

(sq ( f i rs t squares))) 
(map-edge-n-pieces fn player board η (rest squares) indexS) 



18.12 CHAMPIONSHIP PROGRAMS: lAGO AND BILL 641 

(when (and (> η 0) (eql (bref board sq) empty)) 
(set f (bref board sq) player) 
(map-edge-n-pieces fn player board (- η 1) ( rest squares) 

(+ 1 index3)) 
(set f (bref board sq) (opponent p layer)) 
(map-edge-n-pieces fn player board (- η 1) ( rest squares) 

(+ 2 indexS)) 
(set f (bref board sq) empty)))))) 

The function possible-edge-moves-value searches through all possible moves to 
determine an edge value that is more accurate than a static evaluation. It loops 
through every empty square on the edge, calling possible-edge-move to return a 
(probability value) pair. Since it is also possible for a player not to make any move at 
all on an edge, the pair ( 1 . 0 current-value) is also included. 

(defun possible-edge-moves-value (player board index) 
"Consider al l poss ib le edge moves. 
Combine their values into a s ing le number." 
(combine-edge-moves 

(cons 
( l i s t 1.0 (aref *edge-table* index)) ; ; no move 
(loop for sq in top-edge ; ; poss ib le moves 

when (eql (bref board sq) empty) 
co l lect (possible-edge-move player board sq ) ) ) 

p layer)) 

The value of each position is determined by making the move on the board, then 
looking up in the table the value of the resulting position for the opponent, and 
negating it (since we are interested in the value to us, not to our opponent). 

(defun possible-edge-move (player board sq) 
"Return a (prob val ) pair for a poss ib le edge move." 
( let ((new-board (replace (aref *p ly -boards* player) board))) 

(make-move sq player new-board) 
( l i s t (edge-move-probabil ity player board sq) 

(- (aref *edge-table* 
(edge-index (opponent player) 

new-board top-edge)) ) ) ) ) 

The possible moves are combined with combi ne-edge-moves, which sorts the moves 
best-first. (Since ini t-edge-tabl e started from black's perspective, black tries to 
maximize and white tries to minimize scores.) We then go down the moves, increas
ing the total value by the value of each move times the probability of the move, and 
decreasing the remaining probability by the probability of the move. Since there will 
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always be a least one move (pass) with probability 1.0, this is guaranteed to converge. 
In the end we round off the total value, so that we can do the run-time calculations 
with fixnums. 

(defun combine-edge-moves ( p o s s i b i l i t i e s player) 
"Combine the best moves." 
( le t ((prob 1.0) 

(val 0.0) 
(fn ( i f (eql player black) # ' > # ' < ) ) ) 

(loop for pair in (sor t p o s s i b i l i t i e s fn :key #'second) 
while (>= prob 0.0) 
do ( incf val (* prob ( f i r s t pa i r ) (second pa i r ) ) ) 

(decf prob (* prob ( f i r s t pa i r ) ) ) ) 
(round va l ) ) ) 

We still need to compute the probability that each possible edge move is legal. These 
probabiUties should reflect things such as the fact that it is easy to capture a corner 
if the opponent is in the adjacent X-square, and very difficult otherwise. First we 
define some functions to recognize corner and X-squares and relate them to their 
neighbors: 

( let ( (corner/xsqs ' ( ( 1 1 . 22) (18 . 27) ( 8 1 . 72) (88 . 77) ) ) ) 
(defun corner-p (sq) (assoc sq corner /xsqs) ) 
(defun x-square-p (sq) (rassoc sq corner /xsqs) ) 
(defun x-square- for (corner) (cdr (assoc corner corner /xsqs) ) ) 
(defun corner-for (xsq) (car ( rassoc xsq corner /xsqs) ) ) ) 

Now we consider the probabilities. There are four cases. First, since we don't 
know anything about the interior of the board, we assume each player has a 50% 
chance of being able to play in an X-square. Second, if we can show that a move 
is legal (because it flips opponent pieces on the edge) then it has 100% probability. 
Third, for the corner squares, we assign a 90% chance if the opponent occupies the 
X-square, 10% if it is empty, and only .1 % if we occupy it. Otherwise, the probability 
is determined by the two neighboring squares: if a square is next to one or more 
opponents it is more likely we can move there; if it is next to our pieces it is less likely. 
If it is legal for the opponent to move into the square, then the chances are cut in half 
(although we may still be able to move there, since we move first). 

(defun edge-move-probability (player board square) 
"What's the probabi l i ty that player can move to th i s square?" 
(cond 

((x-square-p square) .5) ; ; X-squares 
( ( lega l -p square player board) 1.0) immediate capture 
((corner-p square) : ; move to corner depends on X-square 
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( le t ( (x -sq (x-square-for square))) 
(cond 

((eql (bref board x -sq) empty) .1) 
((eql (bref board x -sq) player) 0.001) 
(t . 9 ) ) ) ) 

(t ( / (aref 
' #2A ( ( . l .4 .7) 

( .05 .3 * ) 
( .01 * * ) ) 

(count-edge-neighbors player board square) 
(count-edge-neighbors (opponent player) board square)) 

( i f ( lega l -p square (opponent player) board) 2 1 ) ) ) ) ) 

(defun count-edge-neighbors (player board square) 
"Count the neighbors of th is square occupied by p layer . " 
(count- i f #'(lambda ( inc) 

(eql (bref board (+ square inc) ) p layer)) 
' ( + 1 -1 ) ) ) 

Now we return to the problem of determining the static value of an edge position. 
This is computed by a weighted-squares metric, but the weights depend on the 
stability of each piece. A piece is called stable if it cannot be captured, unstable if 
it is in immediate danger of being captured, and semistable otherwise. A table of 
weights follows for each edge square and stability. Note that corner squares are 
always stable, and X-squares we will call semistable if the adjacent corner is taken, 
and unstable otherwise. 

(defparameter *s ta t ic -edge- tab le* 
'#2A( ;s tab semi un 

( * 0 -2000) X 
( 700 • *) corner 
(1200 200 -25) C 
(1000 200 75) A 
(1000 200 50) Β 
(1000 200 50) Β 
(1000 200 75) A 
(1200 200 -25) C 
( 700 • *) corner 
( * 0 -2000) . X 
) ) 
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The static evaluation then just sums each piece's value according to this table: 

(defun s ta t i c -edge-s tab i l i t y (player board) 
"Compute th is edge's s ta t i c s t ab i l i t y " 
(loop for sq in top-edge 

for i from 0 
sum (cond 

((eql (bref board sq) empty) 0) 
((eql (bref board sq) player) 
(aref *s ta t ic -edge- tab le* i 

(p iece-s tab i l i t y board sq ) ) ) 
(t (- (aref *s ta t ic -edge- tab le* i 

(p iece-s tab i l i t y board s q ) ) ) ) ) ) ) 

The computation of stability is fairly complex. It centers around finding the two 
"pieces," pi and p2, which lay on either side of the piece in question and which are 
not of the same color as the piece. These "pieces" may be empty, or they may be off 
the board. A piece is unstable if one of the two is empty and the other is the opponent; 
it is semistable if there are opponents on both sides and at least one empty square to 
play on, or if it is surrounded by empty pieces. Finally, if either pi or p2 is nil then 
the piece is stable, since it must be connected by a solid wall of pieces to the corner. 

( le t ( (s tab le 0) (semi-stable 1) (unstable 2)) 

(defun p iece-s tab i l i t y (board sq) 
(cond 

((corner-p sq) stable) 
( (x-square-p sq) 

( i f (eql (bref board (corner-for sq)) empty) 
unstable semi-stable)) 

(t ( le t * ((player (bref board sq) ) 
(opp (opponent p layer)) 
(pi ( f ind player board : test-not #*eql 

i s ta r t sq :end 19)) 
(p2 ( f ind player board : test-not #'eql 

:s ta r t 11 :end sq 
:from-end t ) ) ) 

(cond 
unstable pieces can be captured immediately 
by playing in the empty square 

((or (and (eql pi empty) (eql p2 opp)) 
(and (eql p2 empty) (eql pi opp))) 

unstable) 
; ; semi-stable pieces might be captured 
((and (eql pi opp) (eql p2 opp) 
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( f ind empty board :s tar t 11 :end 19)) 
semi-stable) 

((and (eql pi empty) (eql p2 empty)) 
semi-stable) 

Stable pieces can never be captured 
(t s t a b l e ) ) ) ) ) ) ) 

The edge table can now be built by a call to i n i t - e d g e - t a b l e. After the table is built 
once, it is a good idea to save it so that we won't need to repeat the initialization. We 
could write simple routines to dump the table into a file and read it back in, but it is 
faster and easier to use existing tools that already do this job quite well: comp i 1 e - f i 1 e 
and 1 oad. All we have to do is create and compile a file containing the single line: 

(set f *edge-table* *#.*edge-table*) 

The # . read macro evaluates the following expression at read time. Thus, the 
compiler will see and compile the current edge table. It will be able to store this more 
compactly and 1 oad it back in more quickly than if we printed the contents of the 
vector in decimal (or any other base). 

Combining the Factors 

Now we have a measure of the three factors: current mobility, potential mobility, and 
edge stability. All that remains is to find a good way to combine them into a single 
evaluation metric. The combination function used by Rosenbloom (1982) is a linear 
combination of the three factors, but each factor's coefficient is dependent on the 
move number. Rosenbloom's features are normalized to the range [-1000,1000]; we 
normalize to the range [-1,1] by doing a division after multiplying by the coefficient. 
That allows us to use fixnuums for the coefficients. Since our three factors are 
not calculated in quite the same way as Rosenbloom's, it is not surprising that his 
coefficients are not the best for our program. The edge coefficient was doubled and 
the potential coefficient cut by a factor of five. 

(defun lago-eval (player board) 
"Combine edge-s tab i l i t y , current mobil i ty and 
potential mobil i ty to ar r ive at an eva luat ion. " 

The three factors are mult ip l ied by coef f ic ients 
that vary by move number: 

( let ( ( c -edg(+ 312000 (* 6240 *move-number*))) 
(c-cur ( i f (< *move-number* 25) 

(+ 50000 (* 2000 *move-number*)) 
(+ 75000 (* 1000 *move-number*)))) 

(c-pot 20000)) 
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(mult iple-value-bind (p-cur p-pot) 
(mobil i ty player board) 

(mult iple-value-bind (o-cur o-pot) 
(mobil i ty (opponent player) board) 

; ; Combine the three factors into one sum: 
(+ (round (* c-edg (edge-s tab i l i t y player board)) 32000) 

(round (* c-cur (- p-cur o-cur)) (+ p-cur o-cur 2)) 
(round (* c-pot (- p-pot o-pot)) (+ p-pot o-pot 2 ) ) ) ) ) ) ) 

Finally, we are ready to code the lago function. Given a search depth, lago returns a 
strategy that will do alpha-beta search to that depth using the lago -eval evaluation 
function. This version of lago was able to defeat the modified weighted-squares 
strategy in 8 of 10 games at 3 ply, and 9 of 10 at 4 ply. On an Explorer II, 4-ply search 
takes about 20 seconds per move. At 5 ply, many moves take over a minute, so the 
program runs the risk of forfeiting. At 3 ply, the program takes only a few seconds 
per move, but it still was able to defeat the author in five straight games, by scores 
of 50-14, 64-0, 51-13, 49-15 and 36-28. Despite these successes, it is likely that the 
evaluation function could be improved greatly with a little tuning of the parameters. 

(defun lago (depth) 
"Use an approximation of l ago ' s evaluation funct ion. " 
(alpha-beta-searcher3 depth # ' i ago -eva l ) ) 

18.13 Other Techniques 

There are many other variations that can be tried to speed up the search and improve 
play. Unfortunately, choosing among the techniques is a bit of a black art. You will 
have to experiment to find the combination that is best for each domain and each 
evaluation function. Most of the following techniques were incorporated, or at least 
considered and rejected, in Bill. 

Iterative Deepening 

We have seen that the average branching factor for Othello is about 10. This means 
that searching to depth η -f 1 takes roughly 10 times longer than search to depth 
n. Thus, we should be willing to go to a lot of overhead before we search one level 
deeper, to assure two things: that search will be done efficiently, and that we won't 
forfeit due to running out of time. A by-now familiar technique, iterative deepening 
(see chapters 6 and 14), serves both these goals. 
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Iterative deepening is used as follov/s. The strategy determines how much of the 
remaining time to allocate to each move. A simple strategy could allocate a constant 
amount of time for each move, and a more sophisticated strategy could allocate more 
time for moves at crucial points in the game. Once the time allocation is determined 
for a move, the strategy starts an iterative deepening alpha-beta search. There are 
two complications: First, the search at η ply keeps track of the best moves, so that 
the search at η -h 1 ply will have better ordering information. In many cases it will be 
faster to do both the η and n + 1 ply searches with the ordering information than to 
do only the η -i-1 ply search without it. Second, we can monitor how much time has 
been taken searching each ply, and cut off the search when searching one more ply 
would exceed the allocated time limit. Thus, iterative-deepening search degrades 
gracefully as time limits are imposed. It will give a reasonable answer even with a 
short time allotment, and it will rarely exceed the allotted time. 

Forward Pruning 

One way to cut the number of positions searched is to replace the legal move generator 
with a plausible move generator: in other words, only consider good moves, and never 
even look at moves that seem clearly bad. This technique is called forward pruning. 
It has fallen on disfavor because of the difficulty in determining which moves are 
plausible. For most games, the factors that would go into a plausible move generator 
would be duplicated in the static evaluation function anyway, so forward pruning 
would require more effort without much gain. Worse, forward pruning could rule 
out a brilliant sacrifice—a move that looks bad initially but eventually leads to a gain. 

For some games, forward pruning is a necessity. The game of Go, for example, is 
played on a 19 by 19 board, so the first player has 361 legal moves, and a 6-ply search 
would involve over 2 quadrillion positions. However, many good Go programs can 
be viewed as not doing forward pruning but doing abstraction. There might be 30 
empty squares in one portion of the board, and the program would treat a move to 
any of these squares equivalently. 

Bill uses forward pruning in a limited way to rule out certain moves adjacent to 
the corners. It does this not to save time but because the evaluation function might 
lead to such a move being selected, even though it is in fact a poor move. In other 
words, forward pruning is used to correct a bug in the evaluation function cheaply. 

Nonspeculative Forward Pruning 

This technique makes use of the observation that there are limits in the amount the 
evaluation function can change from one position to the next. For example, if we 
are using the count difference as the evaluation function, then the most a move can 
change the evaluation is +37 (one for placing a piece in the corner, and six captures 
in each of the three directions). The smallest change is 0 (if the player is forced to 
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pass). Thus, if there are 2 ply left in the search, and the backed-up value of position 
A has been established as 38 points better than the static value of position B, then it 
is useless to expand position B. This assumes that we are evaluating every position, 
perhaps to do sorted ordering or iterative deepening. It also assumes that no position 
in the search tree is a final position, because then the evaluation could change by 
more than 37 points. In conclusion, it seems that nonspeculative forward pruning is 
not very useful for Othello, although it may play a role in other games. 

Aspiration Search 

Alpha-beta search is initated with the a c h i e v a b l e and c u t o f f boundaries set to 
Ί os i ng -va l ue and wi nni ng -va l ue, respectively. In other words, the search assumes 
nothing: the final position may be anything from a loss to a win. But suppose we are 
in a situation somewhere in the mid-game where we are winning by a small margin 
(say the static evaluation for the current position is 50). In most cases, a single move 
will not change the evaluation by very much. Therefore, if we invoked the alpha-
beta search with a window defined by boundaries of, say, 0 and 100, two things can 
happen: if the actual backed-up evaluation for this position is in fact in the range 0 
to 100, then the search will find it, and it will be found quickly, because the reduced 
window will cause more pruning. If the actual value is not in the range, then the 
value returned will reflect that, and we can search again using a larger window. This 
is called aspiration search, because we aspire to find a value within a given window. 
If the window is chosen well, then often we will succeed and will have saved some 
search time. 

Pearl (1984) suggests an alternative called zero-window search. At each level, the 
first possible move, which we'll call m , is searched using a reasonably wide window 
to determine its exact value, which we'll call v. Then the remaining possible moves 
are searched using ν as both the lower and upper bounds of the window. Thus, the 
result of the search will tell if each subsequent move is better or worse than m , but 
won't tell how much better or worse. There are three outcomes for zero-window 
search. If no move turns out to be better than m , then stick with m . If a single move is 
better, then use it. If several moves are better than m , then they have to be searched 
again using a wider window to determine which is best. 

There is always a trade-off between time spent searching and information gained. 
Zero-window search makes an attractive trade-off: we gain some search time by 
losing information about the value of the best move. We are still guaranteed of 
finding the best move, we just don't know its exact value. 

Bill's zero-window search takes only 63% of the time taken by full alpha-beta 
search. It is effective because Bill's move-ordering techniques ensure that the first 
move is often best. With random move ordering, zero-window search would not be 
effective. 
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Think-Ahead 

A program that makes its move and then waits for the opponent's reply is wasting 
half the time available to it. A better use of time is to compute, or think-ahead while 
the opponent is moving. Think-ahead is one factor that helps Bill defeat lago. While 
many programs have done think-ahead by choosing the most likely move by the 
opponent and then starting an iterative-deepening search assuming that move. Bill's 
algorithm is somewhat more complex. It can consider more than one move by the 
opponent, depending on how much time is available. 

Hashing and Opening Book Moves 

We have been treating the search space as a tree, but in general it is a directed acyclic 
graph (dag): there may be more than one way to reach a particular position, but there 
won't be any loops, because every move adds a new piece. This raises the question 
we explored briefly in section 6.4: should we treat the search space as a tree or a 
graph? By treating it as a graph we eliminate duplicate evaluations, but we have the 
overhead of storing all the previous positions, and of checking to see if a new position 
has been seen before. The decision must be based on the proportion of duplicate 
positions that are actually encountered in play. One compromise solution is to store 
in a hash table a partial encoding of each position, encoded as, say, a single fixnum 
(one word) instead of the seven or so words needed to represent a full board. Along 
with the encoding of each position, store the move to try first. Then, for each new 
position, look in the hash table, and if there is a hit, try the corresponding move first. 
The move may not even be legal, if there is an accidental hash collision, but there is 
a good chance that the move will be the right one, and the overhead is low. 

One place where it is clearly worthwhile to store information about previous 
positions is in the opening game. Since there are fewer choices in the opening, it is a 
good idea to compile an opening "book" of moves and to play by it as long as possible, 
until the opponent makes a move that departs from the book. Book moves can be 
gleaned from the literature, although not very much has been written about Othello 
(as compared to openings in chess). However, there is a danger in following expert 
advice: the positions that an expert thinks are advantageous may not be the same as 
the positions from which our program can play well. It may be better to compile the 
book by playing the program against itself and determining which positions work 
out best. 

The End Game 

It is also a good idea to try to save up time in the midgame and then make an all-out 
effort to search the complete game tree to completion as soon as feasible. Bill can 
search to completion from about 14 ply out. Once the search is done, of course, the 
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most promising lines of play should be saved so that it won't be necessary to solve 
the game tree again. 

Metareasontng 

If it weren't for the clock, Othello would be a trivial game: just search the complete 
game tree all the way to the end, and then choose the best move. The clock imposes 
a complication: we have to make all our moves before we run out of time. The 
algorithms we have seen so far manage the clock by allocating a certain amount of 
time to each move, such that the total time is guaranteed (or at least very likely) to 
be less than the allotted time. This is a very crude policy. A finer-grained way of 
managing time is to consider computation itself as a possible move. That is, at every 
tick of the clock, we need to decide if it is better to stop and play the best move we 
have computed so far or to continue and try to compute a better move. It will be 
better to compute more only in the case where we eventually choose a better move; 
it will be better to stop and play only in the case where we would otherwise forfeit 
due to time constraints, or be forced to make poor choices later in the game. An 
algorithm that includes computation as a possible move is called a metareasoning 
system, because it reasons about how much to reason. 

Russell and Wefald (1989) present an approach based on this view. In addition to 
an evaluation function, they assume a variance function, which gives an estimate of 
how much a given position's true value is likely to vary from its static value. At each 
step, their algorithm compares the value and variance of the best move computed so 
far and the second best move. If the best move is clearly better than the second best 
(taking variance into account), then there is no point computing any more. Also, if the 
top two moves have similar values but both have very low variance, then computing 
will not help much; we can just choose one of the two at random. 

For example, if the board is in a symmetric position, then there may be two 
symmetric moves that will have identical value. By searching each move's subtree 
more carefully, we soon arrive at a low variance for both moves, and then we can 
choose either one, without searching further. Of course, we could also add special-
case code to check for symmetry, but the metareasoning approach will work for 
nonsymmetric cases as well as symmetric ones. If there is a situation where two 
moves both lead to a clear win, it won't waste time choosing between them. 

The only situation where it makes sense to continue computing is when there 
are two moves with high variance, so that it is uncertain if the true value of one 
exceeds the other. The metareasoning algorithm is predicated on devoting time to 
just this case. 
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Learning 

From the earhest days of computer game playing, it was realized that a championship 
program would need to learn to improve itself. Samuel (1959) describes a program 
that plays checkers and learns to improve its evaluation function. The evaluation 
function is a linear combination of features, such as the number of pieces for each 
player, the number of kings, the number of possible forks, and so on. Learning is 
done by a hill-climbing search procedure: change one of the coefficients for one of 
the features at random, and then see if the changed evaluation function is better than 
the original one. 

Without some guidance, this hill-climbing search would be very slow. First, the 
space is very large—Samuel used 38 different features, and although he restricted 
the coefficients to be a power of two between 0 and 20, that still leaves 21^^ possible 
evaluation functions. Second, the obvious way of determining the relative worth of 
two evaluation functions—playing a series of games between them and seeing which 
wins more of ten—is quite time-consuming. 

Fortunately, there is a faster way of evaluating an evaluation function. We can 
apply the evaluation function to a position and compare this static value with the 
backed-up value determined by an alpha-beta search. If the evaluation function is 
accurate, the static value should correlate well with the backed-up value. If it does not 
correlate well, the evaluation function should be changed in such a way that it does. 
This approach still requires the trial-and-error of hill-climbing, but it will converge 
much faster if we can gain information from every position, rather than just from 
every game. 

In the past few years there has been increased interest in learning by a process 
of guided search. Neural nets are one example of this. They have been discussed 
elsewhere. Another example is genetic learning algorithms. These algorithms start 
with several candidate solutions. In our case, each candidate would consist of a set 
of coefficients for an evaluation function. On each generation, the genetic algorithm 
sees how well each candidate does. The worst candidates are eliminated, and the 
best ones "mate" and "reproduce"—two candidates are combined in some way to 
yield a new one. If the new offspring has inherited both its parents' good points, then 
it will prosper; if it has inherited both its parents' bad points, then it will quickly die 
out. Either way, the idea is that natural selection will eventually yield a high-quality 
solution. To increase the chances of this, it is a good idea to allow for mutations: 
random changes in the genetic makeup of one of the candidates. 

18.14 History and References 
Lee and Mahajan (1986,1990) present the current top Othello program. Bill. Their 
description outlines all the techniques used but does not go into enough detail to allow 



652 SEARCH AND THE GAME OF OTHELLO 

the reader to reconstruct the program. Bill is based in large part on Rosenbloom's 
lago program. Rosenbloom's article (1982) is more thorough. The presentation in 
this chapter is based largely on this article, although it also contains some ideas from 
Bill and from other sources. 

The journal Othello Quarterly is the definitive source for reports on both human 
and computer Othello games and strategies. 

The most popular game for computer implementation is chess. Shannon (1950a,b) 
speculated that a computer might play chess. In a way, this was one of the boldest 
steps in the history of AI. Today, writing a chess program is a challenging but feasible 
project for an undergraduate. But in 1950, even suggesting that such a program 
might be possible was a revolutionary step that changed the way people viewed 
these arithmetic calculating devices. Shannon introduced the ideas of a game tree 
search, minimaxing, and evaluation functions—ideas that remain intact to this day. 
Marsland (1990) provides a good short introduction to computer chess, and David 
Levy has two books on the subject (1976,1988). It was Levy, an international chess 
master, who in 1968 accepted a bet from John McCarthy, Donald Michie, and others 
that a computer chess program would not beat him in the next ten years. Levy won 
the bet. Levy's Heuristic Programming (1990) and Computer Games (1988) cover a vari
ety of computer game playing programs. The studies by DeGroot (1965,1966) give a 
fascinating insight into the psychology of chess masters. 

Knuth and Moore (1975) analyze the alpha-beta algorithm, and Pearl's book 
Heuristics (1984) covers all kinds of heuristic search, games included. 

Samuel (1959) is the classic work on learning evaluation function parameters. It 
is based on the game of checkers. Lee and Mahajan (1990) present an alternative 
learning mechanism, using Bayesian classification to learn an evaluation function 
that optimally distinguishes winning positions from losing positions. Genetic algo
rithms are discussed by L. Davis (1987,1991) and Goldberg (1989). 

18-15 Exercises 

@ Exercise 18.3 [s] How many different Othello positions are there? Would it be 
feasible to store the complete game tree and thus have a perfect player? 

t¿l Exercise 18.4 [m] At the beginning of this chapter, we implemented pieces as an 
enumerated type. There is no built-in facility in Common Lisp for doing this, so 
we had to introduce a series of defconstant forms. Define a macro for defining 
enumerated types. What else should be provided besides the constants? 

@ Exercise 18.5 [h] Add fixnum and speed declarations to the lago evaluation func-



18.16 ANSWERS 653 

tion and the alpha-beta code. How much does this speed up lago? What other 
efficiency measures can you take? 

Exercise 18.6 [h] Implement an iterative deepening search that allocates time for 
each move and checks between each iteration if the time is exceeded. 

53 Exercise 18.7 [h] Implement zero-window search, as described in section 18.13. 

@ Exercise 18.8 [d] Read the references on Bill (Lee and Mahajan 1990, and 1986 if 
you can get it), and reimplement Bill's evaluation function as best you can, using the 
table-based approach. It will also be helpful to read Rosenbloom 1982. 

13 Exercise 18.9 [d] Improve the evaluation function by tuning the parameters, using 
one of the techniques described in section 18.13. 

G3 Exercise 18.10 [h] Write move-generation and evaluation functions for another 
game, such as chess or checkers. 

18.16 Answers 

Answer 18.2 The wei gh ted -squa res strategy wins the first game by 20 pieces, 
but when coun t -d i f f erence plays first, it captures all the pieces on its fifth move. 
These two games alone are not enough to determine the best strategy; the function 
othel 1 o - s e r i es on page 626 shows a better comparison. 

Answer 18.3 3 ^ = 3 ,433,683,820,292,512,484,657,849,089,281. No. 



654 SEARCH AND THE CAME OF OTHELLO 

Answer 18.4 Besides the constants, we provide a def type for the type itself, and 
conversion routines between integers and symbols: 

(defmacro define-enumerated-type (type &rest elements) 
"Represent an enumerated type with integers 0 - n . " 
' (progn 

(deftype .type () ' ( in teger 0 , ( - ( length elements) 1) ) ) 
(defun .(symbol type *->symbol) (. type) 

(e l t ' .elements . type)) 
(defun .(symbol 'symbol-> type) (symbol) 

(pos i t ion symbol ' .e lements)) 
.©(loop for element in elements 

for i from 0 
co l lect ' (defconstant .element . i ) ) ) ) 

Here's how the macro would be used to define the piece data type, and the code 
produced: 

> (macroexpand 
'(define-enumerated-type piece 

empty black white outer)) 

(PROGN 
(DEFTYPE PIECE () '(INTEGER 0 3) ) 
(DEFUN PIECE->SYMBOL (PIECE) 

(ELT '(EMPTY BLACK WHITE OUTER) PIECE)) 
(DEFUN SYMBOL->PIECE (SYMBOL) 

(POSITION SYMBOL '(EMPTY BLACK WHITE OUTER))) 
(DEFCONSTANT EMPTY 0) 
(DEFCONSTANT BLACK 1) 
(DEFCONSTANT WHITE 2) 
(DEFCONSTANT OUTER 3)) 

A more general facility would, like defstruct, provide for several options. For 
example, it might allow for a documentation string for the type and each constant, 
and for a : cone-name, so the constants could have names like pi ece-empty instead 
of empty. This would avoid conflicts with other types that wanted to use the same 
names. The user might also want the ability to start the values at some number other 
than zero, or to assign specific values to some of the symbols. 



CHAPTER 19 

Introduction to 
Natural Language 

Language is everywhere. It permeates our thoughts, 
mediates our relations with others, and even creeps 
into our dreams. The overwhelming hulk of human 

knowledge is stored and transmitted in language. 
Language is so ubiquitous that we take it for granted, 

but without it, society as we know it would 
be impossible. 

—Ronand Langacker 
Language and its Structure (1967) 

A natural language is a language spoken by people, such as English, German, or Taga-
log. This is in opposition to artificial languages like Lisp, FORTRAN, or Morse code. 
Natural language processing is an important part of AI because language is intimately 

connected to thought. One measure of this is the number of important books that mention 
language and thought in the title: in AI, Schank and Colby's Computer Models of Thought 
and Language; in linguistics, Whorf's Language, Thought, and Reality (and Chomsky's Language 
and Mind;) in philosophy, Fodor's The Language of Thought; and in psychology, Vygotsky's 
Thought and Language and John Anderson's Language, Memory, and Thought. Indeed, language is 
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the trait many think of as being the most characteristic of humans. Much controversy 
has been generated over the question of whether animals, especially primates and 
dolphins, can use and "understand" language. Similar controversy surrounds the 
same question asked of computers. 

The study of language has been traditionally separated into two broad classes: 
syntax, or grammar, and semantics, or meaning. Historically, syntax has achieved 
the most attention, largely because on the surface it is more amenable to formal and 
semiformal methods. Although there is evidence that the boundary between the two 
is at best fuzzy, we still maintain the distinction for the purposes of these notes. We 
will cover the "easier" part, syntax, first, and then move on to semantics. 

A good artificial language, like Lisp or C, is unambiguous. There is only one 
interpretation for a valid Lisp expression. Of course, the interpretation may depend 
on the state of the current state of the Lisp world, such as the value of global variables. 
But these dependencies can be explicitly enumerated, and once they are spelled out, 
then there can only be one meaning for the expression,^ 

Natural language does not work like this. Natural expressions are inherently 
ambiguous, depending on any number of factors that can never be quite spelled out 
completely. It is perfectly reasonable for two people to disagree on what some other 
person meant by a natural language expression. (Lawyers and judges make their 
living largely by interpreting natural language expressions—laws—that are meant to 
be unambiguous but are not.) 

This chapter is a brief introduction to natural language processing. The next 
chapter gives a more thorough treatment from the point of view of logic grammars, 
and the chapter after that puts it all together into a full-fledged system. 

19-1 Parsing with a Phrase-Structure Grammar 

To parse a sentence means to recover the constituent structure of the sentence—to 
discover what sequence of generation rules could have been applied to come up with 
the sentence. In general, there may be several possible derivations, in which case 
we say the sentence is grammatically ambiguous. In certain circles, the term "parse" 
means to arrive at an understanding of a sentence's meaning, not just its grammatical 
form. We will attack that more difficult question later. 

^Some erroneous expressions are underspecified and may return different results in dif
ferent implementations, but we will ignore that problem. 
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We start with the grammar defined on page 39 for the generate program: 

(defvar ^grammar* "The grammar used by GENERATE.") 

(defparameter *grammarl* 
•((Sentence - > (NP VP)) 

(NP - > (Art Noun)) 
(VP - > (Verb NP)) 
(Art - > the a) 
(Noun - > man ball woman table) 
(Verb - > hi t took saw l i ked) ) ) 

Our parser takes as input a list of words and returns a structure containing the parse 
tree and the unparsed words, if any. That way, we can parse the remaining words 
under the next category to get compound rules. For example, in parsing "the man 
saw the table," we would first parse "the man," returning a structure representing 
the noun phrase, with the remaining words "saw the table." This remainder would 
then be parsed as a verb phrase, returning no remainder, and the two phrases could 
then be joined to form a parse that is a complete sentence with no remainder. 

Before proceeding, I want to make a change in the representation of grammar 
rules. Currently, rules have a left-hand side and a list of alternative right-hand sides. 
But each of these alternatives is really a separate rule, so it would be more modular 
to write them separately. For the generate program it was fine to have them all to
gether, because that made processing choices easier, but now I want a more flexible 
representation. Later on we will want to add more information to each rule, like the 
semantics of the assembled left-hand side, and constraints between constituents on 
the right-hand side, so the rules would become quite large indeed if we didn't split up 
the alternatives. I also take this opportunity to clear up the confusion between words 
and category symbols. The convention is that a right-hand side can be either an 
atom, in which case it is a word, or a list of symbols, which are then all interpreted as 
categories. To emphasize this, I include "noun" and "verb" as nouns in the grammar 
*grammar3*, which is otherwise equivalent to the previous *grammarl*. 

(defparameter *grammar3* 
'((Sentence - > (NP VP)) 

(NP - > (Art Noun)) 
(VP - > (Verb NP)) 
(Art - > the) (Art - > a) 
(Noun - > man) (Noun - > ba l l ) (Noun - > woman) (Noun - > table) 
(Noun - > noun) (Noun - > verb) 

(Verb - > h i t ) (Verb - > took) (Verb - > saw) (Verb - > l i ked ) ) ) 

(set f *grammar* *grammar3*) 

I also define the data types rul e, parse, and t ree , and some functions for getting 
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at the rules. Rules are defined as structures of type list with three slots: the left-
hand side, the arrow (which should always be represented as the literal ->) and the 
right-hand side. Compare this to the treatment on page 40. 

(defstruct (rule (:type l i s t ) ) Ihs - > rhs) 

(defstruct (parse) "A parse tree and a remainder." tree rem) 

; ; Trees are of the form: ( Ihs . rhs) 
(defun new-tree (cat rhs) (cons cat rhs) ) 
(defun t ree- lhs (tree) ( f i r s t t ree)) 
(defun t ree-rhs (tree) ( rest t ree)) 

(defun parse- lhs (parse) ( t ree- lhs (parse-tree parse)) ) 

(defun l ex i ca l - ru les (word) 
"Return a l i s t of rules with word on the r ight-hand s i d e . " 
( f ind-a l l word ^grammar* :key # ' r u l e - rhs : test # 'equal ) ) 

(defun ru les-s tar t ing-wi th (cat) 
"Return a l i s t of rules where cat s ta r t s the r h s . " 
( f ind-a l l cat *grammar* 

:key #'(lambda ( ru le) ( f i r s t - o r - n i l ( ru le - rhs r u l e ) ) ) ) ) 

(defun f i r s t - o r - n i l (x) 
"The f i r s t element of χ i f i t i s a l i s t ; e lse n i l . " 
( i f (consp X) ( f i r s t x) n i l ) ) 

Now we're ready to define the parser. The main function parser takes a list of 
words to parse. It calls parse, which returns a Ust of all parses that parse some 
subsequence of the words, starting at the beginning, parser keeps only the parses 
with no remainder—that is, the parses that span all the words. 

(defun parser (words) 
"Return al l complete parses of a l i s t of words." 
(mapcar # 'parse- t ree (complete-parses (parse words)))) 

(defun complete-parses (parses) 
"Those parses that are complete (have no remainder)." 
( f i n d - a l l - i f #*null parses :key #*parse-rem)) 

The function parse looks at the first word and considers each category it could be. It 
makes a parse of the first word under each category, and calls extend - pa rse to try to 
continue to a complete parse, pa rse uses mapcan to append together all the resulting 
parses. A s an example, suppose we are trying to parse "the man took the ball." pa rse 
would find the single lexical rule for "the" and call extend-pa rse with a parse with 
tree (Art t he) and remainder "man took the ball," with no more categories needed. 
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extend-parse has two cases. If the partial parse needs no more categories to be 
complete, then it returns the parse itself, along with any parses that can be formed 
by extending parses starting with the partial parse. In our example, there is one rule 
startingwith Art, namely (NP -> (Art Noun)), so the function would try to extend 
theparse tree (NP (Art the) ) with remainder "man took the ball," with the category 
Noun needed. That call to extend-parse represents the second case. We first parse 
"man took the ball," and for every parse that is of category Noun (there will be only 
one), we combine with the partial parse. In this case we get (NP (Art the) (Noun 
man)). This gets extended as a sentence with a VP needed, and eventually we get a 
parse of the complete hst of words. 

(defun parse (words) 
"Bottom-up parse, returning al l parses of any pref ix of words." 
(unless (null words) 

(mapcan #'(lambda ( ru le) 
(extend-parse ( ru le - lhs rule) ( l i s t ( f i r s t words)) 

( rest words) n i l ) ) 
( l ex i ca l - ru les ( f i r s t words)) ) ) ) 

(defun extend-parse ( Ihs rhs rem needed) 
"Look for the categories needed to complete the parse . " 
( i f (null needed) 

I f nothing needed, return parse and upward extensions 
( let ((parse (make-parse :tree (new-tree Ihs rhs) :rem rem))) 

(cons parse 
(mapcan 

#·(lambda (ru le) 
(extend-parse ( ru le - lhs rule) 

( l i s t (parse-tree parse)) 
rem (rest ( ru le - rhs ru le ) ) ) ) 

( ru les-s ta r t ing-w i th I h s ) ) ) ) 
otherwise try to extend rightward 

(mapcan 
#'(lambda (p) 

( i f (eq (parse- lhs p) ( f i r s t needed)) 
(extend-parse Ihs (appendl rhs (parse-tree p)) 

(parse-rem p) ( rest needed)))) 

(parse rem)))) 

This makes use of the auxiliary function appendl : 

(defun appendl (items item) 
"Add item to end of l i s t of i tems." 
(append items ( l i s t i tem))) 
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Some examples of the parser in action are shown here: 

> (parser ' ( the table)) 
((NP (ART THE) (NOUN TABLE))) 

> (parser ' ( the ball h i t the table)) 
((SENTENCE (NP (ART THE) (NOUN BALD) 

(VP (VERB HIT) 
(NP (ARTTHE) (NOUN TABLE))))) 

> (parser ' ( the noun took the verb)) 
((SENTENCE (NP (ART THE) (NOUN NOUN)) 

(VP (VERB TOOK) 
(NP (ARTTHE) (NOUN VERB)))) ) 

19.2 Extending the Grammar and 
Recognizing Ambiguity 

Overall, the parser seems to work fine, but the range of sentences we can parse is 
quite limited with the current grammar. The following grammar includes a wider 
variety of linguistic phenomena: adjectives, prepositional phrases, pronouns, and 
proper names. It also uses the usual linguistic conventions for category names, 
summarized in the table below: 

Category Examples 

s Sentence John likes Mary 

NP Noun Phrase John; a blue table 

VP Verb Phrase likes Mary; hit the ball 

PP Prepositional Phrase to Mary; with the man 

A Adjective little; blue 

A+ A list of one or more adjectives little blue 

D Determiner the; a 

Ν Noun ball; table 

Name Proper Name John; Mary 

Ρ Preposition to; with 

Pro Pronoun you; me 

V Verb liked; hit 
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Here is the grammar: 

(defparameter *grammar4* 
• ( ( S - > (NP VP)) 

(NP - > (D N)) 
(NP - > (D A+ N)) 
(NP - > (NP PP)) 
(NP - > (Pro)) 
(NP - > (Name)) 
(VP - > (V NP)) 
(VP - > (V)) 
(VP - > (VP PP)) 
(PP - > (P NP)) 
(A+ - > (A)) 
(A+ - > (A A+)) 
(Pro - > I ) (Pro - > you) (Pro - > he) (Pro - > she) 
(Pro - > i t ) (Pro - > me) (Pro - > him) (Pro - > her) 
(Name - > John) (Name - > Mary) 
(A - > big) (A - > l i t t l e ) (A - > old) (A - > young) 
(A - > blue) (A - > green) (A - > orange) (A - > perspicuous) 
(D - > the) (D - > a) (D - > an) 
(N - > man) (N - > ba l l ) (N - > woman) (N - > table) (N - > orange) 
(N - > saw) (N - > saws) (N - > noun) (N - > verb) 
(P - > with) (P - > for) (P - > at) (P - > on) (P - > by) (P - > of) (P - > in) 
(V - > h i t ) (V - > took) (V - > saw) (V - > l iked) (V - > saws))) 

(set f ^grammar* *grammar4*) 

Now we can parse more interesting sentences, and we can see a phenomenon that 
was not present in the previous examples: ambiguous sentences. The sentence "The 
man hit the table with the ball" has two parses, one where the ball is the thing that 
hits the table, and the other where the ball is on or near the table, parser finds both 
of these parses (although of course it assigns no meaning to either parse): 

> (parser '(The man h i t the table with the ba l l ) ) 
( ( S (NP (D THE) (N MAN)) 

(VP (VP (V HIT) (NP (D THE) (N TABLE))) 
(PP (P WITH) (NP (DTHE) (N BALL)) ) ) ) 

( S (NP (D THE) (N MAN)) 
(VP (V HIT) 

(NP (NP (D THE) (N TABLE)) 
(PP (P WITH) (NP (DTHE) (N BALL) ) ) ) ) ) ) 

Sentences are not the only category that can be ambiguous, and not all ambiguities 
have to be between parses in the same category. Here we see a phrase that is 
ambiguous between a sentence and a noun phrase: 
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> (parser ' ( the orange saw)) 
( (S (NP (D THE) (N ORANGE)) (VP (V SAW))) 

(NP (D THE) (A+ (A ORANGE)) (N SAW))) 

19.3 More Efficient Parsing 
With more complex grammars and longer sentences, the parser starts to slow down. 
The main problem is that it keeps repeating work. For example, in parsing "The 
man hit the table with the ball," it has to reparse "with the ball" for both of the 
resulting parses, even though in both cases it receives the same analysis, a PP. We 
have seen this problem before and have already produced an answer: memoization 
(see section 9.6). To see how much memoization will help, we need a benchmark: 

> (set f s (generate ' s ) ) 
(THE PERSPICUOUS BIG GREEN BALL BY A BLUE WOMAN WITH A BIG MAN 
HIT A TABLE BY THE SAW BY THE GREEN ORANGE) 

> (time (length (parser s ) ) ) 
Evaluation of (LENGTH (PARSER S) ) took 33.11 Seconds of elapsed time. 
10 

The sentence S has 10 parses, since there are two ways to parse the subject NP and 
five ways to parse the VP. It took 33 seconds to discover these 10 parses with the 
pa rse function as it was written. 

We can improve this dramatically by memoizing parse (along with the table-
lookup functions). Besides memoizing, the only change is to clear the memoization 
table within parser . 

(memoize ' l e x i c a l - r u l e s ) 
(memoize * ru les-s tar t ing-wi th) 
(memoize 'parse -.test #*eq) 

(defun parser (words) 
"Return al l complete parses of a l i s t of words." 
(clear-memoize 'parse) 
(mapcar # 'parse- t ree (complete-parses (parse words)))) 

In normal human language use, memoization would not work very well, since the 
interpretation of a phrase depends on the context in which the phrase was uttered. 
But with context-free grammars we have a guarantee that the context cannot affect the 
interpretation. The call (parse words) must return all possible parses for the words. 
We are free to choose between the possibilities based on contextual information, but 
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context can never supply a new interpretation that is not in the context-free list of 
parses. 

The function use is introduced to tell the table-lookup functions that they are out 
of date whenever the grammar changes: 

(defun use (grammar) 

"Switch to a new grammar." 

(clear-memoize ' ru les-s ta r t ing-w i th ) 

(clear-memoize ' l e x i c a l - r u l e s ) 

( length (set f *grammar* grammar))) 

Now we run the benchmark again with the memoized version of pa rse: 

> (time (length (parser s ) ) ) 

Evaluation of (LENGTH (PARSER S ' S ) ) took .13 Seconds of elapsed time. 

10 

By memoizing pa rs e we reduce the parse time from 33 to .13 seconds, a 250-fold speed
up. We can get a more systematic comparison by looking at a range of examples. 
For example, consider sentences of the form "The man hit the table [with the ball]*" 
for zero or more repetitions of the PP "with the ball." In the following table we 
record N, the number of repetitions of the PP, along with the number of resulting 
parses^, and for both memoized and unmemoized versions of parse, the number 
of seconds to produce the parse, the number of parses per second (PPS), and the 
number of recursive calls to parse. The performance of the memoized version is 
quite acceptable; for N=5, a 20-word sentence is parsed into 132 possibilities in .68 
seconds, as opposed to the 20 seconds it takes in the unmemoized version. 

^The number of parses of sentences of this kind is the same as the number of bracketings 
of a arithmetic expression, or the number of binary trees with a given number of leaves. The 
resulting sequence (1,2,5,14,42,...) is known as the Catalan Numbers. This kind of ambiguity 
is discussed by Church and Patil (1982) in their article Coping with Syntactic Ambiguity, or How 
to Put the Block in the Box on the Table. 
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Memoized Unmemoized 
Ν Parses Sees PPS CaUs Sees PPS CaUs 
0 1 0.02 60 4 0.02 60 17 
1 2 0.02 120 11 0.07 30 96 
2 5 0.05 100 21 0.23 21 381 
3 14 0.10 140 34 0.85 16 1388 
4 42 0.23 180 50 3.17 13 4999 
5 132 0.68 193 69 20.77 6 18174 
6 429 1.92 224 91 — 
7 1430 5.80 247 116 — 
8 4862 20.47 238 144 — 

(¿3 Exercise 19.1 Pi] It seems that we could be more efficient still by memoizing with 
a table consisting of a vector whose length is the number of words in the input (plus 
one). Implement this approach and see if it entails less overhead than the more 
general hash table approach. 

19.4 The Unknown-Word Problem 
As it stands, the parser cannot deal with unknown words. Any sentence containing 
a word that is not in the grammar will be rejected, even if the program can parse all 
the rest of the words perfectly. One way of treating unknown words is to allow them 
to be any of the "open-class" categories—nouns, verbs, adjectives, and names, in our 
grammar. An unknown word will not be considered as one of the "closed-class" 
categories—prepositions, determiners, or pronouns. This can be programmed very 
simply by having 1 exi ca 1 - rul es return a list of these open-class rules for every word 
that is not already known. 

(defparameter *open-categor ies* ' ( N V A Name) 
"Categories to consider for unknown words") 

(defun l ex i ca l - ru les (word) 
"Return a l i s t of ru les with word on the r ight-hand s i d e . " 
(or ( f ind-a l l word *grammar* :key # ' r u l e - rhs : test # 'equal) 

(mapcar #'(lambda (cat) ' ( . ca t - > .word)) *open-categor ies*) ) ) 

With memoization of 1 exi cal - ru l es, this means that the lexicon is expanded every 
time an unknown word is encountered. Let's try this out: 

> (parser '(John l iked Mary)) 
( (S (NP (NAME JOHN)) 

(VP (V LIKED) (NP (NAME MARY))))) 
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> (parser '(Dana l iked Dale)) 
( (S (NP (NAME DANA)) 

(VP (V LIKED) (NP (NAME DALE))))) 

> (parser ' ( the rab zaggled the woogly quax)) 
( (S (NP (D THE) (N RAB)) 

(VP (V ZAGGLED) (NP (D THE) (A+ (A WOOGLY)) (N QUAX))))) 

We see the parser works as well with words it knows (John and Mary) as with new 
words (Dana and Dale), which it can recognize as names because of their position 
in the sentence. In the last sentence in the example, it recognizes each unknown 
word unambiguously. Things are not always so straightforward, unfortunately, as 
the following examples show: 

> (parser ' ( the s l i t hy toves gymbled)) 
( (S (NP (D THE) (N SLITHY)) (VP (V TOVES) (NP (NAME GYMBLED)))) 

(S (NP (D THE) (A+ (A SLITHY)) (N TOVES)) (VP (V GYMBLED))) 
(NP (D THE) (A+ (A SLITHY) (A+ (A TOVES))) (N GYMBLED))) 

> (parser ' ( the s l i t hy toves gymbled on the wabe)) 
( (S (NP (D THE) (N SLITHY)) 

(VP (VP (V TOVES) (NP (NAME GYMBLED))) 
(PP (P ON) (NP (D THE) (N WABE))))) 

(S (NP (D THE) (N SLITHY)) 
(VP (V TOVES) (NP (NP (NAME GYMBLED)) 

(PP (P ON) (NP (D THE) (N WABE)))))) 
(S (NP (D THE) (A+ (A SLITHY)) (N TOVES)) 

(VP (VP (V GYMBLED)) (PP (P ON) (NP (D THE) (N WABE))))) 
(NP (NP (D THE) (A+ (A SLITHY) (A+ (A TOVES))) (N GYMBLED)) 

(PP (P ON) (NP (D THE) (N WABE))))) 

If the program knew morphology—that a y at the end of a word often signals an 
adjective, an s a plural noun, and an ed a past-tense verb—then it could do much 
better. 

19.5 Parsing into a Semantic Representation 
Syntactic parse trees of a sentence may be interesting, but by themselves they're not 
very useful. We use sentences to communicate ideas, not to display grammatical 
structures. To explore the idea of the semantics, or meaning, of a phrase, we need 
a domain to talk about. Imagine the scenario of a compact disc player capable of 
playing back selected songs based on their track number. Imagine further that this 
machine has buttons on the front panel indicating numbers, as well as words such as 
"play," "to," "and," and "without." If you then punch in the sequence of buttons "play 
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1 to 5 without 3 / ' you could reasonably expect the machine to respond by playing 
tracks 1,2,4, and 5. After a few such successful interactions, you might say that the 
machine "understands" a limited language. The important point is that the utility of 
this machine would not be enhanced much if it happened to display a parse tree of 
the input. On the other hand, you would be justifiably annoyed if it responded to 
"play 1 to 5 without 3" by playing 3 or skipping 4. 

Now let's stretch the imagination one more time by assuming that this CD player 
comes equipped with a full Common Lisp compiler, and that we are now in charge 
of writing the parser for its input language. Let's first consider the relevant data 
structures. We need to add a component for the semantics to both the rule and tree 
structures. Once we've done that, it is clear that trees are nothing more than instances 
of rules, so their definitions should reflect that. Thus, I use an : 1nc1 ude defstruct 
to define trees, and I specify no copier function, because copy - t r ee is already a 
Common Lisp function, and I don't want to redefine it. To maintain consistency 
with the old new-tree function (and to avoid having to put in all those keywords) I 
definetheconstructornew-tree. Thisoptiontodefstructmakes (new- tree a b c ) 
equivalent to (make-tree : l h s a :sem b : r h s c ) . 

(defstruct (rule ( i type l i s t ) ) 
Ihs - > rhs sem) 

(defstruct (tree (:type l i s t ) ( : include rule) ( r cop ie rn i l ) 
( :constructor new-tree ( Ihs sem rhs ) ) ) ) 

We will adopt the convention that the semantics of a word can be any Lisp object. For 
example, the semantics of the word " 1 " could be the object 1, and the semantics of 
"without" could be the function s e t - d i f f erence. The semantics of a tree is formed 
by taking the semantics of the rule that generated the tree and applying it (as a 
function) to the semantics of the constituents of the tree. Thus, the grammar writer 
must insure that the semantic component of rules are functions that expect the right 
number of arguments. For example, given the rule 

(NP - > (NP CONJ NP) i n f i x - funca l l ) 

then the semantics of the phrase "1 to 5 without 3" could be determined by first deter-
miningthesemanticsof"l to5"tobe(l 2 3 4 5) ,of"without" tobeset -difference, 
and of "3" to be ( 3 ) . After these sub-constituents are determined, the rule is applied 
by calling the function i n f i x - f u n c a l l with the three arguments (1 2 3 4 5 ) , 
s e t - d i f f e r e n c e , and ( 3 ) . Assuming that i n f i x - f u n c a l l is defined to apply its 
second argument to the other two arguments, the result will be (1 2 4 5 ) . 

This may make more sense if we look at a complete grammar for the CD player 
problem: 
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(use 
' ( (NP - > (NP CONJ NP) i n f i x - funca l l ) 

(NP - > (N) l i s t ) 

(NP - > (N Ρ Ν) i n f i x - funca l l ) 
(Ν - > (DIGIT) ident i ty) 
(P - > to integers) 

(CONJ - > and union) 
(CONJ - > without set-d i f ference) 
(N - > 1 1) (N - > 2 2) (N - > 3 3) (N - > 4 4) (N - > 5 5) 
(N - > 6 6) (N - > 7 7) (N - > 8 8) (N - > 9 9) (N - > 0 0 ) ) ) 

(defun integers (s ta r t end) 
"A l i s t of a l l the integers in the range [ s ta r t . . . end ] i n c l us i ve . " 
( i f (> s tar t end) ni l 

(cons s tar t ( integers (+ s ta r t 1) end)))) 

(defun in f ix - funca l l (argl function arg2) 
"Apply the function to the two arguments" 
(funcall function argl arg2)) 

Consider the first three grammar rules, which are the only nonlexical rules. The first 
says that when two NPs are joined by a conjunction, we assume the translation of 
the conjunction will be a function, and the translation of the phrase as a whole is 
derived by calling that function with the translations of the two NPs as arguments. 
The second rule says that a single noun (whose translation should be a number) 
translates into the singleton list consisting of that number. The third rule is similar 
to the first, but concerns joining Ns rather than NPs. The overall intent is that the 
translation of an NP will always be a list of integers, representing the songs to play. 

As for the lexical rules, the conjunction "and" translates to the union function, 
"without" translates to the function that subtracts one set from another, and "to" 
translates to the function that generates a list of integers between two end points. 
The numbers "0" to "9" translate to themselves. Note that both lexical rules like 
"CONJ -> and" and nonlexical rules like "NP - > (N Ρ Ν ) " can have functions as 
their semantic translations; in the first case, the function will just be returned as the 
semantic translation, whereas in the second case the function will be applied to the 
list of constituents. 

Only minor changes are needed to pa r s e to support this kind of semantic process
ing. As we see in the following, we add a sem argument to extend - pa r se and arrange 
to pass the semantic components around properly. When we have gathered all the 
right-hand-side components, we actually do the function application. All changes 
are marked with We adopt the convention that the semantic value η i 1 indicates 
failure, and we discard all such parses. 
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(defun parse (words) 
"Bottom-up parse, returning al l parses of any pref ix of words. 
This version has semantics." 
(unless (null words) 

(mapcan #'(lambda ( ru le) 
(extend-parse ( ru le - lhs rule) (rule-sem rule) 

( l i s t ( f i r s t words)) ( rest words) n i l ) ) 
( l ex i ca l - ru les ( f i r s t words)) ) ) ) 

(defun extend-parse ( Ihs sem rhs rem needed) 
"Look for the categories needed to complete the parse. 
This version has semantics." 
( i f (null needed) 

I f nothing i s needed, return th i s parse and upward extensions, 
: ; unless the semantics f a i l s 
( le t ((parse (make-parse rtree (new-tree Ihs sem rhs) :rem rem))) 

(unless (null (apply-semantics (parse-tree parse)) ) 
(cons parse 

(mapcan 
#'(lambda ( ru le) 

(extend-parse ( ru le - lhs rule) ( ru le-semrule) 
( l i s t (parse-tree parse)) rem 
(rest ( ru le - rhs ru le ) ) ) ) 

( ru les-s ta r t ing-w i th I h s ) ) ) ) ) 
; ; otherwise try to extend rightward 
(mapcan 

#*(lambda (p) 
( i f (eq (parse- lhs p) ( f i r s t needed)) 

(extend-parse Ihs sem (appendl rhs (parse-tree p)) 
(parse-rem p) ( rest needed)))) 

(parse rem)))) 

W e need to add some n e w funct ions to suppor t this: 

(defun apply-semantics (tree) 
"For terminal nodes, just fetch the semantics. 
Otherwise, apply the sem function to i t s const i tuents . " 
( i f ( terminal-tree-p tree) 

(tree-sem tree) 
(set f (tree-sem tree) 

(apply (tree-sem tree) 
(mapcar #' tree-sem ( t ree-rhs t r ee ) ) ) ) ) ) 

(defun terminal-tree-p (tree) 
"Does th i s tree have a s ing le word on the r h s ? " 
(and ( length=l ( t ree-rhs t ree)) 

(atom ( f i r s t ( t ree-rhs t ree ) ) ) ) ) 
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(defun meanings (words) 
"Return al l possib le meanings of a phrase. Throw away the syntact ic par t . " 
(remove-duplicates (mapcar #' tree-sem (parser words)) : test # 'equal ) ) 

Here are some examples of the meanings that the parser can extract: 

> (meanings ' ( 1 to 5 without 3)) 
( (1 2 4 5)) 

> (meanings ' ( 1 to 4 and 7 to 9)) 
( ( 1 2 3 4 7 8 9)) 

> (meanings ' ( 1 to 6 without 3 and 4) ) 
( ( 1 2 4 5 6) 
(1 2 5 6)) 

The example " (1 to 6 w i thou t 3 and 4 ) " is ambiguous. The first reading cor
responds to "((1 to 6) without 3) and 4 / ' while the second corresponds to "(1 to 6) 
without (3 and 4)." The syntactic ambiguity leads to a semantic ambiguity—the two 
meanings have different lists of numbers in them. However, it seems that the second 
reading is somehow better, in that it doesn't make a lot of sense to talk of adding 4 to 
a set that already includes it, which is what the first translation does. 

We can upgrade the lexicon to account for this. The following lexicon insists 
that "and" conjoins disjoint sets and that "without" removes only elements that were 
already in the first argument. If these conditions do not hold, then the translation 
will return nil, and the parse will fail. Note that this also means that an empty list, 
such as "3 to 2," will also fail. 

The previous grammar only allowed for the numbers 0 to 9. We can allow larger 
numbers by stringing together digits. So now we have two rules for numbers: a 
number is either a single digit, in which case the value is the digit itself (the i dent i ty 
function), or it is a number followed by another digit, in which case the value is 10 
times the number plus the digit. We could alternately have specified a number to be 
a digit followed by a number, or even a number followed by a number, but either of 
those formulations would require a more complex semantic interpretation. 

(use 
' ( (NP - > (NP CONJ NP) i n f i x - funca l l ) 

(NP - > (N) l i s t ) 
(NP - > (N Ρ Ν) i n f i x - funca l l ) 
(Ν - > (DIGIT) ident i ty) 
(N - > (N DIGIT) 10*N+D) 
(P - > to integers) 
(CONJ - > and union*) 
(CONJ - > without se t -d i f f ) 
(DIGIT - > 1 1) (DIGIT - > 2 2) (DIGIT - > 3 3) 
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(DIGIT - > 4 4) (DIGIT - > 5 5) (DIGIT - > 6 6) 
(DIGIT - > 7 7) (DIGIT - > 8 8) (DIGIT - > 9 9) 
(DIGIT - > 0 0 ) ) ) 

(defun union* (x y) ( i f (null ( in tersect ion χ y ) ) (append χ y ) ) ) 
(defun se t -d i f f (χ y) ( i f (subsetp y χ) (set-d i f ference χ y ) ) ) 
(defun 10*N-^D (N D) (+ (* 10 N) D)) 

With this new grammar, we can get single interpretations out of most reasonable 
inputs: 

> (meanings ' ( 1 to 6 without 3 and 4) ) 
( (1 2 5 6)) 

> (meanings ' ( 1 and 3 to 7 and 9 without 5 and 6)) 
( ( 1 3 4 7 9)) 

> (meanings ' ( 1 and 3 to 7 and 9 without 5 and 2)) 
( ( 1 3 4 6 7 9 2)) 

> (meanings ' ( 1 9 8 to 2 0 D ) 
((198 199 200 201)) 

> (meanings ' ( 1 2 3)) 
(123 (123)) 

The example "1 2 3" shows an ambiguity between the number 123 and the list (123), 
but all the others are unambiguous. 

19.6 Parsing with Preferences 
One reason we have unambiguous interpretations is that we have a very limited 
domain of interpretation: we are dealing with sets of numbers, not lists. This is 
perhaps typical of the requests faced by a CD player, but it does not account for 
all desired input. For example, if you had a favorite song, you couldn't hear it 
three times with the request "1 and 1 and 1" under this grammar. We need some 
compromise between the permissive grammar, which generated all possible parses, 
and the restrictive grammar, which eliminates too many parses. To get the "best" 
interpretation out of an arbitrary input, we will not only need a new grammar, we 
will also need to modify the program to compare the relative worth of candidate 
interpretations. In other words, we will assign each interpretation a numeric score, 
and then pick the interpretation with the highest score. 

We start by once again modifying the rule and tree data types to include a score 
component. As with the sem component, this will be used to hold first a function to 
compute a score and then eventually the score itself. 
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(defstruct (rule (:type l i s t ) 
(¡constructor 
rule ( Ihs - > rhs Äoptional sem score) ) ) 

Ihs - > rhs sem score) 

(defstruct (tree ( i type l i s t ) (r include rule) ( : cop ie rn i l ) 
(¡constructor new-tree ( Ihs sem score r hs ) ) ) ) 

Note that we have added the constructor function rul e. The intent is that the sem 
and score component of grammar rules should be optional. The user does not have 
to supply them, but the function use will make sure that the function rul e is called 
to fill in the missing sem and score values with ni 1. 

(defun use (grammar) 
"Switch to a new grammar." 
(clear-memoize ' ru les -s ta r t i ng -w i th ) 
(clear-memoize ' l e x i c a l - r u l e s ) 
(length (set f *grammar* 

(mapcar #'(lambda ( r ) (apply # ' ru le r ) ) 
grammar)))) 

Now we modify the parser to keep track of the score. The changes are again minor, 
and mirror the changes needed to add semantics. There are two places where we 
put the score into trees as we create them, and one place where we apply the scoring 
function to its arguments. 

(defun parse (words) 
"Bottom-up parse, returning al l parses of any pref ix of words. 
This version has semantics and preference sco res . " 
(unless (null words) 

(mapcan #'(lambda (ru le) 
(extend-parse 

( ru le - lhs rule) (rule-sem rule) 
( ru le-score rule) ( l i s t ( f i r s t words)) 
( rest words) n i l ) ) 

( l ex i ca l - ru les ( f i r s t words)) ) ) ) 

(defun extend-parse ( Ihs sem score rhs rem needed) 
"Look for the categories needed to complete the parse. 
This version has semantics and preference sco res . " 
( i f (null needed) 

I f nothing i s needed, return th i s parse and upward extensions, 
; ; unless the semantics f a i l s 
( let ((parse (make-parse :tree (new-tree Ihs sem score rhs) 

:rem rem))) 
(unless (null (apply-semantics (parse-tree parse)) ) 
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(apply-scorer (parse-tree parse)) 
(cons parse 

(mapcan 
#'(lambda (ru le) 

(extend-parse 
( ru le - lhs rule) (rule-sem rule) 
( ru le-score rule) ( l i s t (parse-tree parse)) 
rem (rest ( ru le - rhs ru le ) ) ) ) 

( ru les-s ta r t ing-w i th I h s ) ) ) ) ) 
otherwise try to extend rightward 

(mapcan 
#*(lambda (p) 

( i f (eq (parse- lhs p) ( f i r s t needed)) 
(extend-parse Ihs sem score 

(appendl rhs (parse-tree p)) 
(parse-rem p) ( rest needed)))) 

(parse rem)))) 

A g a i n we need some n e w funct ions to suppor t this. M o s t important is appl y - s c o r e r , 
w h i c h computes the score for a tree. If the tree is a terminal (a wo rd ) , then the funct ion 
just looks u p the score associated w i th that w o r d . I n this g r a m m a r all w o r d s have 
a score of 0, but i n a g r a m m a r w i th a m b i g u o u s w o r d s it w o u l d be a g o o d idea to 
give lower scores for infrequently u s e d senses of a m b i g u o u s w o r d s . If the tree is 
a nonterminal , then the score is computed i n two steps. First, all the scores of the 
consti tuents of the tree are added u p . T h e n , this is added to a measure for the tree 
as a who le . The rule associated w i th each tree wi l l have either a n u m b e r attached to 
it, w h i c h is added to the s u m , or a funct ion. I n the latter case, the funct ion is appl ied 
to the tree, a n d the result is added to obtain the final score. A s a f inal special case, if 
the funct ion returns ni l , then we a s s u m e it meant to return zero. T h i s wi l l s impl i fy 
the definit ion of some of the scor ing funct ions. 

(defun apply-scorer (tree) 
"Compute the score for th i s t ree. " 
( le t ( (score (or ( t ree-score tree) 0 ) ) ) 

(set f ( t ree-score tree) 
( i f ( terminal-tree-p tree) 

score 
Add up the const i tuent 's scores , 

; ; along with the t ree ' s score 
(+ (sum (t ree-rhs tree) # ' t ree -score -o r -0 ) 

( i f (numberp score) 
score 

(or (apply score ( t ree-rhs t ree)) 0 ) ) ) ) ) ) ) 

He re is a n accessor funct ion to p ick out the score f r o m a tree: 
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(defun t ree-score-or-O (tree) 
( i f (numberp (tree-score t ree)) 

( t ree-score tree) 
0)) 

Here is the updated grammar. First, I couldn't resist the chance to add more features 
to the grammar. I added the postnominal adjectives "shuffled," which randomly 
permutes the list of songs, and "reversed," which reverses the order of play. I also 
added the operator "repeat," as in "1 to 3 repeat 5," which repeats a list a certain 
number of times. 1 also added brackets to allow input that says explicitly how it 
should be parsed. 

(use 
' ( (NP 

(NP 
(NP 
(NP 
(NP 
(NP 
(N 
(N 
(P 
([ 
( ] 
(OP 

-> 
-> 
-> 

-> 
-> 

(NP CONJ NP) 
(N Ρ Ν) 
(Ν) 
([ NP ]) 
(NP ADJ) 
(NP OP N) 
(D) 
(N D) 

- > to 
- > [ 
- > ] 
- > repeat 

(CONJ - > and 
(CONJ - > without 
(ADJ - > reversed 
(ADJ - > shuff led 
(D - > 1 1) (D - > 2 
(D - > 6 6) (D - > 7 

in f i x - funca l l 
in f ix - funca l l 
l i s t ) 
arg2) 
rev-funcal1 
i n f i x - funca l l ) 
ident i ty) 
10*N+D) 
integers 
[) 
]) 
repeat) 
append pre fer -d is jo in t ) 
set-di f ference prefer-subset) 
reverse inv-span) 
permute prefer-not-s ing leton) 

2) (D - > 3 3) (D - > 4 4) (D - > 5 5) 
7) (D - > 8 8) (D - > 9 9) (D - > 0 0 ) ) ) 

i n f i x -sco re r ) 
i n f i x -sco re r ) 

rev-scorer) 

prefer<) 

The following scoring functions take trees as inputs and compute bonuses or penal
ties for those trees. The scoring function pref er<, used for the word "to," gives a 
one-point penalty for reversed ranges: "5 to 1" gets a score of -1, while "1 to 5" gets 
a score of 0. The scorer for "and," p re fe r -d i s j o i nt, gives a one-point penalty for 
intersecting lists: "1 to 3 and 7 to 9" gets a score of 0, while "1 to 4 and 2 to 5" gets -1. 
The "x without y" scorer, p r e f e r - s u b s e t , gives a three-point penalty when the y list 
has elements that aren't in the χ list. It also awards points in inverse proportion to the 
length (in words) of the χ phrase. The idea is that we should prefer to bind "without" 
tightly to some small expression on the left. If the final scores come out as positive 
or as nonintegers, then this scoring component is responsible, since all the other 
components are negative intgers. The "x shuffled" scorer, p r e f e r - n o t - s i n g l e t o n , 
is similar, except that there the penalty is for shuffling a list of less than two songs. 
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(defun prefer< (x y) 
( i f (>= (sem X ) (sem y ) ) -1) ) 

(defun pre fer -d is jo in t (x y) 
( i f ( in tersect ion (sem x) (sem y ) ) -1) ) 

(defun prefer-subset (x y) 
(+ ( inv-span x) ( i f (subsetp (sem y) (sem x) ) 0 -3 ) ) ) 

(defun prefer-not-s ingleton (x) 
(+ ( inv-span x) ( i f (< (length (sem x) ) 2) -4 0 ) ) ) 

The i n f i x - score r and rev-scorer functionsdon'taddanythingnew,theyjustassure 
that the previously mentioned scoring functions will get applied in the right place. 

(defun in f i x -score r (arg l scorer arg2) 
(funcal l ( t ree-score scorer) arg l arg2)) 

(defun rev-scorer (arg scorer) ( funcal l ( t ree-score scorer) arg) ) 

Here are the functions mentioned in the grammar, along with some useful utilities: 

(defun arg2 (al a2 &rest a-n) (declare ( ignore al a-n)) a2) 

(defun rev-funcal l (arg funct ion) (funcal l function arg)) 

(defun repeat ( l i s t n) 
"Append l i s t η t imes." 
( i f (= η 0) 

ni l 
(append l i s t (repeat l i s t (- η 1 ) ) ) ) ) 

(defun span-length (tree) 
"How many words are in t ree?" 
( i f ( terminal-tree-p tree) 1 

(sum ( t ree-rhs tree) # 'span- length) ) ) 

(defun inv-span (tree) ( / 1 (span-length t ree) ) ) 

(defun sem (tree) (tree-sem tree)) 

(defun integers (s tar t end) 
"A l i s t of al l the integers in the range [ s t a r t . . . e n d ] i n c l u s i v e . 
This vers ion allows s tar t > end." 
(cond ( (< s tar t end) (cons s ta r t ( integers (+ s tar t 1) end))) 

( (> s tar t end) (cons s tar t ( in tegers (- s ta r t 1) end))) 
(t ( l i s t s t a r t ) ) ) ) 

(defun sum (numbers Äoptional fn) 
"Sum the numbers, or sum (mapcar fn numbers)." 
( i f fn 

(loop for X in numbers sum (funcal l fn x) ) 
(loop for X in numbers sum x ) ) ) 
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(defun permute (bag) 
"Return a random permutation of the given input l i s t . " 
( i f (null bag) 

ni l 
( let ((e (random-elt bag))) 

(cons e (permute (remove e bag rcount 1 : test #*eq) ) ) ) ) ) 

We will need a way to show off the preference rankings: 

(defun a l l -pa rses (words) 
(format t "~%Score Semantics^ZBT^a" words) 
(format t " ~ % = --251 — = ~ % " ) 
(loop for tree in (sor t (parser words) #*> :key# ' t ree -score ) 

do (format t "~5, l f ~9a~25T''a~%" ( t ree-score tree) (tree-sem tree) 
(bracketing t ree) ) ) 

(values)) 

(defun bracketing (tree) 
"Extract the terminals, bracketed with parens." 
(cond ((atom tree) tree) 

( ( length=l ( t ree-rhs t ree)) 
(bracketing ( f i r s t ( t ree-rhs t ree) ) ) ) 

(t (mapcar # 'bracket ing ( t ree-rhs t ree ) ) ) ) ) 

Now we can try some examples: 

> (a l l -pa rses ' ( 1 to 6 without 3 and 4) ) 
Score Semantics (1 TO 6 WITHOUT 3 AND 4) 

0.3 (1 2 5 6) ( (1 TO 6) WITHOUT (3 AND 4)) 
-0.7 (1 2 4 5 6 4) ( ( ( 1 TO 6) WITHOUT 3) AND 4) 

> (al l -parses • (1 and 3 to 7 and 9 without 5 and 6)) 
Score Semantics (1 AND 3 TO 7 AND 9 WITHOUT 5 AND 6) 

0.2 (1 3 4 7 9) (1 AND ( ( (3 TO 7) AND 9) WITHOUT (5 AND 6) ) ) 
0 .1 (1 3 4 7 9) ( ( ( 1 AND (3 TO 7)) AND 9) WITHOUT (5 AND 6)) 
0 .1 (1 3 4 7 9) ( (1 AND ((3 TO 7) AND 9)) WITHOUT (5 AND 6)) 

-0 .8 (1 3 4 6 7 9 6) ( (1 AND ( ( (3 TO 7) AND 9) WITHOUT 5)) AND 6) 
-0 .8 (1 3 4 6 7 9 6) (1 AND ( ( ( ( 3 TO 7) AND 9) WITHOUT 5) AND 6)) 
-0 .9 (1 3 4 6 7 9 6) ( ( ( ( 1 AND (3 TO 7)) AND 9) WITHOUT 5) AND 6) 
-0 .9 (1 3 4 6 7 9 6) ( ( ( 1 AND ((3 TO 7) AND 9)) WITHOUT 5) AND 6) 
-2 .0 (1 3 4 5 6 7 9) ( (1 AND (3 TO 7)) AND (9 WITHOUT (5 AND 6) ) ) 
-2 .0 (1 3 4 5 6 7 9) (1 AND ((3 TO 7) AND (9 WITHOUT (5 AND 6 ) ) ) ) 
-3 .0 (1 3 4 5 6 7 9 6) ( ( ( 1 AND (3 TO 7)) AND (9 WITHOUT 5)) AND 6) 
-3 .0 (1 3 4 5 6 7 9 6) ( (1 AND (3 TO 7)) AND ((9 WITHOUT 5) AND 6)) 
-3 .0 (1 3 4 5 6 7 9 6) ( (1 AND ((3 TO 7) AND (9 WITHOUT 5) ) ) AND 6) 



> (al l -parses ' ( 1 and 3 
Score Semantics 

0.2 (1 3 4 6 7 9 2) 
0.2 (1 3 4 6 7 9 2) 
0 .1 (1 3 4 6 7 9 2) 
0 .1 (1 3 4 6 7 9 2) 

-2 .0 (1 3 4 5 6 7 9 2) 
-2 .0 (1 3 4 5 6 7 9 2) 
-2 .0 (1 3 4 5 6 7 9) 
-2 .0 (1 3 4 5 6 7 9 2) 
-2 .0 (1 3 4 5 6 7 9 2) 
-2 .0 (1 3 4 5 6 7 9 2) 
-2 .0 (1 3 4 5 6 7 9) 
-2 .8 (1 3 4 6 7 9) 
- 2 .9 (1 3 4 6 7 9) 
-2 .9 (1 3 4 6 7 9) 
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-3 .0 (1 3 4 5 6 7 9 6) (1 AND ( ( (3 TO 7) AND (9 WITHOUT 5)) AND 6)) 
-3 .0 ( 1 3 4 5 6 7 9 6) (1 AND ((3 TO 7) AND ((9 WITHOUT 5) AND 6 ) ) ) 

:o 7 and 9 without 5 and 2)) 
(1 AND 3 TO 7 AND 9 WITHOUT 5 AND 2) 

( (1 AND ( ( (3 TO 7) AND 9) WITHOUT 5)) AND 2) 
(1 AND ( ( ( ( 3 TO 7) AND 9) WITHOUT 5) AND 2)) 
( ( ( ( 1 AND (3 TO 7)) AND 9) WITHOUT 5) AND 2) 
( ( ( 1 AND ((3 TO 7) AND 9)) WITHOUT 5) AND 2) 
( ( ( 1 AND (3 TO 7)) AND (9 WITHOUT 5)) AND 2) 
( (1 AND (3 TO 7)) AND ((9 WITHOUT 5) AND 2)) 
( (1 AND (3 TO 7)) AND (9 WITHOUT (5 AND 2 ) ) ) 
( (1 AND ( (3 TO 7) AND (9 WITHOUT 5 ) ) ) AND 2) 
(1 AND ( ( (3 TO 7) AND (9 WITHOUT 5)) AND 2)) 
(1 AND ( (3 TO 7) AND ((9 WITHOUT 5) AND 2 ) ) ) 
(1 AND ((3 TO 7) AND (9 WITHOUT (5 AND 2 ) ) ) ) 
(1 AND ( ( (3 TO 7) AND 9) WITHOUT (5 AND 2 ) ) ) 
( ( ( 1 AND (3 TO 7)) AND 9) WITHOUT (5 AND 2)) 
( (1 AND ((3 TO 7) AND 9)) WITHOUT (5 AND 2)) 

In each case, the preference rules are able to assign higher scores to more reasonable 
interpretations. It turns out that, in each case, all the interpretations with positive 
scores represent the same set of numbers, while interpretations with negative scores 
seem worse. Seeing all the scores in gory detail may be of academic interest, but what 
we really want is something to pick out the best interpretation. The following code 
is appropriate for many situations. It picks the top scorer, if there is a unique one, 
or queries the user if several interpretations tie for the best score, and it complains 
if there are no valid parses at all. The query-user function may be useful in many 
applications, but note that mean i ng uses it only as a default; a program that had some 
automatic way of deciding could supply another t i e -breaker function to meani ng. 

(defun meaning (words Äoptional ( t ie-breaker # 'query-user ) ) 
"Choose the s ing le top-ranking meaning for the words." 
( le t * ( ( t rees (sor t (parser words) #*> :key # ' t ree-score ) ) 

(best-score ( i f trees ( t ree-score ( f i r s t t rees) ) 0) ) 
(best- t rees (delete best-score trees 

:key #*tree-score : test -not # ' eq l ) ) 
(best-sems (delete-dupl icates (mapcar #' t ree-sem best - t rees) 

.-test # 'equa l ) ) ) 
(case (length best-sems) 

(0 (format t "~&Sorry. I d idn ' t understand tha t . " ) n i l ) 
(1 ( f i r s t best-sems)) 
(t ( funcal l t ie-breaker best -sems)) ) ) ) 
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(defun query-user (choices &optiona1 
(header-str "~&Please pick one:" ) 
( footer -s t r "~&Your choice? " ) ) 

"Ask user to make a choice." 
(format *query- io* header-str) 
(loop for choice in choices for i from 1 do 

(format *query- io* "~&~3d: ~a" i choice)) 
(format *query- io* foo ter -s t r ) 
(nth (- (read) 1) choices)) 

Here we see some final examples: 

> (meaning ' ( 1 to 5 without 3 and 4)) 
(1 2 5) 

> (meaning ' ( 1 to 5 without 3 and 6)) 
( 1 2 4 5 6) 

> (meaning ' ( 1 to 5 without 3 and 6 shuf f led)) 
( 6 4 1 2 5 ) 

> (meaning ' ( [ 1 to 5 without C 3 and 6 ] ] reversed)) 
(5 4 2 1) 

> (meaning ' ( 1 to 5 to 9)) 
Sor ry . I d idn ' t understand that. 
NIL 

> (meaning ' ( 1 to 5 without 3 and 7 repeat 2)) 
Please pick one: 

1 : ( 1 2 4 5 7 1 2 4 5 7) 
2: ( 1 2 4 5 7 7) 

Your choice? 1 
( 1 2 4 5 7 1 2 4 5 7) 

> (a l l -pa rses ' ( 1 to 5 without 3 and 7 repeat 2)) 
Score Semantics (1 TO 5 WITHOUT 3 AND 7 REPEAT 2) 

0.3 ( 1 2 4 5 7 1 2 4 5 7) ( ( ( ( 1 TO 5) WITHOUT 3) AND 7) REPEAT 2) 
0.3 ( 1 2 4 5 7 7) ( ( ( 1 TO 5) WITHOUT 3) AND (7 REPEAT 2)) 

-2 .7 ( 1 2 4 5 1 2 4 5) ( ( ( 1 TO 5) WITHOUT (3 AND 7)) REPEAT 2) 
-2.7 ( 1 2 4 5) ( (1 TO 5) WITHOUT ((3 AND 7) REPEAT 2)) 
-2.7 ( 1 2 4 5) ( (1 TO 5) WITHOUT (3 AND (7 REPEAT 2 ) ) ) 

This last example points out a potential problem: I wasn't sure what was a good 
scoring function for "repeat," so I left it blank, it defaulted to 0, and we end up 
with two parses with the same score. This example suggests that "repeat" should 
probably involve i n v - s p a n like the other modifiers, but perhaps other factors should 
be involved as well. There can be a complicated interplay between phrases, and it 
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is not always clear where to assign the score. For example, it doesn't make much 
sense to repeat a "without" phrase; that is, the bracketing (χ without (y repeat 
η)) is probably a bad one. But the scorer for "without" nearly handles that already. 
It assigns a penalty if its right argument is not a subset of its left. Unfortunately, 
repeated elements are not counted in sets, so for example, the list (1 2 3 1 2 3) is a 
subset of (1 2 3 4). However, we could change the scorer for "without" to test for 
sub-bag-ρ (not a built-in Common Lisp function) instead, and then "repeat" would 
not have to be concerned with that case. 

19.7 The Problem with Context-Free 
Phrase-Structure Rules 

The fragment of English grammar we specified in section 19.2 admits a variety of 
ungrammatical phrases. For example, it is equally happy with both "I liked her" and 
"me liked she." Only the first of these should be accepted; the second should be 
ruled out. Similarly, our grammar does not state that verbs have to agree with their 
subjects in person and number. And, since the grammar has no notion of meaning, 
it will accept sentences that are semantically anomalous (or at least unusual), such 
as "the table liked the man." 

There are also some technical problems with context-free grammars. For exam
ple, it can be shown that no context-free grammar can be written to account for the 
language consisting of just the strings ABC, AABBCC, AAABBBCCC, and so forth, 
where each string has an equal number of As, Bs, and Cs. Yet sentences roughly of 
that form show up (admittedly rarely) in natural languages. An example is "Robin 
and Sandy loved and hated Pat and Kim, respectively." While there is still disagree
ment over whether it is possible to generate natural languages with a context-free 
grammar, clearly it is much easier to use a more powerful grammatical formalism. 
For example, consider solving the subject-predicate agreement problem. It is pos
sible to do this with a context-free language including categories like singular-NP, 
plural-NP, singular-VP, and plural-VP, but it is far easier to augment the grammatical 
formahsm to allow passing features between constituents. 

It should be noted that context-free phrase-structure rules turned out to be very 
useful for describing programming languages. Starting with Algol 60, the formalism 
has been used under the name Bflcfcus-Nflwr Form (BNF) by computer scientists. In this 
book we are more interested in natural languages, so in the next chapter we will see a 
more powerful formalism known as unification grammar that can handle the problem 
of agreement, as well as other difficulties. Furthermore, unification grammars allow a 
natural way of attaching semantics to a parse. 
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19.8 History and References 
There is a class of parsing algorithms known as chart parsers that explicitly cache 
partial parses and reuse them in constructing larger parses. Barley's algorithm (1970) 
is the first example, and Martin Kay (1980) gives a good overview of the field and 
introduces a data structure, the chart, for storing substrings of a parse. Winograd 
(1983) gives a complex (five-page) specification of a chart parser. None of these 
authors have noticed that one can achieve the same results by augmenting a simple 
(one-page) parser with memoization. In fact, it is possible to write a top-down parser 
that is even more succinct. (See exercise 19.3 below.) 

For a general overview of natural language processing, my preferences (in order) 
are Allen 1987, Winograd 1983 or Gazdar and Mellish 1989. 

19.9 Exercises 

Exercise 19.2 [m-h] Experiment with the grammar and the parser. Find sentences 
it cannot parse correctly, and try to add new syntactic rules to account for them. 

@ Exercise 19.3 [m-h] The parser works in a bottom-up fashion. Write a top-down 
parser, and compare it to the bottom-up version. Can both parsers work with the 
same grammar? If not, what constraints on the grammar does each parsing strategy 
impose? 

@ Exercise 19.4 [h] Imagine an interface to a dual cassette deck. Whereas the CD 
player had one assumed verb, "play," this unit has three explicit verb forms: "record," 
"play," and "erase." There should also be modifiers "from" and "to," where the object 
of a "to" is either 1 or 2, indicating which cassette to use, and the object of a "from" 
is either 1 or 2, or one of the symbols PHONO, CD, or AUX. It's up to you to design 
the grammar, but you should allow input something like the following, where I have 
chosen to generate actual Lisp code as the meaning: 

> (meaning ' (p lay 1 to 5 from CD shuff led and 
record 1 to 5 from CD and 1 and 3 and 7 from 1)) 

(PROGN (PLAY ' ( 1 5 2 3 4) :FROM 'CD) 
(RECORD ' ( 1 2 3 4 5 ) :FROM 'CD) 
(RECORD ' ( 1 3 7) :FROM Ί ) ) 

This assumes that the functions play and record take keyword arguments (with 
defaults) for : from and : to. You could also extend the grammar to accommodate an 
automatic timer, with phrases like "at 3:00." 
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S Exercise 19.6 [m] The definition of permute takes 0{n^). Replace it by an 0 ( n ) 
algorithm. 

19.10 Answers 

Answer 19.1 

(defun parser (words) 
"Return a l l complete parses of a l i s t of words." 
( le t * (( table (make-array (+ ( length words) 1) : in i t ia l -e lement 0) ) 

(parses (parse words ( length words) tab le) ) ) 
(mapcar # 'parse- t ree (complete-parses pa rses ) ) ) ) 

(defun parse (words num-words table) 
"Bottom-up parse, returning a l l parses of any pref ix of words." 
(unless (null words) 

( le t ((ans (aref table num-words))) 
( i f (not (eq ans 0)) 

ans 
(set f (aref table num-words) 

(mapcan #*(lambda ( ru le) 
(extend-parse ( ru le - lhs rule) 

( l i s t ( f i r s two rds ) ) 
( rest words) n i l 
(- num-words 1) tab le) ) 

( l ex i ca l - ru l es ( f i r s t words ) ) ) ) ) ) ) ) 

S Exercise 19.5 [m] In the definition of permute, repeated here, why is the : t e s t 
# 'eq needed? 

(defun permute (bag) 

"Return a random permutation of the given input l i s t . " 

( i f (nul l bag) 

ni l 

( le t ((e (random-elt bag))) 
(cons e (permute (remove e bag :count 1 : test # ' e q ) ) ) ) ) ) 
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(defun extend-parse ( Ihs rhs rem needed num-words table) 
"Look for the categories needed to complete the parse . " 
( i f (null needed) 

I f nothing i s needed, return th i s parse and upward extensions 
( let ((parse (make-parse :tree (new-tree Ihs rhs) :rem rem))) 

(cons parse 
(mapcan 

#*(lambda ( ru le) 
(extend-parse ( ru le - lhs rule) 

( l i s t (parse-tree parse)) 
rem (rest ( ru le- rhs ru le) ) 
num-words table)) 

( ru les-s ta r t ing-w i th I h s ) ) ) ) 
otherwise try to extend rightward 

(mapcan 
#'(lambda (p) 

( i f (eq (parse- lhs p) ( f i r s t needed)) 
(extend-parse Ihs (appendl rhs (parse-tree p)) 

(parse-rem p) ( rest needed) 
( length (parse-rem p)) tab le) ) ) 

(parse rem num-words tab le ) ) ) ) 

It turns out that, for the Lisp system used in the timings above, this version is no 
faster than normal memoization. 

Answer 19.3 Actually, the top-down parser is a little easier (shorter) than the 
bottom-up version. The problem is that the most straightforward way of imple
menting a top-down parser does not handle so-called left recursive rules—rules of the 
form(X -> (X . . . ) ) . This includes rules we've used, like (NP -> (NP and NP)). 
The problem is that the parser will postulate an NP, and then postulate that it is of 
the form (NP and NP), and that the first NP of that expression is of the form (NP and 
NP), and so on. An infinite structure of NPs is explored before even the first word is 
considered. 

Bottom-up parsers are stymied by rules with null right-hand sides: (X -> ( ) ) . 
Note that I was careful to exclude such rules in my grammars earlier. 

(defun parser (words Äoptional (cat *S) ) 
"Parse a l i s t of words; return only parses with no remainder." 
(mapcar #*parse-tree (complete-parses (parse words ca t ) ) ) ) 

(defun parse (tokens start-symbol) 
"Parse a l i s t of tokens, return parse trees and remainders." 
( i f (eq ( f i r s t tokens) start-symbol) 

( l i s t (make-parse rtree ( f i r s t tokens) :rem (rest tokens))) 
(mapcan #*(lambda ( ru le) 

(extend-parse ( Ihs rule) ni l tokens (rhs ru le ) ) ) 
( ru les - fo r s tar t -symbol ) ) ) ) 
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(defun extend-parse ( Ihs rhs rem needed) 
"Parse the remaining needed symbols." 
( i f (null needed) 

( l i s t (make-parse :tree (cons Ihs rhs) :rem rem)) 
(mapcan 

#'(lambda (p) 
(extend-parse Ihs (append rhs ( l i s t (parse-tree p) ) ) 

(parse-rem p) ( rest needed))) 
(parse rem ( f i r s t needed))))) 

(defun ru les- for (cat) 
"Return al l the rules with category on I h s " 
( f ind-a l l cat ^grammar* :key # ' r u l e - l h s ) ) 

Answer 19.5 If it were omitted, then : tes t would default to # ' eq l , and it would be 
possible to remove the "wrong" element from the list. Consider the list ( 1 . 0 1.0) in 
an implementation where floating-point numbers are eql but not eq. if random-el t 
chooses the first 1.0 first, then everything is satisfactory—the result Ust is the same 
as the input list. However, if random-el t chooses the second 1.0, then the second 
1.0 will be the first element of the answer, but remove will remove the wrong 1.0! It 
will remove the first 1.0, and the final answer will be a list with two pointers to the 
second 1.0 and none to the first. In other words, we could have: 

> (member ( f i r s t x) (permute x) .-test # 'eq) 
NIL 

Answer 19.6 

(defun permute (bag) 
"Return a random permutation of the bag." 

I t i s done by converting the bag to a vector, but the 
resul t i s always the same type as the input bag. 

( let ((bag-copy (replace (make-array (length bag)) bag)) 
(bag-type ( i f ( l i s t p bag) ' l i s t (type-of bag)) ) ) 

(coerce (permute-vector! bag-copy) bag-type))) 

(defun permute-vector! (vector) 
"Destruct ively permute (shuf f le) the vector." 
(loop for i from (length vector) downto 2 do 

(rotatef (aref vector (- i D ) 
(aref vector (random i ) ) ) ) 

vector) 

The answer uses rotatef , a relative of s e t f that swaps 2 or more values. That is, 
( r o t a t e f a b) is like: 
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( let ((temp a)) 
(set f a b) 
(set f b temp) 
n i l ) 

Rarely, rotatef is used with more than two arguments, ( ro ta te f a b c ) is like: 

( let ((temp a)) 
(set f a b) 
(set f b c) 
(set f c temp) 
n i l ) 



CHAPTER 20 

Unification Grammars 

P rolog was invented because Alain Colmerauer wanted a formalism to describe the gram
mar of French. His intuition was that the combination of Horn clauses and unification 
resulted in a language that was just powerful enough to express the kinds of constraints 

that show up in natural languages, while not as powerful as, for example, full predicate calculus. 
This lack of power is important, because it enables efficient implementation of Prolog, and 
hence of the language-analysis programs built on top of it. 

Of course, Prolog has evolved and is now used for many applications besides natural lan
guage, but Colmerauer's underlying intuition remains a good one. This chapter shows how 
to view a grammar as a set of logic programming clauses. The clauses define what is a legal 
sentence and what isn't, without any explicit reference to the process of parsing or generation. 
The amazing thing is that the clauses can be defined in a way that leads to a very efficient 
parser. Furthermore, the same grammar can be used for both parsing and generation (at least 
in some cases). 
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20 .1 Parsing as Deduction 

Here's how we could express the grammar rule "A sentence can be composed of a 
noun phrase followed by a verb phrase" in Prolog: 

(< - (S ? s ) 
(NP ?np) 
(VP ?vp) 
(concat ?np ?vp ? s ) ) 

The variables represent strings of words. As usual, they will be implemented as lists 
of symbols. The rule says that a given string of words ? s is a sentence if there is a string 
that is noun phrase and one that is a verb phrase, and if they can be concatenated to 
form ?s. Logically, this is fine, and it would work as a program to generate random 
sentences. However, it is a very inefficient program for parsing sentences. It will 
consider all possible noun phrases and verb phrases, without regard to the input 
words. Only when it gets to the concat goal (defined on page 411) will it test to see if 
the two constituents can be concatenated together to make up the input string. Thus, 
a better order of evaluation for parsing is: 

« - (S ? s ) 
(concat ?np ?vp ? s ) 
(NP ?np) 
(VP ?vp)) 

The first version had NP and VP guessing strings to be verified by concat. In most 
grammars, there will be a very large or infinite number of NPs and VPs. This second 
version has concat guessing strings to be verified by NP and VP. If there are η words 
in the sentence, then concat can only make η -h 1 guesses, quite an improvement. 
However, it would be better still if we could in effect have concat and Ν Ρ work together 
to make a more constrained guess, which would then be verified by VP. 

We have seen this type of problem before. In Lisp, the answer is to return multiple 
values. NP would be a function that takes a string as input and returns two values: 
an indication of success or failure, and a remainder string of words that have not yet 
been parsed. When the first value indicates success, then VP would be called with 
the remaining string as input. In Prolog, return values are just extra arguments. So 
each predicate will have two parameters: an input string and a remainder string. 
Following the usual Prolog convention, the output parameter comes after the input. 
In this approach, no calls to concat are necessary, no wild guesses are made, and 
Prolog's backtracking takes care of the necessary guessing: 
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(<- (S ?sO ?s2) 
(NP ?sO ? s l ) 

(VP ? s l ?s2)) 

This rule can be read as "The string from sq to «2 is a sentence if there is an si such 
that the string from sq to si is a noun phrase and the string from 5i to S2 is a verb 
phrase." 

A sample query would be ( ? - (S (The boy ate the apple) ( ) ) ) . With 
suitable definitions of Ν Ρ and VP, this would succeed, with the following bindings 
holding within S: 

?sO = (The boy ate the apple) 
? s l = (ate the apple) 
?s2 = () 

Another way of reading the goal (NP ?sO ? s l ) , for example, is as "IS the Hst ?sO 
minus the Ust ?s l a noun phrase?" In this case, ?sO minus ? s l is the Ust (The boy). 
The combination of two arguments, an input list and an output list, is often called a 
difference list, to emphasize this interpretation. More generally, the combination of an 
input parameter and output parameter is caUed an accumulator. Accumulators, par
ticularly difference lists, are an important technique throughout logic programming 
and are also used in functional programming, as we saw on page 63. 

In our rule for S, the concatenation of difference lists was implicit. If we prefer, 
we could define a version of concat for difference lists and call it explicitly: 

(<- (S ? s - i n ?s-rem) 
(NP ?np- in ?np-rem) 
(VP ?vp - in ?vp-rem) 

(concat ?np-in ?np-rem ?vp-in ?vp-rem ? s - i n ?s-rem)) 

(<- (concat ?a ?b ?b ?c ?a ?c)) 

Because this version of concat has a different arity than the old version, they can 
safely coexist. It states the difference list equation {a - b) -\- {b - c) = {a - c ) . 

In the last chapter we stated that context-free phrase-structure grammar is incon
venient for expressing things like agreement between the subject and predicate of a 
sentence. With the Horn-clause-based grammar formalism we are developing here, 
we can add an argument to the predicates NP and VP to represent agreement. In 
English, the agreement rule does not have a big impact. For all verbs except be, the 
difference only shows up in the third-person singular of the present tense: 
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Singular Plural 
first person 
second person 
third person 

I sleep 
you sleep 
he/she sleeps 

we sleep 
you sleep 
they sleep 

Thus, the agreement argument will take on one of the two values 3sg or ~3sg to 
indicate third-person-singular or not-third-person-singular. We could write: 

« - (S ?sO ?s2) 
(NP ?agr ?sO ? s l ) 
(VP ?agr ? s l ? s 2 ) ) 

« - (NP 3sg (he . ? s ) ? s ) ) 
« - (NP ~3sg (they . ? s ) ?$ ) ) 

« - (VP 3sg (sleeps . ? s ) ? s ) ) 
(< - (VP ~3sg (sleep . Is) Is)) 

This grammar parses just the right sentences: 

> ( ? - (S (He s leeps) ( ) ) ) 
Yes. 

> ( ? - (S (He sleep) ( ) ) ) 
No. 

Let's extend the grammar to allow common nouns as well as pronouns: 

« - (NP ?agr ?sO ?s2 ) 
(Det ?agr ?sO ? s l ) 
(N ?agr ? s l ? s 2 ) ) 

(< - (Det ?any (the . ? s ) ? s ) ) 
« - (N 3sg (boy . Is) Is)) 
« - (N 3sg (g i r l . ? s ) ? s ) ) 

The same grammar rules can be used to generate sentences as well as parse. Here 
are all possible sentences in this trivial grammar: 

> ( ? - (S ?words ( ) ) ) 
7W0RDS = (HE SLEEPS); 
7W0RDS = (THEY SLEEP); 
?WORDS = (THE BOY SLEEPS); 
7W0RDS = (THE GIRL SLEEPS); 
No. 

So far all we have is a recognizer: a predicate that can separate sentences from 
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nonsentences. But we can add another argument to each predicate to build up the 
semantics. The result is not just a recognizer but a true parser: 

(< - (S (?pred ?subj ) ?sO ?s2 ) 
(NP ?agr ?subj ?sO ? s l ) 
(VP ?agr ?pred ? s l ? s 2 ) ) 

(< - (NP 3sg (the male) (he . ? s ) ? s ) ) 
« - (NP ~3sg (some objects) (they . ? s ) ? s ) ) 

« - (NP ?agr (?det ?n) ?sO ?s2 ) 
(Det ?agr ?det ?sO ? s l ) 
(N ?agr ?n ? s l ? s 2 ) ) 

(< - (VP 3sg sleep (sleeps . ? s ) ? s ) ) 
(< - (VP ~3sg sleep (sleep . ? s ) ? s ) ) 

« - (Det ?any the (the . ? s ) ? s ) ) 
(< - (N 3sg (young male human) (boy . ? s ) ? s ) ) 
(< - (N 3sg (young female human) (g i r l . ? s ) ? s ) ) 

The semantic translations of individual words is a bit capricious. In fact, it is not too 
important at this point if the translation of boy is (young mal e human) or just boy. 
There are two properties of a semantic representation that are important. First, it 
should be unambiguous. The representation of orange the fruit should be different 
from orange the color (although the representation of the fruit might well refer to 
the color, or vice versa). Second, it should express generalities, or allow them to 
be expressed elsewhere. So either sleep and sleeps should have the same or similar 
representation, or there should be an inference rule relating them. Similarly, if the 
representation of boy does not say so explicitly, there should be some other rule 
saying that a boy is a male and a human. 

Once the semantics of individual words is decided, the semantics of higher-level 
categories (sentences and noun phrases) is easy. In this grammar, the semantics of 
a sentence is the application of the predicate (the verb phrase) to the subject (the 
noun phrase). The semantics of a compound noun phrase is the application of the 
determiner to the noun. 

This grammar returns the semantic interpretation but does not build a syntactic 
tree. The syntactic structure is implicit in the sequence of goals: S calls NP and VP, 
and Ν Ρ can call Det and N. If we want to make this explicit, we can provide yet another 
argument to each nonterminal: 

(< - (S (?pred ?subj ) (s ?np ? v p ) ? s O ?s2 ) 
(NP ?agr ?subj ?np ?sO ? s l ) 
(VP ?agr ?pred ?vp ? s l ? s 2 ) ) 

(< - (NP 3sg (the male) (np he) (he . Is) ? s ) ) 
(< - (NP ~3sg (some objects) (np they) (they . ? s ) ? s ) ) 
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(< - (NP ?agr (?det ?n) (np ?det-syn ?n-syn) ?sO ?s2 ) 
(Det ?agr ?det ?det-syn ?sO ?sl) 
(N ?agr ?n ?n-syn ?sl ? s 2 ) ) 

(< - (VP 3sg sleep (vp s leeps) (s leeps . ? s ) ? s ) ) 
(< - (VP ""Ssg sleep (vp sleep) (sleep . ? s ) ? s ) ) 

(< - (Det ?any the (det the) (the . ? s ) ? s ) ) 
(< - (N 3sg (young male human) (n boy) (boy . ? s ) ? s ) ) 
(< - (N 3sg (young female human) (n g i r l ) (g i r l . ? s ) ? s ) ) 

This grammar can still be used to parse or generate sentences, or even to enumerate 
all syntax/semantics/sentence triplets: 

Pars ing: 
> ( ? - (S ?sem ?syn (He sleeps) ( ) ) ) 
?SEM = (SLEEP (THE MALE)) 
?SYN = (S (NP HE) (VP SLEEPS)) . 

Generating: 
> ( ? - (S (sleep (the male)) ? ?words ( ) ) ) 
7W0RDS = (HE SLEEPS) 

Enumerating: 
> ( ? - (S ?sem ?syn ?words ( ) ) ) 
?SEM = (SLEEP (THE MALE)) 
?SYN = (S (NP HE) (VP SLEEPS)) 
?WORDS = (HE SLEEPS); 

?SEM = (SLEEP (SOME OBJECTS)) 
?SYN = (S (NP THEY) (VP SLEEP)) 
7W0RDS = (THEY SLEEP); 

?SEM = (SLEEP (THE (YOUNG MALE HUMAN))) 
?SYN = (S (NP (DET THE) (N BOY)) (VP SLEEPS)) 
7W0RDS = (THE BOY SLEEPS); 

?SEM = (SLEEP (THE (YOUNG FEMALE HUMAN))) 
?SYN = (S (NP (DET THE) (N G I R D ) (VP SLEEPS)) 
7W0RDS = (THE GIRL SLEEPS); 

No. 

20.2 Definite Clause Grammars 
We now have a powerful and efficient tool for parsing sentences. However, it is 
getting to be a very messy tool—there are too many arguments to each goal, and it 
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is hard to tell which arguments represent syntax, which represent semantics, which 
represent in/out strings, and which represent other features, like agreement. So, 
we will take the usual step when our bare programming language becomes messy: 
define a new language. 

Edinburgh Prolog recognizes assertions called definite clause grammar (DCG) rules. 
The term definite clause is just another name for a Prolog clause, so DCGs are also 
called "logic grammars." They could have been called "Horn clause grammars" or 
"Prologgrammars" as well. 

DCG rules are clauses whose main functor is an arrow, usually written - -> . They 
compile into regular Prolog clauses with extra arguments. In normal DCG rules, only 
the string arguments are automatically added. But we will see later how this can be 
extended to add other arguments automatically as well. 

We will implement DCG rules with the macro rule and an infix arrow. Thus, we 
want the expression: 

( ru le (S) - - > (NP) (VP)) 

to expand into the clause: 

(< - (S ?sO ?s2 ) 
(NP ?sO ? s l ) 
(VP ? s l ? s 2 ) ) 

While we're at it, we may as well give rul e the ability to deal with different types of 
rules, each one represented by a different type of arrow. Here's the rul e macro: 

(defmacro rule (head &optional (arrow * : - ) &body body) 
"Expand one of several types of log ic rules into pure Pro log . " 

This i s data-dr iven, dispatching on the arrow 
(funcall (get arrow ' ru le- funct ion) head body)) 

As an example of a rule function, the arrow: - will be used to represent normal Prolog 
clauses. That is, the form (rul e head : - body) will be equivalent to (<- head body). 

(set f (get * : - ' ru le- funct ion) 
#'(lambda (head body) · (< - .head . ,body)) ) 

Before writing the rule function for DCG rules, there are two further features of the 
DCG formalism to consider. First, some goals in the body of a rule may be normal 
Prolog goals, and thus do not require the extra pair of arguments. In Edinburgh 
Prolog, such goals are surrounded in braces. One would write: 



20.2 DEFINITE CLAUSE GRAMMARS 691 

s(Sem) - - > np(Subj ) , vp(Pred). 

{combi ne(Subj ,Pred. Sem)}. 

where the idea is that combi ne is riot a grammatical constituent, but rather a Prolog 
predicate that could do some calculations on Subj and Pred to arrive at the proper 
semantics, Sem. We will mark such a test predicate not by brackets but by a list 
headed by the keyword : t e s t , as in: 

(rule (S ?sem) - - > (NP ?subj ) (VP ?pred) 

( : test (combine ?subj ?pred ?sem))) 

Second, we need some way of introducing individual words on the right-hand side, 
as opposed to categories of words. In Prolog, brackets are used to represent a word 
or Ust of words on the right-hand side: 

verb - - > [ s l eeps ] . 

We will use a list headed by the keyword : word: 

(rule (NP (the male) 3sg) - - > (:word he)) 

(rule (VP sleeps 3sg) - - > (:word s leeps) ) 

The following predicates test for these two special cases. Note that the cut is also 
allowed as a normal goal. 

(defun dcg-normal-goal-p (x) (or (s tar ts -wi th χ : tes t ) (eq χ ' ! ) ) ) 

(defun dcg-word- l is t -p (x) (s tar ts -wi th χ ' iword)) 

At last we are in a position to present the rule function for DCG rules. The function 
make-deg inserts variables to keep track of the strings that are being parsed. 

(set f (get ' - - > ' ru le- funct ion) 'make-dcg) 

(defun make-dcg (head body) 

( le t ((n (count- i f (complement # 'dcg-normal-goal-p) body))) 

· (<- (,@head ?sO .(symbol * ? s n)) 

.,(make-dcg-body body 0 ) ) ) ) 
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(defun make-dcg-body (body n) 
"Make the body of a Def in i te Clause Grammar (DCG) c lause. 
Add ? s t r i n g - i n and -out var iab les to each const i tuent . 
Goals l i ke ( : test goal) are ordinary Prolog goa l s , 
and goals l i ke (:word hel lo) are l i te ra l words to be parsed." 
( i f (null body) 

ni l 

( le t ((goal ( f i r s t body))) 
(cond 

((eq goal ' ! ) (cons Ί (make-dcg-body ( rest body) n ) ) ) 
((dcg-normal-goal-p goal) 

(append ( rest goal) 
(make-dcg-body ( rest body) n ) ) ) 

( (dcg-word- l is t -p goal) 
(cons 

' ( = .(symbol 'Is n) 
( .©(rest goal) ..(symbol ' ? s (+ η 1 ) ) ) ) 

(make-dcg-body ( rest body) (+ η 1 ) ) ) ) 
(t (cons 

(append goal 
( l i s t (symbol ' ? s n) 

(symbol "¡s (+ η 1 ) ) ) ) 
(make-dcg-body ( rest body) (+ η 1 ) ) ) ) ) ) ) ) 

@ Exercise 20.1 [m] ma ke - dcg violates one of the cardinal rules of macros. What does 
it do wrong? How would you fix it? 

20.3 A Simple Grammar in DCG Format 

Here is the trivial grammar from page 688 in DCG format. 

(rule (S (?pred ?sub j ) ) - - > 
(NP ?agr ?subj ) 
(VP ?agr ?pred)) 

( rule (NP ?agr (?det ?n ) ) - - > 
(Det ?agr ?det) 
(N ?agr ?n) ) 
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(rule (NP 3sg (the male)) - - > (:word he)) 
(rule (NP ~3sg (some objects)) - - > (:word they)) 
(rule (VP 3sg sleep) - - > (:word s leeps) ) 
( rule (VP ~3sg sleep) - - > (:word s leep)) 
(rule (Det ?any the) - - > (:word the)) 
(rule (N 3sg (young male human)) - - > (:word boy)) 
(rule (N 3sg (young female human)) - - > (:word g i r l ) ) 

This grammar is quite limited, generating only four sentences. The first way we will 
extend it is to allow verbs with objects: in addition to "The boy sleeps," we will allow 
"The boy meets the girl." To avoid generating ungrammatical sentences like "* The 
boy meets,"^ we will separate the category of verb into two subcategories: transitive 
verbs, which take an object, and intransitive verbs, which don't. 

Transitive verbs complicate the semantic interpretation of sentences. We would 
liketheinterpretationof "Terry kisses Jean" tobe ( k i s s Terry Jean). The interpreta
tion of the noun phrase "Terry" is just Te r ry, but then what should the interpretation 
of the verb phrase "kisses Jean" be? To fit our predicate application model, it must 
be something equivalent to (lambda (x) ( k i s s χ Jean) ) . When applied to the 
subject, we want to get the simplification: 

((lambda (x) ( k i s s χ Jean)) Terry) => ( k i s s Terry Jean) 

Such simplification is not done automatically by Prolog, but we can write a predicate 
to do it. We will call it f unca 11 , because it is similar to the Lisp function of that name, 
although it only handles replacement of the argument, not full evaluation of the 
body. (Technically, this is the lambda-calculus operation known as beta-reduction.) 
The predicate f unca 11 is normally used with two input arguments, a function and its 
argument, and one output argument, the resulting reduction: 

(< - (funcall (lambda (?x) ?body) ?x ?body)) 

With this we could write our rule for sentences as: 

(rule (S ?sem) - - > 
(NP ?agr ?subj ) 
(VP ?agr ?pred) 
( : test (funcall ?pred ?subj ?sem))) 

An alternative is to, in effect, compile away the call to f unca 11 . Instead of having the 
semantic representation of VP be a single lambda expression, we can represent it as 

^The asterisk at the start of a sentence is the standard linguistic notation for an utterance 
that is ungrammatical or otherwise ill-formed. 
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two arguments: an input argument, ? s u b j , which acts as a parameter to the output 
argument, ?pred, which takes the place of the body of the lambda expression. By 
explicitly manipulating the parameter and body, we can eliminate the call to f unca 11. 
The trick is to make the parameter and the subject one and the same: 

(rule (S ?pred) - - > 
(NP ?agr ?subj ) 
(VP ?agr ?subj ?pred)) 

One way of reading this rule is "To parse a sentence, parse a noun phrase followed 
by a verb phrase. If they have different agreement features then fail, but otherwise 
insert the interpretation of the noun phrase, ? s u b j , into the proper spot in the 
interpretation of the verb phrase, ?pred, and return ?pred as the final interpretation 
of the sentence." 

The next step is to write rules for verb phrases and verbs. Transitive verbs are 
Usted under the predicate Ve rb / t r , and intransitive verbs are Usted as V e r b / i n t r . 
The semantics of tenses (past and present) has been ignored. 

(rule (VP ?agr ?subj ?pred) - - > 
(Verb/tr ?agr ?subj ?pred ?obj) 
(NP ?any-agr ?obj ) ) 

(rule (VP ?agr ?subj ?pred) - - > 
(Verb/ int r ?agr ?subj ?pred)) 

(rule (Verb/tr ~3sg ?x ( k i s s ?x ?y) ?y ) - - > (iword k i s s ) ) 
(rule (Verb/tr 3sg ?x ( k i s s ?x ?y ) ?y ) - - > (:word k i s s e s ) ) 
(rule (Verb/tr ?any ?x ( k i s s ?x ?y) ?y ) - - > (:word k issed) ) 

(rule (Verb/ int r ~3sg ?x (sleep ?x ) ) - - > (iword s leep)) 
(rule (Verb/ int r 3sg ?x (sleep ?x ) ) - - > (iword s leeps) ) 
( rule (Verb/ int r ?any ?x (sleep ? x ) ) - - > (:word s lep t ) ) 

Here are the rules for noun phrases and nouns: 

(rule (NP ?agr ?sem) - - > 
(Name ?agr ?sem)) 

(rule (NP ?agr (?det-sem ?noun-sem)) - - > 
(Det ?agr ?det-sem) 
(Noun ?agr ?noun-sem)) 

(rule (Name 3sg Terry) - - > (iword Terry)) 
(rule (Name 3sg Jean) - - > (iword Jean)) 
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(rule (Noun 3sg (young male human)) - - > (:word boy)) 
(rule (Noun 3sg (young female human)) - - > (rword g i r l ) ) 
(rule (Noun ~3sg (group (young male human))) - - > (:word boys)) 
(rule (Noun ~3sg (group (young female human))) - - > (:word g i r l s ) ) 

(rule (Det ?any the) - - > (:word the)) 
(rule (Det 3sg a) - - > (rword a)) 

This grammar and lexicon generates more sentences, although it is still rather limited. 
Here are some examples: 

> ( ? - (S ?sem (The boys k i ss a g i r l ) ( ) ) ) 
?SEM = (KISS (THE (GROUP (YOUNG MALE HUMAN))) 

(A (YOUNG FEMALE HUMAN))). 

> ( ? - (S ?sem (The g i r l s k issed the g i r l s ) ( ) ) ) 
?SEM = (KISS (THE (GROUP (YOUNG FEMALE HUMAN))) 

(THE (GROUP (YOUNG FEMALE HUMAN)))). 

> ( ? - (S ?sem (Terry k issed the g i r l ) ( ) ) ) 
?SEM = (KISS TERRY (THE (YOUNG FEMALE HUMAN))). 

> ( ? - (S ?sem (The g i r l s k i sses the boys) ( ) ) ) 
No. 

> ( ? - (S ?sem (Terry k issed a g i r l s ) ( ) ) ) 
No. 

> ( ? - (S ?sem (Terry sleeps Jean) ( ) ) ) 
No. 

The first three examples are parsed correctly, while the final three are correctly 
rejected. The inquisitive reader may wonder just what is going on in the interpretation 
of a sentence like "The girls kissed the girls." Do the subject and object represent the 
same group of girls, or different groups? Does everyone kiss everyone, or are there 
fewer kissings going on? Until we define our representation more carefully, there is no 
way to tell. Indeed, it seems that there is a potential problem in the representation, in 
that the predicate ki ss sometimes has individuals as its arguments, and sometimes 
groups. More careful representations of "The girls kissed the girls" include the 
following candidates, using predicate calculus: 

VxVy xegirls Λ yegirls => kiss(x,y) 
VxVy xegirls Λ yegirls Λ x^^y =^ kiss(x,y) 
Vx3y,z xegirls Λ yegirls Λ zegirls =^ kiss(x,y) Λ kiss(z,x) 
Vx3y xegirls Λ yegirls => kiss(x,y) V kiss(y,x) 

The first of these says that every girl kisses every other girl. The second says the same 
thing, except that a girl need not kiss herself. The third says that every girl kisses 
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and is kissed by at least one other girl, but not necessarily all of them, and the fourth 
says that everbody is in on at least one kissing. None of these interpretations says 
anything about who "the girls" are. 

Clearly, the predicate calculus representations are less ambiguous than the rep
resentation produced by the current system. On the other hand, it would be wrong 
to choose one of the representations arbitrarily, since in different contexts, "The girls 
kissed the girls" can mean different things. Maintaining ambiguity in a concise form 
is useful, as long as there is some way eventually to recover the proper meaning. 

20.4 A DCG Grammar with Quantifiers 

The problem in the representation we have been using becomes more acute when we 
consider other determiners, such as "every." Consider the sentence "Every picture 
paints a story." The preceding DCG, if given the right vocabulary, would produce 
the interpretation: 

(paints (every picture) (a s to ry ) ) 

This can be considered ambiguous between the following two meanings, in predicate 
calculus form: 

V X picture(x) 3 y story(y) Λ paint(x,y) 
3 y story(y) Λ V χ picture(x) =^ paint(x,y) 

The first says that for each picture, there is a story that it paints. The second says that 
there is a certain special story that every picture paints. The second is an unusual 
interpretation for this sentence, but for "Every U.S. citizen has a president," the 
second interpretation is perhaps the preferred one. In the next section, we will see 
how to produce representations that can be transformed into either interpretation. 
For now, it is a useful exercise to see how we could produce just the first representation 
above, the interpretation that is usually correct. First, we need to transcribe it into 
Lisp: 

(al l ?x ( -> (picture ?x) (ex is ts ?y (and (story ?y ) (paint ?x ? y ) ) ) ) ) 

The first question is how the a 11 and exi s t s forms get in there. They must come from 
the determiners, "every" and "a." Also, it seems that a 11 is followed by an implication 
arrow, -> , while exi s t s is followed by a conjunction, and. So the determiners will 
have translations looking like this: 
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(rule (Det ?any ?x ?p ?q (the ?x (and ?p ?q ) ) ) - - > (:word the)) 

(rule (Det 3sg ?x ?p ?q (ex i s t s ?x (and ?p ? q ) ) ) - - > (:word a)) 

(rule (Det 3sg ?x ?p ?q (a l l ?x ( -> ?p ?q ) ) ) - - > (:word every)) 

Once we have accepted these translations of the determiners, everything else follows. 
The formulas representing the determiners have two holes in them, ?p and ? q . The 
first will be filled by a predicate representing the noun, and the latter will be filled 
by the predicate that is being applied to the noun phrase as a whole. Notice that a 
curious thing is happening. Previously, translation to logical form was guided by 
the sentence's verb. Linguisticly, the verb expresses the main predicate, so it makes 
sense that the verb's logical translation should be the main part of the sentence's 
translation. In linguistic terms, we say that the verb is the head of the sentence. 

With the new translations for determiners, we are in effect turning the whole 
process upside down. Now the subject's determiner carries the weight of the whole 
sentence. The determiner's interpretation is a function of two arguments; it is applied 
to the noun first, yielding a function of one argument, which is in turn applied to the 
verb phrase's interpretation. This primacy of the determiner goes against intuition, 
but it leads directly to the right interpretation. 

The variables ?p and ?q can be considered holes to be filled in the final interpre
tation, but the variable ?x fills a quite different role. At the end of the parse, ?x will 
not be filled by anything; it will still be a variable. But it will be referred to by the 
expressions filling ?p and ? q . We say that ?x is a metavariable, because it is a variable 
in the representation, not a variable in the Prolog implementation. It just happens 
that Prolog variables can be used to implement these metavariables. 

Here are the interpretations for each word in our target sentence and for each 
intermediate constituent: 

Every = (al l ?x ( -> ?p l ? q l ) ) 

picture = (picture ?x) 

paints = (paint ?x ?y) 

a = (ex is ts ?y (and ?p2 ?q2)) 

story = (story ?y) 

Every picture = (a l l ?x ( -> (picture ?x) ? q l ) ) 

a story = (ex is ts ?y (and (story ?y) ?q2)) 

paints a story = (ex is ts ?y (and (story ?y ) (paint ?x ? y ) ) ) 

The semantics of a noun has to fill the ?p hole of a determiner, possibly using the 
metavariable ?x. The three arguments to the Noun predicate are the agreement, the 
metavariable ?x, and the assertion that the noun phrase makes about ?x: 
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(rule (Noun 3sg ?x (picture ?x ) ) - - > (:word p icture)) 
(rule (Noun 3sg ?x (story ?x ) ) - - > (:word s to ry ) ) 
(rule (Noun 3sg ?x (and (young ?x) (male ?x) (human ? x ) ) ) - - > 

(iword boy)) 

The NP predicate is changed to take four arguments. First is the agreement, then 
the metavariable ?x. Third is a predicate that will be supplied externally, by the verb 
phrase. The final argument returns the interpretation of the NP as a whole. As we 
have stated, this comes from the determiner: 

(rule (NP ?agr ?x ?pred ?pred) - - > 
(Name ?agr ?name)) 

(rule (NP ?agr ?x ?pred ?np) - - > 
(Det ?agr ?x ?noun ?pred ?np) 
(Noun ?agr ?x ?noun)) 

The rule for an NP with determiner is commented out because it is convenient to 
introduce an extended rule to replace it at this point. The new rule accounts for 
certain relative clauses, such as "the boy that paints a picture": 

(rule (NP ?agr ?x ?pred ?np) - - > 
(Det ?agr ?x ?noun&rel ?pred ?np) 
(Noun ?agr ?x ?noun) 
( re l -c lause ?agr ?x ?noun ?noun&rel)) 

(rule ( re l -c lause ?agr ?x ?np ?np) - - > ) 
(rule ( re l -c lause ?agr ?x ?np (and ?np ? r e l ) ) - - > 

(iword that) 
(VP ?agr ?x ? r e l ) ) 

The new rule does not account for relative clauses where the object is missing, such 
as "the picture that the boy paints." Nevertheless, the addition of relative clauses 
means we can now generate an infinite language, since we can always introduce a 
relative clause, which introduces a new noun phrase, which in turn can introduce 
yet another relative clause. 

The rules for relative clauses are not complicated, but they can be difficult to 
understand. Of the four arguments to rel -clause, the first two hold the agree
ment features of the head noun and the metavariable representing the head noun. 
The last two arguments are used together as an accumulator for predications about 
the metavariable: the third argument holds the predications made so far, and the 
fourth will hold the predications including the relative clause. So, the first rule for 
rel -cl ause says that if there is no relative clause, then what goes in to the accumu
lator is the same as what goes out. The second rule says that what goes out is the 
conjunction of what comes in and what is predicated in the relative clause itself. 
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Verbs apply to either one or two metavariables, just as they did before. So we can 
use the definitions of Verb/tr and Verb/i ntr unchanged. For variety, I've added a 
few more verbs: 

(rule (Verb/tr ~3sg ?x ?y (paint ?x ?y ) ) - - > (rword paint ) ) 
(rule (Verb/tr 3sg ?x ?y (paint ?x ?y ) ) - - > (iword pa in ts) ) 
(rule (Verb/tr ?any ?x ?y (paint ?x ?y ) ) - - > (.-word painted)) 

(rule (Verb/ int r ' '3sg ?x (sleep ?x ) ) - - > (:word s leep)) 
(rule (Verb/ int r 3sg ?x (sleep ?x ) ) - - > (:word s leeps) ) 
(rule (Verb/ int r ?any ?x (sleep ?x ) ) - - > (:word s lep t ) ) 

(rule (Verb/ int r 3sg ?x ( s e l l s ?x ) ) - - > (:word s e l l s ) ) 
(rule (Verb/ int r 3sg ?x (s t inks ?x ) ) - - > (:word s t i n k s ) ) 

Verb phrases and sentences are almost as before. The only difference is in the call to 
NP, which now has extra arguments: 

(rule (VP ?agr ?x ?vp) - - > 
(Verb/tr ?agr ?x ?obj ?verb) 
(NP ?any-agr ?obj ?verb ?vp)) 

( ru le (VP ?agr ?x ?vp) - - > 
(Verb/ int r ?agr ?x ?vp)) 

(rule (S ?np) - - > 
(NP ?agr ?x ?vp ?np) 
(VP ?agr ?x ?vp)) 

With this grammar, we get the following correspondence between sentences and 
logical forms: 

Every picture paints a s to ry . 
(ALL ?3 ( -> (PICTURE ?3) 

(EXISTS ?14 (AND (STORY ?14) (PAINT ?3 ? 1 4 ) ) ) ) ) 

Every boy that paints a picture s leeps . 
(ALL ?3 ( -> (AND (AND (YOUNG ?3) (MALE ?3) (HUMAN ?3 ) ) 

(EXISTS ?19 (AND (PICTURE ?19) 
(PAINT ?3 ?19 ) ) ) ) 

(SLEEP ? 3 ) ) ) 

Every boy that sleeps paints a p ic ture. 
(ALL ?3 ( -> (AND (AND (YOUNG ?3) (MALE ?3) (HUMAN ?3 ) ) 

(SLEEP ?3 ) ) 
(EXISTS ?22 (AND (PICTURE ?22) (PAINT ?3 ? 2 2 ) ) ) ) ) 
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Every boy that paints a picture that s e l l s 
paints a picture that s t i n k s . 
(ALL ?3 ( -> (AND (AND (YOUNG ?3) (MALE ?3) (HUMAN ?3 ) ) 

(EXISTS ?19 (AND (AND (PICTURE ?19) (SELLS ?19) ) 
(PAINT ?3 ? 1 9 ) ) ) ) 

(EXISTS ?39 (AND (AND (PICTURE ?39) (STINKS ?39) ) 
(PAINT ?3 ? 3 9 ) ) ) ) ) 

20.5 Preserving Quantifier Scope Ambiguity 

Consider the simple sentence "Every man loves a woman." This sentence is ambigu
ous between the following two interpretations: 

Vm3w man(m) Λ woman(w) Λ loves(m,w) 
3wVm man(m) Λ woman(w) Λ Ioves(m,w) 

The first interpretation is that every man loves some woman—his wife, perhaps. 
The second interpretation is that there is a certain woman whom every man loves— 
Natassja Kinski, perhaps. The meaning of the sentence is ambiguous, but the struc
ture is not; there is only one syntactic parse. 

In the last section, we presented a parser that would construct one of the two 
interpretations. In this section, we show how to construct a single interpretation 
that preserves the ambiguity, but can be disambiguated by a postsyntactic process. 
The basic idea is to construct an intermediate logical form that leaves the scope of 
quantifiers unspecified. This intermediate form can then be rearranged to recover 
the final interpretation. 

To recap, here is the interpretation we would get for "Every man loves a woman," 
given the grammar in the previous section: 

(al l ?m ( -> (man ?m) (ex is ts ?w) (and (woman ?w) ( loves ?m ?w)) ) ) 

We will change the grammar to produce instead the intermediate form: 

(and (al l ?m (man ?m)) 
(ex is ts ?w (wowan ?w)) 
( loves ?m ?w)) 

The difference is that logical components are produced in smaller chunks, with 
unscoped quantifiers. The typical grammar rule will build up an interpretation by 
conjoining constituents with and, rather than by fitting pieces into holes in other 
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pieces. Here is the complete grammar and a just-large-enough lexicon in the new 
format: 

(rule (S (and ?np ?vp)) - - > 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp)) 

(rule (VP ?agr ?x (and ?verb ?obj ) ) - - > 
(Verb/tr ?agr ?x ?o ?verb) 
(NP ?any-agr ?o ?obj ) ) 

(rule (VP ?agr ?x ?verb) - - > 
(Verb/ int r ?agr ?x ?verb)) 

( rule (NP ?agr ?name t) - - > 
(Name ?agr ?name)) 

( rule (NP ?agr ?x ?det) - - > 
(Det ?agr ?x (and ?noun ? r e l ) ?det) 
(Noun ?agr ?x ?noun) 
( re l -c lause ?agr ?x ? r e l ) ) 

( rule ( re l -c lause ?agr ?x t ) - - > ) 
(rule ( re l -c lause ?agr ?x ? r e l ) - - > 

(:word that) 
(VP ?agr ?x ? r e l ) ) 

( rule (Name 3sg Terry) - - > (:word Terry)) 
(rule (Name 3sg Jean) - - > (:word Jean)) 
( rule (Det 3sg ?x ? res t r (al l ?x ? r e s t r ) ) - - > (:word every)) 
(rule (Noun 3sg ?x (man ?x ) ) - - > (:word man)) 
(rule (Verb/tr 3sg ?x ?y (love ?x ? y ) ) - - > (iword loves) ) 
( rule (Verb/ int r 3sg ?x ( l i ves ?x ) ) - - > (iword l i v e s ) ) 
(rule (Det 3sg ?x ?res (ex is ts ?x ? r e s ) ) - - > (iword a)) 
(rule (Noun 3sg ?x (woman ?x ) ) - - > (iword woman)) 

This gives us the following parse for "Every man loves a woman": 

(and (a l l ?4 (and (man ?4) t ) ) 
(and (love ?4 ?12) (ex is ts ?12 (and (woman ?12) t ) ) ) ) 

If we simplified this, eliminating the t s and joining ands, we would get the desired 
representation: 

(and (a l l ?m (man ?m)) 
(ex is ts ?w (wowan ?w)) 
( loves ?m ?w)) 

From there, we could use what we know about syntax, in addition to what we know 
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about men, woman, and loving, to determine the most likely final interpretation. 
This will be covered in the next chapter. 

20.6 Long-Distance Dependencies 
So far, every syntactic phenomena we have considered has been expressible in a 
rule that imposes constraints only at a single level. For example, we had to impose 
the constraint that a subject agree with its verb, but this constraint involved two 
immediate constituents of a sentence, the noun phrase and verb phrase. We didn't 
need to express a constraint between, say, the subject and a modifier of the verb's 
object. However, there are linguistic phenomena that require just these kinds of 
constraints. 

Our rule for relative clauses was a very simple one: a relative clause consists of the 
word "that" followed by a sentence that is missing its subject, as in "every man that 
loves a woman." Not all relative clauses follow this pattern. It is also possible to form 
a relative clause by omitting the object of the embedded sentence: "every man that a 
woman loves In this sentence, the symbol u indicates a gap, which is understood 
as being filled by the head of the complete noun phrase, the man. This has been 
called a filler-gap dependency. It is also known as a long-distance dependency, because 
the gap can occur arbitrarily far from the filler. For example, all of the following are 
valid noun phrases: 

The person that Lee likes u 
The person that Kim thinks Lee likes • 
The person that Jan says Kim thinks Lee likes u 

In each case, the gap is filled by the head noun, the person. But any number of relative 
clauses can intervene between the head noun and the gap. 

The same kind of filler-gap dependency takes place in questions that begin with 
"who," "what," "where," and other interrogative pronouns. For example, we can ask 
a question about the subject of a sentence, as in "Who likes Lee?", or about the object, 
as in "Who does Kim like • ? " 

Here is a grammar that covers relative clauses with gapped subjects or objects. 
The rules for S, VP, and Ν Ρ are augmented with a pair of arguments representing 
an accumulator for gaps. Like a difference list, the first argument minus the second 
represents the presence or absence of a gap. For example, in the first two rules for 
noun phrases, the two arguments are the same, ?gO and ?gO. This means that the rule 
as a whole has no gap, since there can be no difference between the two arguments. 
In the third rule for NP, the first argument is of the form (gap . . . ) , and the second 
is nogap. This means that the right-hand side of the rule, an empty constituent, can 
be parsed as a gap. (Note that if we had been using true difference lists, the two 
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arguments would be ((gap . . . ) ?gO) and ?gO. But since we are only dealing with 
one gap per rule, we don't need true difference lists.) 

The rule for S says that a noun phrase with gap ?gO minus ?gl followed by a verb 
phrase with gap ?gl minus ?g2 comprise a sentence with gap ?gO minus ?g2. The 
rule for relative clauses finds a sentence with a gap anywhere; either in the subject 
position or embedded somewhere in the verb phrase. Here's the complete grammar: 

(rule (S ?gO ?g2 (and ?np ? v p ) ) - - > 
(NP ?gO ?gl ?agr ?x ?np) 
(VP ?gl ?g2 ?agr ?x ? v p ) ) 

(rule (VP ?gO ?gl ?agr ?x (and ?obj ?verb)) - -> 
(Verb/tr ?agr ?x ?o ?verb) 
(NP ?gO ?gl ?any-agr ?o ?obj)) 

(rule (VP ?gO ?gO ?agr ?x ?verb) - -> 
(Verb/intr ?agr ?x ?verb)) 

(rule (NP ?gO ?gO ?agr ?name t ) - -> 
(Name ?agr ?name)) 

(rule (NP ?gO ?gO ?agr ?x ?det) - -> 
(Det ?agr ?x (and ?noun ?rel) ?det) 
(Noun ?agr ?x ?noun) 
(rel-clause ?agr ?x ?rel)) 

(rule (NP (gap NP ?agr ?x) nogap ?agr ?x t ) - -> ) 

(rule (rel-clause ?agr ?x t ) - -> ) 

(rule (rel-clause ?agr ?x ?rel) - -> 
(:word that) 

(S (gap NP ?agr ?x) nogap ?rel)) 

Here are some sentence/parse pairs covered by this grammar: 
Every man that • loves a woman likes a person. 
(AND (ALL ?28 (AND (MAN ?28) 

(AND Τ (AND (LOVE ?28 ?30) 
(EXISTS ?30 (AND (WOMAN ?30) 

T) ) ) ) ) ) 
(AND (EXISTS ?39 (AND (PERSON ?39) T)) (LIKE ?28 ?39))) 

Every man that a woman loves yUkes a person. 
(AND (ALL ?37 (AND (MAN ?37) 

(AND (EXISTS ?20 (AND (WOMAN ?20) T)) 
(AND Τ (LOVE ?20 137))))) 

(AND (EXISTS ?39 (AND (PERSON ?39) T)) (LIKE ?37 ?39))) 
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Every man that loves a bi rd that u ^ H e s l i kes a person. 

(AND (ALL ?28 (AND (MAN ?28) 

(AND Τ (AND (EXISTS ?54 

(AND (BIRD ?54) 

(AND Τ (FLY ? 5 4 ) ) ) ) 

(LOVE ?28 ? 5 4 ) ) ) ) ) 

(AND (EXISTS ?60 (AND (PERSON ?60) T)) (LIKE ?28 ?60) ) ) 

Actually, there are limitations on the situations in which gaps can appear. In partic
ular, it is rare to have a gap in the subject of a sentence, except in the case of a relative 
clause. In the next chapter, we will see how to impose additional constraints on gaps. 

20.7 Augmenting DCG Rules 

In the previous section, we saw how to build up a semantic representation of a 
sentence by conjoining the semantics of the components. One problem with this 
approach is that the semantic interpretation is often something of the form (and 
(and t a) when we would prefer (and ab). There are two ways to correct 
this problem: either we add a step that takes the final semantic interpretation and 
simplifies it, or we complicate each individual rule, making it generate the simplified 
form. The second choice would be slightly more efficient, but would be very ugly 
and error prone. We should be doing all we can to make the rules simpler, not more 
complicated; that is the whole point of the DCG formalism. This suggests a third 
approach: change the rule interpreter so that it automatically generates the semantic 
interpretation as a conjunction of the constituents, unless the rule explicitly says 
otherwise. This section shows how to augment the DCG rules to handle common 
cases like this automatically. 

Consider again a rule from section 20.4: 

(rule (S (and ?np ?vp)) - - > 

(NP ?agr ?x ?np) 

(VP ?agr ?x ?vp)) 

If we were to alter this rule to produce a simplified semantic interpretation, it would 
look like the following, where the predicate and* simplifies a list of conjunctions into 
a single conjunction: 
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(rule (S ?sem) - - > 
(np ?agr ?x ?np) 
(vp ?agr ?x ?vp) 
( : test (ancl*(?np ?vp) ?sem))) 

Many rules will have this form, so we adopt a simple convention: if the last argument 
of the constituent on the left-hand side of a rule is the keyword : sem, then we will 
build the semantics by replacing : sem with a conjunction formed by combining all 
the last arguments of the constituents on the right-hand side of the rule. A = = > arrow 
will be used for rules that follow this convention, so the following rule is equivalent 
to the one above: 

(rule (S :sem) = = > 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp)) 

It is sometimes useful to introduce additional semantics that does not come from one 
of the constituents. This can be indicated with an element of the right-hand side that 
is a list starting with : sem. For example, the following rule adds to the semantics the 
fact that ?x is the topic of the sentence: 

(rule (S ;sem) = = > 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp) 
(:sem (topic ? x ) ) ) 

Before implementing the rule function for the = = > arrow, it is worth considering if 
there are other ways we could make things easier for the rule writer. One possibility is 
to provide a notation for describing examples. Examples make it easier to understand 
what a rule is designed for. For the S rule, we could add examples like this: 

(rule (S :sem) = = > 
(:ex "John l i kes Mary" "He s leeps" ) 
(NP ?agr ?x ?np) 
(VP ?agr ?x ?vp)) 

These examples not only serve as documentation for the rule but also can be stored 
under S and subsequently run when we want to test if S is in fact implemented 
properly. 

Another area where the rule writer could use help is in handling left-recursive 
rules. Consider the rule that says that a sentence can consist of two sentences joined 
by a conjunction: 
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(rule (S (?conj ? s l ? s 2 ) ) = = > 
(:ex "John l i kes Mary and Mary l i kes John") 
(S ? s l ) 
(Conj ?conj) 
(S ? s 2 ) ) 

While this rule is correct as a declarative statement, it will run into difficulty when 
run by the standard top-down depth-first DCG interpretation process. The top-level 
goal of parsing an S will lead immediately to the subgoal of parsing an S, and the 
result will be an infinite loop. 

Fortunately, we know how to avoid this kind of infinite loop: split the offending 
predicate, S, into two predicates: one that supports the recursion, and one that is at 
a lower level. We will call the lower-level predicate S_. Thus, the following rule says 
that a sentence can consist of two sentences, where the first one is not conjoined and 
the second is possibly conjoined: 

(rule (S (?conj ? s l ? s 2 ) ) = = > 
( S - ? s l ) 
(Conj ?conj) 
(S ? s 2 ) ) 

We also need a rule that says that a possibly conjoined sentence can consist of a 
nonconjoined sentence: 

(rule (S ?sem) = = > (S_ ?sem)) 

To make this work, we need to replace any mention of S in the left-hand side of a rule 
with S_. References to S in the right-hand side of rules remain unchanged. 

(rule (S_ ?sem) = = > . . . ) 

To make this all automatic, we will provide a macro, conj-rule, that declares a 
category to be one that can be conjoined. Such a declaration will automatically 
generate the recursive and nonrecursive rules for the category, and will insure that 
future references to the category on the left-hand side of a rule will be replaced with 
the corresponding lower-level predicate. 

One problem with this approach is that it imposes a right-branching parse on 
multiple conjoined phrases. That is, we will get parses like "spaghetti and (meatballs 
and salad)" not "(spaghetti and meatballs) and salad." Clearly, that is the wrong 
interpretation for this sentence. Still, it can be argued that it is best to produce 
a single canonical parse, and then let the semantic interpretation functions worry 
about rearranging the parse in the right order. We will not attempt to resolve this 
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debate but will provide the automatic conjunction mechanism as a tool that can be 
convenient but has no cost for the user who prefers a different solution. 

We are now ready to implement the extended DCG rule formalism that handles 
: s e m , :ex, and automatic conjunctions. The function m a k e - a u g m e n t e d - d c g , stored 
under the arrow = =>, will be used to implement the formalism: 

(set f (get ' = = > ' ru le- funct ion) 'make-augmented-dcg) 

(defun make-augmented-dcg (head body) 
"Bui ld an augmented DCG rule that handles :sem. :ex, 
and automatic conjunctiontive const i tuents . " 
( i f (eq ( l as t l head) :sem) 

; ; Handle :sem 
( le t * ((?sem (gensym " ? S E M " ) ) ) 

(make-augmented-dcg 
' ( .©(but las t head) .?sem) 
'(.©(remove :sem body :key # ' f i r s t - o r - n i l ) 

( : test . (col lect-sems body ?sem))) ) ) 
Separate out examples from body 

(mult iple-value-bind (exs new-body) 
(pa r t i t i on - i f #'(lambda (x) (s tar ts -wi th χ :ex)) body) 
Handle conjunctions 

( le t ( ( ru le ' ( ru le .(handle-conj head) - - > .©new-body))) 
( i f (null exs) 

rule 
' (progn (:ex .head ..(mappend # ' r es t exs)) 

. r u l e ) ) ) ) ) ) 

First we show the code that collects together the semantics of each constituent and 
conjoins them when : sem is specified. The function c o l l e c t - s e m s picks out the 
semantics and handles the trivial cases where there are zero or one constituents on 
the right-hand side. If there are more than one, it inserts a call to the predicate a n d * . 

(defun col lect-sems (body ?sem) 
"Get the semantics out of each consti tuent in body, 
and combine them together into ?sem." 
( le t ((sems (loop for goal in body 

unless (or (dcg-normal-goal-p goal) 
(dcg-word- l is t -p goal) 
(s tar ts-wi th goal :ex) 
(atom goal ) ) 

co l lect ( l a s t l goa l ) ) ) ) 
(case (length sems) 

(0 ' ( = .?sem t ) ) 
(1 ' ( = .?sem . ( f i r s t sems))) 
(t ' (and* .sems .?sem)) ) ) ) 
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We could have implemented and* with Prolog clauses, but it is slightly more efficient 
to do it directly in Lisp. A call to conjuncts collects all the conjuncts, and we then 
add an and if necessary: 

(defun and*/2 ( in out cont) 
" IN i s a l i s t of conjuncts that are conjoined into OUT." 

E . g . : (and* (t (and a b) t (and c d) t ) ?x) = = > 
; ; ?x = (and a b e d ) 
( i f (un i fy ! out (maybe-add 'and (conjuncts (cons 'and in ) ) t ) ) 

(funcall cont)) ) 

(defun conjuncts (exp) 
"Get a l l the conjuncts from an express ion . " 
(deref exp) 
(cond ((eq exp t ) n i l ) 

((atom exp) ( l i s t exp)) 
((eq (deref ( f i r s t exp)) ' n i l ) n i l ) 
((eq ( f i r s t exp) 'and) 

(mappend #'conjuncts ( rest exp))) 
(t ( l i s t exp))) ) 

The next step is handling example phrases. The code in make-augmented-dcg turns 
examples into expressions of the form: 

(:ex (S ?sem) "John l i kes Mary" "He s leeps" ) 

To make this work, : ex will have to be a macro: 

(defmacro :ex ((category . args) &body examples) 
"Add some example phrases, indexed under the category." 
'(add-examples ' ,category ' , a r g s ' ,examples)) 

: ex calls add-exampl es to do all the work. Each example is stored in a hash table 
indexed under the the category. Each example is transformed into a two-element list: 
the example phrase string itself and a call to the proper predicate with all arguments 
supplied. The function add-exampl es does this transformation and indexing, and 
run-examples retrieves the examples stored under a category, prints each phrase, 
and calls each goal. The auxiliary functions get-exampl es and cl ear-exampl es are 
provided to manipulate the example table, and remove-punction, punctuat ion-p 
and s t r i ng ->1 i s t are used to map from a string to a Hst of words. 

(defvar *examples* (make-hash-table : test # 'eq) ) 

(defun get-examples (category) (gethash category *examples*)) 

(defun clear-examples ( ) (c l rhash *examples*)) 
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(defun add-examples (category args examples) 
"Add these example s t r i ngs to th i s category, 
and when i t comes time to run them, use the a r g s . " 
(do l i s t (example examples) 

(when (s t r ingp example) 
( let ((ex '(.example 

(.category .@args 
. ( s t r i n g - > l i s t 

(remove-punctuation example)) ( ) ) ) ) ) 
(unless (member ex (get-examples category) 

: test # 'equal ) 
(set f (gethash category ^examples*) 

(nconc (get-examples category) (1 i s t e x ) ) ) ) ) ) ) ) 

(defun run-examples (&optional category) 
"Run al l the example phrases stored under a category. 
With no category, run ALL the examples." 
(prolog-compi1e-symbols) 
( i f (null category) 

(maphash #'(lambda (cat va l ) 
(declare ( ignore va l ) ) 
(format t "~2&Examples of ~a:~&" cat) 
(run-examples cat)) 

^examples*) 
(do l i s t (example (get-examples category)) 

(format t "~2&EXAMPLE: ~{~a~r9T~a~}" example) 
( top- level-prove (cdr example))))) 

(defun remove-punctuation (s t r i ng ) 
"Replace punctuation with spaces in s t r i n g . " 
( subs t i tu te - i f #\space #'punctuation-p s t r i ng ) ) 

(defun s t r i n g - > l i s t ( s t r ing ) 
"Convert a s t r ing to a l i s t of words." 
(read-from-str ing(concatenate ' s t r i ng " ( " s t r i n g " ) " ) ) ) 

(defun punctuation-p (char) ( f ind char " * . . . ; : ' ! ? # - ( ) \ \ \ " " ) ) 

The final part of our augmented DCG formalism is handling conjunctive constituents 
automatically. We already arranged to translate category symbols on the left-hand 
side of rules into the corresponding conjunctive category, as specified by the function 
handl e -con j . We also want to generate automatically (or as easily as possible) rules 
of the following form: 

(rule (S (?conj ? s l ? s 2 ) ) = = > 
(S_ ? s l ) 
(Conj ?conj) 
(S ? s 2 ) ) 
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(rule (S ?sem) = = > (S_ ?sem)) 

But before we generate these rules, let's make sure they are exactly what we want. 
Consider parsing a nonconjoined sentence with these two rules in place. The first 
rule would parse the entire sentence as a S_, and would then fail to see a Con j , and thus 
fail. The second rule would then duplicate the entire parsing process, thus doubling 
the amount of time taken. If we changed the order of the two rules we would be able 
to parse nonconjoined sentences quickly, but would have to backtrack on conjoined 
sentences. 

The following shows a better approach. A single rule for S parses a sentence 
with S_, and then calls Conj.S, which can be read as "either a conjunction followed 
by a sentence, or nothing." If the first sentence is followed by nothing, then we just 
use the semantics of the first sentence; if there is a conjunction, we have to form a 
combined semantics. I have added . . . to show where arguments to the predicate 
other than the semantic argument fit in. 

(rule (S . . . ?s-combi ned) = = > 
(S_ . . . ?seml) 
(Conj_S ?seml ?s-combined)) 

(rule (Conj.S ?seml (?conj ?seml ?sem2)) = = > 
(Conj ?conj) 
(S . . . ?sem2)) 

(rule (Conj_S ?seml ?seml) ==>) 

Now all we need is a way for the user to specify that these three rules are desired. 
Since the exact method of building up the combined semantics and perhaps even 
the call to Conj may vary depending on the specifics of the grammar being defined, 
the rules cannot be generated entirely automatically. We will settle for a macro, 
conj - rule, that looks very much like the second of the three rules above but expands 
into all three, plus code to relate S_ to S. So the user will type: 

(conj-rule (Conj.S ?seml (?conj ?seml ?sem2)) = = > 
(Conj ?conj) 
(S ?a ?b ?c ?sem2)) 

Here is the macro definition: 

(defmacro conj-rule ((conj-cat semi combined-sem) = = > 
conj (cat . a rgs ) ) 

"Define th is category as an automatic conjunct ion." 
' (progn 

(set f (get ' , ca t 'conj-cat) ' .(symbol cat '_)) 
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(rule (.cat ,®(butlast args) ?combined-sem) = = > 
(.(symbol cat '_) .©(butlast args) .semi) 
( .conj-cat ,seml ?combined-sem)) 

(rule (,conj-cat .semi .combined-sem) = = > 
.conj 
(.cat .©args)) 

(rule ( .conj-cat ?seml ?seml) = = > ) ) ) 

and here we define handl e - con j to substitute S_for S in the left-hand side of rules: 

(defun handle-conj (head) 
"Replace (Cat . . . ) with (Cat. . . . ) i f Cat i s declared 
as a conjunctive category." 
( i f (and ( l i s t p head) (conj-category (predicate head))) 

(cons (conj-category (predicate head)) (args head)) 
head)) 

(defun conj-category (predicate) 
" I f th is i s a conjunctive predicate, return the Cat. symbol." 
(get predicate 'conj-category)) 

20.8 History and References 
As we have mentioned, Alain Colmerauer invented Prolog to use in his grammar of 
French (1973). His metamorphosis grammar formalismwas more expressive but much 
less efficient than the standard DCG formalism. 

The grammar in section 20.4 is essentially the same as the one presented in Fer
nando Pereira and David H. D. Warren's 1980 paper, which introduced the Definite 
Clause Grammar formalism as it is known today. The two developed a much more 
substantial grammar and used it in a very influential question-answering system 
called Chat-80 (Warren and Pereira, 1982). Pereira later teamed with Stuart Shieber 
on an excellent book covering logic grammars in more depth: Prolog and Natural-
Language Analysis (1987). The book has many strong points, but unfortunately it does 
not present a grammar anywhere near as complete as the Chat-80 grammar. 

The idea of a compositional semantics based on mathematical logic owes much 
to the work of the late linguist Richard Montague. The introduction by Dowty, Wall, 
and Peters (1981) and the collection by Rich Thomason (1974) cover Montague's 
approach. 

The grammar in section 20.5 is based loosely on Michael McCord's modular logic 
grammar, as presented in Walker et al. 1990. 

It should be noted that logic grammars are by no means the only approach to 
natural language processing. Woods (1970) presents an approach based on the 
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augmented transition network, or ATN. A transition network is like a context-free 
grammar. The augmentation is a way of manipulating features and semantic values. 
This is just like the extra arguments in DCGs, except that the basic operations are 
setting and testing variables rather than unification. So the choice between ATNs and 
DCGs is largely a matter of what programming approach you are most comfortable 
with: procedural for ATNs and declarative for DCGs. My feeling is that unification is 
a more suitable primitive than assignment, so I chose to present DCGs, even though 
this required bringing in Prolog's backtracking and unification mechanisms. 

In either approach, the same linguistic problems must be addressed—agreement, 
long-distance dependencies, topicalization, quantifier-scope ambiguity, and so on. 
Comparing Woods's (1970) ATN grammar to Pereira and Warren's (1980) DCG gram
mar, the careful reader will see that the solutions have much in common. The analysis 
is more important than the notation, as it should be. 

20.9 Exercises 

@ Exercise 20.2 [m] Modify the grammar (from section 20.4, 20.5, or 20.6) to allow 
for adjectives before a noun. 

[¿3 Exercise 20.3 [m] Modify the grammar to allow for prepositional phrase modifiers 
on verb and noun phrases. 

@ Exercise 20.4 [m] Modify the grammar to allow for ditransitive verbs—verbs that 
take two objects, as in "give the dog a bone." 

[¿3 Exercise 20.5 Suppose we wanted to adopt the Prolog convention of writing DCG 
tests and words in brackets and braces, respectively. Write a function that will alter 
the readtable to work this way. 

@ Exercise 20.6 [m] Define a rule function for a new type of DCG rule that automati
cally builds up a syntactic parse of the input. For example, the two rules: 

( ru le is) => (np) (vp)) 
(rule (np) => (iword he)) 

should be equivalent to: 
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(rule (s (s ? 1 ?2 ) ) - - > (np ?1) (vp 12)) 
(rule (np (np he)) - - > (:word he)) 

53 Exercise 20.7 [m] There are advantages and disadvantages to the approach that 
Prolog takes in dividing predicates into clauses. The advantage is that it is easy to 
add a new clause. The disadvantage is that it is hard to alter an existing clause. If 
you edit a clause and then evaluate it, the new clause will be added to the end of the 
clause list, when what you really wanted was for the new clause to take the place 
of the old one. To achieve that effect, you have to call cl ear-predicate, and then 
reload all the clauses, not just the one that has been changed. 

Write a macro named - rul e that is just like rul e, except that it attaches names to 
clauses. When a named rule is reloaded, it replaces the old clause rather than adding 
a new one. 

@ Exercise 20.8 [h] Extend the DCG rule function to allow or goals in the right-hand 
side. To make this more useful, also allow and goals. For example: 

(rule (A) - - > (B) (or (C) (and (D) (E ) ) ) (F)) 

should compile into the equivalent of: 

(< - (A ?S0 ?S4) 
(B ?S0 ?S1) 
(OR (AND (C ? S 1 ?S2) (= ?S2 ?S3) ) 

(AND (D ? S 1 ?S2) (E ?S2 ? S 3 ) ) ) 
(F ?S3 ?S4) ) 

20.10 Answers 

Answer 20.1 It uses local variables ( ? s 0 , ? s l . . . ) that are not guaranteed to be 
unique. This is a problem if the grammar writer wants to use these symbols anywhere 
in his or her rules. The fix is to gensym symbols that are guaranteed to be unique. 
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Answer 20.5 

(defun setup-braces (Äoptional (on? t ) (readtable *readtable*)) 
"Make Ca b] read as (:word a b) and {a b} as ( r tes t a b c) 
i f ON? i s t rue; otherwise revert { [ ] } to normal." 
( i f (not on?) 

(map ni l #'(lambda (c) 
(set-macro-character c (get-macro-character # \a) 

t readtable)) 
" { [ ] } " ) 

(progn 
(set-macro-character 

# \ ] (get-macro-character # \ ) ) ni l readtable) 
(set-macro-character 

# \ } (get-macro-character # \ ) ) ni l readtable) 
(set-macro-character 

# \ [ #'(lambda (s ignore) 
(cons :word ( read-del imi ted -1 i s t # \ ] s t ) ) ) 

ni l readtable) 
(set-macro-character 

# \ { #'(lambda (s ignore) 
(cons rtest ( read-del imi ted -1 is t # \ } s t ) ) ) 

ni l readtable)))) 



CHAPTER 27 

A Grammar of English 

Prefer geniality to grammar. 
—Henry Watson Fowler 

The King's English 906) 

I I 1 he previous two chapters outline techniques for writing grammars and parsers based on 
I those grammars. It is quite straightforward to apply these techniques to applications 

J L like the CD player problem where input is limited to simple sentences like "Play 1 to 
8 without 3." But it is a major undertaking to write a grammar for unrestricted English input. 
This chapter develops a grammar that covers all the major syntactic constructions of English. It 
handles sentences of much greater complexity, such as "Kim would not have been persuaded 
by Lee to look after the dog." The grammar is not comprehensive enough to handle sentences 
chosen at random from a book, but when augmented by suitable vocabulary it is adequate for a 
wide variety of applications. 

This chapter is organized as a tour through the English language. We first cover noun 
phrases, then verb phrases, clauses, and sentences. For each category we introduce examples, 
analyze them linguistically, and finally show definite clause grammar rules that correspond to 
the analysis. 
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As the last chapter should have made clear, analysis more often results in com
plication than in simplification. For example, starting with a simple rule like (S 
- -> Ν Ρ VP), we soon find that we have to add arguments to handle agreement, se
mantics, and gapping information. Figure 21.1 lists the grammatical categories and 
their arguments. Note that the semantic argument, sem, is always last, and the gap 
accumulators, gapl and gap2, are next-to-last whenever they occur. All single-letter 
arguments denote metavariables; for example, each noun phrase (category NP) will 
have a semantic interpretation, sem, that is a conjunction of relations involving the 
variable x. Similarly, the h in modi f i ers is a variable that refers to the head—the thing 
that is being modified. The other arguments and categories will be explained in turn, 
but it is handy to have this figure to refer back to. 

Category Arguments 
Preterminals 

name agr name 
verb verb in f lec t ion s lo t s ν sem 
rel-pro case type 
pronoun agr case wh χ sem 
art agr quant 
adj X sem 
cardinal number agr 
ordinal number 
prep prep sem 
noun agr s l o t s χ sem 
aux in f lec t ion needs- inf lect ion ν sem 
adverb X sem 

Nonterminals 
S s sem 
aux- inv-S subject s sem 
clause in f lec t ion χ in t -subj ν gapl gap2 sem 
subject agr χ sub j -s lo t in t -subj gapl gap2 sem 
VP in f lec t ion χ sub ject -s lo t ν gapl gap2 vp 
NP agr case wh χ gapl gap2 np 
NP2 agr case χ gapl gap2 sem 
PP prep role wh np χ gapl gap2 sem 
XP s lo t consti tuent wh χ gapl gap2 sem 
Det agr wh χ res t r i c t ion sem 
re l -c lause agr χ sem 
modif iers pre/post cat info s l o t s h gapl gap2 sem 
complement cat info s lo t h gapl gap2 sem 
adjunct pre/post cat info h gapl gap2 sem 
advp wh X gapl gap2 sem 

Figure 21.1: Grammatical Categories and their Arguments 
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21.1 Noun Phrases 

The simplest noun phrases are names and pronouns, such as "Kim" and "them." 
The rules for these cases are simple: we build up a semantic expression from a name 
or pronoun, and since there can be no gap, the two gap accumulator arguments are 
the same ( ? g l ) . Person and number agreement is propagated in the variable ?agr, 
and we also keep track of the case of the noun phrase. English has three cases that 
are reflected in certain pronouns. In the first person singular, " Γ is the nominative or 
subjective case, "me" is the accusative or objective case, and "my" is the genitive case. To 
distinguish them from the genitive, we refer to the nominative and the objective cases 
as the common cases. Accordingly, the three cases will be marked by the expressions 
(common nom), (common ob j ) , and gen, respectively. Many languages of the world 
have suffixes that mark nouns as being one case or another, but English does not. 
Thus, we use the expression (common ?) to mark nouns. 

We also distinguish between noun phrases that can be used in questions, like 
"who," and those that cannot. The ?wh variable has the value +wh for noun phrases 
like "who" or "which one" and - wh for nonquestion phrases. Here, then, are the rules 
for names and pronouns. The predicates name and pronoun are used to look up words 
in the lexicon. 

(rule (NP ?agr (common ? ) -wh ?x ? g l ? g l (the ?x (name ?name ? x ) ) ) = = > 
(name ?agr ?name)) 

(rule (NP ?agr ?case ?wh ?x ? g l ? g l ?sem) = = > 
(pronoun ?agr ?case ?wh ?x ?sem)) 

Plural nouns can stand alone as noun phrases, as in "dogs," but singular nouns need 
a determiner, as in "the dog" or "Kim's friend's biggest dog." Plural nouns can also 
take a determiner, as in "the dogs." The category Det is used for determiners, and 
NP2 is used for the part of a noun phrase after the determiner: 

(rule (NP ( - - - + ) ?case -wh ?x ? g l ?g2 (group ?x ?sem)) = = > 
(:ex "dogs") ; Plural nouns don' t need a determiner 
(NP2 ( +) ?case ?x ? g l ?g2 ?sem)) 

(rule (NP ?agr (common ? ) ?wh ?x ? g l ?g2 ?sem) = = > 
(:ex "Every man" "The dogs on the beach") 
(Det ?agr ?wh ?x ? res t r i c t i on ?sem) 
(NP2 ?agr (common ? ) ?x ? g l ?g2 ? res t r i c t i on ) ) 

Finally, a noun phrase may appear externally to a construction, in which case the 
noun phrase passed in by the first gap argument will be consumed, but no words 
from the input will be. An example is the u in "Whom does Kim like 
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(rule (NP ?agr ?case ?wh ?x (gap (NP ?agr ?case ?x ) ) (gap n i l ) t ) 
= = > Gapped NP 
) 

Now we address the heart of the noun phrase, the NP2 category. The lone rule for NP2 
says that it consists of a noun, optionally preceded and followed by modifiers: 

(rule (NP2 ?agr (common ? ) ?x ? g l ?g2 :sem) = = > 
(modif iers pre noun ?agr () ?x (gap n i l ) (gap n i l ) ?pre) 
(noun ?agr ? s l o t s ?x ?noun) 
(modif iers post noun ?agr ? s l o t s ?x ? g l ?g2 ?pos t ) ) 

21.2 Modifiers 
Modifiers are split into type types: Complements are modifiers that are expected by the 
head category that is being modified; they cannot stand alone. Adjuncts are modifiers 
that are not required but bring additional information. The distinction is clearest 
with verb modifiers. In "Kim visited Lee yesterday," "visited" is the head verb, "Lee" 
is a complement, and "yesterday" is an adjunct. Returning to nouns, in "the former 
mayor of Boston," "mayor" is the head noun, "of Boston" is a complement (although 
an optional one) and "former" is an adjunct. 

The predicate modi f i ers takes eight arguments, so it can be tricky to understand 
them all. The first two arguments tell if we are before or after the head (pre or 
post) and what kind of head we are modifying (noun, verb, or whatever). Next is 
an argument that passes along any required information—in the case of nouns, it 
is the agreement feature. The fourth argument is a list of expected complements, 
here called ?s lo t s . Next is the metavariable used to refer to the head. The final 
three arguments are the two gap accumulators and the semantics, which work the 
same way here as we have seen before. Notice that the lexicon entry for each Noun 
can have a list of complements that are considered as postnoun modifiers, but there 
can be only adjuncts as prenoun modifiers. Also note that gaps can appear in the 
postmodifiers but not in the premodifiers. For example, we can have "What is Kevin 
the former mayor of where the answer might be "Boston." But even though 
we can construct a noun phrase like "the education president," where "education" 
is a prenoun modifier of "president," we cannot construct "* What is George the u 
president?," intending that the answer be "education." 

There are four cases for modification. First, a complement is a kind of modifier. 
Second, if a complement is marked as optional, it can be skipped. Third, an adjunct 
can appear in the input. Fourth, if there are no complements expected, then there 
need not be any modifiers at all. The following rules implement these four cases: 
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(rule (modif iers ?pre/post ?cat ? in fo ( ? s l o t . ? s l o t s ) ?h 
? g l ?g3 :sem) = = > 

(complement ?cat ? in fo ? s l o t ?h ? g l ?g2 ?mod) 
(modifiers ?pre/post ?cat ? in fo ? s l o t s ?h ?g2 ?g3 ?mods)) 

(rule (modif iers ?pre/post ?cat ? in fo ( ( ? ( ? ) ? ) . ? s l o t s ) ?h 
? g l ?g2 ?mods) = = > 

(modifiers ?pre/post ?cat ? in fo ? s l o t s ?h ? g l ?g2 ?mods)) 

(rule (modif iers ?pre/post ?cat ? in fo ? s l o t s ?h ? g l ?g3 :sem) = = > 
(adjunct ?pre/post ?cat ? in fo ?h ? g l ?g2 ?adjunct) 
(modif iers ?pre/post ?cat ? in fo ? s l o t s ?h ?g2 ?g3 ?mods)) 

(rule (modif iers ? ? ? ( ) ? ? g l ? g l t ) = = > ) 

We need to say more about the Ust of complements, or slots, that can be associated 
with words in the lexcion. Each slot is a list of the form i role number form), where 
the role refers to some semantic relation, the number indicates the ordering of the 
complements, and the form is the type of constituent expected: noun phrase, verb 
phrase, or whatever. The details will be covered in the following section on verb 
phrases, and compi ement will be covered in the section on XPs. For now, we give a 
single example. The complement list for one sense of the verb "visit" is: 

((agt 1 (NP ? ) ) (obj 2 (NP ? ) ) ) 

This means that the first complement, the subject, is a noun phrase that fills the agent 
role, and the second complement is also a noun phrase that fills the object role. 

21.3 Noun Modifiers 
There are two main types of prenoun adjuncts. Most common are adjectives, as 
in "big slobbery dogs." Nouns can also be adjuncts, as in "water meter" or "desk 
lamp." Here it is clear that the second noun is the head and the first is the modifier: 
a desk lamp is a lamp, not a desk. These are known as noun-noun compounds. In 
the following rules, note that we do not need to say that more than one adjective is 
allowed; this is handled by the rules for modi f i ers. 

(rule (adjunct pre noun ? in fo ?x ?gap ?gap ?sem) = = > 
(adj ?x ?sem)) 

(rule (adjunct pre noun ? in fo ?h ?gap ?gap :sem) = = > 
(:sem (noun-noun ?h ?x ) ) 
(noun ?agr () ?x ?sem)) 

After the noun there is a wider variety of modifiers. Some nouns have complements. 
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which are primarily prepositional phrases, as in "mayor of Boston." These will be 
covered when we get to the lexical entries for nouns. Prepositional phrases can be 
adjuncts for nouns or verbs, as in "man in the middle" and "slept for an hour." We 
can write one rule to cover both cases: 

(rule (adjunct post ?cat ? in fo ?x ? g l ?g2 ?sem) = = > 
(PP ?prep ?prep ?wh ?np ?x ? g l ?g2 ?sem)) 

Here are the rules for prepositional phrases, which can be either a preposition 
followed by a noun phrase or can be gapped, as in "to whom are you speaking 
The object of a preposition is always in the objective case: "with him" not "*with he." 

( ru le (PP ?prep ? ro le ?wh ?np ?x ? g l ?g2 :sem) = = > 
(prep ?prep t ) 
(:sem (? ro le ?x ?np)) 
(NP ?agr (common obj) ?wh ?np ? g l ?g2 ?np-sem)) 

(rule (PP ?prep ? ro le ?wh ?np ?x 
(gap (PP ?prep ? ro le ?np ? x ) ) (gap n i l ) t ) = = > ) 

Nouns can be modified by present participles, past participles, and relative clauses. 
Examples are "the man eating the snack," "the snack eaten by the man," and "the 
man that ate the snack," respectively. We will see that each verb in the lexicon is 
marked with an inflection, and that the marker - i ng is used for present participles 
while - en is used for past participles. The details of the clause will be covered later. 

(rule (adjunct post noun ?agr ?x ?gap ?gap ?sem) = = > 
(:ex (the man) " v i s i t i n g me" (the man) "v i s i ted by me") 
( : test (member ? i n f l ( - ing pass ive ) ) ) 
(clause ? in f l ?x ? ?v (gap (NP ?agr ? ?x ) ) (gap n i l ) ?sem)) 

(rule (adjunct post noun ?agr ?x ?gap ?gap ?sem) = = > 
( re l -c lause ?agr ?x ?sem)) 

It is possible to have a relative clause where it is an object, not the subject, that the 
head refers to: "the snack that the man ate." In this kind of relative clause the relative 
pronoun is optional: "The snack the man ate was delicious." The following rules say 
that if the relative pronoun is omitted then the noun that is being modified must be 
an object, and the relative clause should include a subject internally. The constant 
int-subj indicates this. 

(rule ( re l -c lause ?agr ?x :sem) = = > 
(:ex (the man) "that she l i ked" "that l iked her" 

"that I know Lee l i ked" ) 
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(opt-rel-pronoun ?case ?x ? in t - sub j ?rel-sem) 
(clause ( f i n i te ? ? ) ? ? in t - sub j ?v 

(gap (NP ?agr ?case ?x ) ) (gap n i l ) ?clause-sem)) 

( ru le (opt-rel-pronoun ?case ?x ? in t - sub j (?type ?x ) ) = = > 
(rword ? re l -p ro ) 

( : test (word ? re l -p ro re l -pro ?case ? type)) ) 

(rule (opt-rel-pronoun (common obj) ?x in t -subj t ) = = > ) 

It should be noted that it is rare but not impossible to have names and pronouns 
with modifiers: "John the Baptist/' "lovely Rita, meter maid," "Lucy in the sky with 
diamonds," "Sylvia in accounting on the 42nd floor," "she who must be obeyed," 
Here and throughout this chapter we will raise the possibility of such rare cases, 
leaving them as exercises for the reader. 

21.4 Determiners 

We will cover three kinds of determiners. The simplest is the article: "a dog" or "the 
dogs." We also allow genitive pronouns, as in "her dog," and numbers, as in "three 
dogs." The semantic interpretation of a determiner-phrase is of the form (quantifier 
variable restriction). Έοτ example A Si ?x (dog ?x ) ) or ((number 3) ?x (dog ? x ) ) . 

( ru le (Det ?agr ?wh ?x ? res t r i c t i on (?ar t ?x ? res t r i c t i on ) ) = = > 
(:ex "the" "every") 
(art ?agr ?a r t ) 
( : test ( i f (= ?ar t wh) (= ?wh +wh) (= ?wh -wh)))) 

( rule (Det ?agr ?wh ?x ? r (the ?x ? res t r i c t i on ) ) = = > 
(:ex " h i s " "her") 
(pronoun ?agr gen ?wh ?y ?sem) 
( : test (and* ( (geni t ive ?y ?x) ?sem ? r ) ? r e s t r i c t i o n ) ) ) 

( ru le (Det ?agr -wh ?x ? r ((number ?n) ?x ? r ) ) = = > 
(:ex "three") 
(cardinal ?n ?agr ) ) 

These are the most important determiner types, but there are others, and there are 
pre- and postdeterminers that combine in restricted combinations. Predeterminers 
include all, both, half, double, twice, and such. Postdeterminers include every, 
many, several, and few. Thus, we can say "all her many good ideas" or "all the King's 
men." But we can not say "*all much ideas" or "*the our children." The details are 
complicated and are omitted from this grammar. 
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21.5 Verb Phrases 
Now that we have defined modi f i ers, verb phrases are easy. In fact, we only need 
two rules. The first says a verb phrase consists of a verb optionally preceded and 
followed by modifiers, and that the meaning of the verb phrase includes the fact that 
the subject fills some role: 

(rule (VP ? in f l ?x ?sub jec t -s lo t ?v ? g l ?g2 :sem) = = > 
(:ex "s leeps" "quickly give the dog a bone") 
(modifiers pre verb ? () ?v (gap n i l ) (gap n i l ) ?pre-sem) 
(:sem (? ro le ?v ?x ) ) ( : tes t (= ?sub jec t -s lo t (? ro le 1 ? ) ) ) 
(verb ?verb ? i n f l (?sub jec t -s lo t . ? s l o t s ) ?v ?v-sem) 
(modif iers post verb ? ? s l o t s ?v ? g l ?g2 ?mod-sem)) 

The VP category takes seven arguments. The first is an inflection, which represents 
the tense of the verb. To describe the possibilities for this argument we need a quick 
review of some basic Unguistics. A sentence must have a finite verb, meaning a 
verb in the present or past tense. Thus, we say "Kim likes Lee," not "*Kim liking 
Lee." Subject-predicate agreement takes effect for finite verbs but not for any other 
tense. The other tenses show up as complements to other verbs. For example, the 
complement to "want" is an infinitive: "Kim wants to like Lee" and the complement 
to the modal auxiliary verb "would" is a nonf inite verb: "Kim would like Lee." If this 
were in the present tense, it would be "likes," not "like." The inflection argument 
takes on one of the forms in the table here: 

Expression Type Example 
( f i n i t e ?agr present) present tense eat, eats 
( f i n i t e ?agr pas t ) past tense ate 
n o n f i n i t e nonfinite eat 
i n f i n i t i v e infinitive to eat 
-en past participle eaten 
- i n g present participle eating 

The second argument is a metavariable that refers to the subject, and the third is 
the subject's complement slot. We adopt the convention that the subject slot must 
always be the first among the verb's complements. The other slots are handled by 
the postverb modifiers. The fourth argument is a metavariable indicating the verb 
phrase itself. The final three are the familiar gap and semantics arguments. As an 
example, if the verb phrase is the single word "slept," then the semantics of the verb 
phrase will be (and (pas t ?v ) (s leep ? v ) ) . Of course, adverbs, complements, 
and adjuncts will also be handled by this rule. 

The second rule for verb phrases handles auxiliary verbs, such as "have," "is" 
and "would." Each auxiliary verb (or aux) produces a verb phrase with a particular 



21.6 ADVERBS 723 

inflection when followed by a verb phrase with the required inflection. To repeat 
an example, "would" produces a finite phrase when followed by a nonfinite verb. 
"Have" produces a nonfinite when followed by a past participle. Thus, "would have 
liked" is a finite verb phrase. 

We also need to account for negation. The word "not" can not modify a bare main 
verb but can follow an auxiliary verb. That is, we can't say "*Kim not like Lee," but 
we can add an auxiliary to get "Kim does not like Lee." 

(rule (VP ? i n f l ?x ?sub jec t -s lo t ?v ? g l ?g2 :sem) = = > 
(:ex " i s s leeping" "would have given a bone to the dog. " 

"did not sleep" "was given a bone by th i s old man") 
An aux verb, followed by a VP 

(aux ? i n f l ?needs- in f l ?v ?aux) 
(modif iers post aux ? () ?v (gap n i l ) (gap n i l ) ?mod) 
(VP ?needs- inf l ?x ?sub jec t -s lo t ?v ? g l ?g2 ?vp)) 

(rule (adjunct post aux ? ?v ?gap ?gap (not ?v ) ) = = > 
(:word not)) 

21.6 Adverbs 
Adverbs can serve as adjuncts before or after a verb: "to boldly go," "to go boldly." 
There are some limitations on where they can occur, but it is difficult to come up 
with firm rules; here we allow any adverb anywhere. We define the category advp 
for adverbial phrase, but currently restrict it to a single adverb. 

(rule (adjunct ?pre/post verb ? in fo ?v ? g l ?g2 ?sem) = = > 
(advp ?wh ?v ? g l ?g2 ?sem)) 

(rule (advp ?wh ?v ?gap ?gap ?sem) = = > 
(adverb ?wh ?v ?sem)) 

(rule (advp ?wh ?v (gap (advp ?v ) ) (gap n i l ) t ) = = > ) 

21.7 Clauses 
A clause consists of a subject followed by a predicate. However, the subject need not 
be realized immediately before the predicate. For example, in "Alice promised Bob 
to lend him her car" there is an infinitive clause that consists of the predicate "to lend 
him her car" and the subject "Alice." The sentence as a whole is another clause. In 
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our analysis, then, a clause is a subject followed by a verb phrase, with the possibility 
that the subject will be instantiated by something from the gap arguments: 

(rule (clause ? i n f l ?x ? in t - sub j ?v ?gapl ?gap3 :sem) = = > 
(subject ?agr ?x ?sub j - s l o t ? in t - sub j ?gapl ?gap2 ?subj-sem) 
(VP ? in f l ?x ?sub j - s l o t ?v ?gap2 ?gap3 ?pred-sem) 
( i tes t (subj-pred-agree ?agr ? i n f l ) ) ) 

There are now two possibilities for subject. In the first case it has already been 
parsed, and we pick it up from the gap list. If that is so, then we also need to find the 
agreement feature of the subject. If the subject was a noun phrase, the agreement will 
be present in the gap list. If it was not, then the agreement is third-person singular. 
An example of this is " That the Red Sox won surprises me," where the italicized phrase 
is a non-NP subject. The fact that we need to use "surprises" and not "surprise" 
indicates that it is third-person singular. We will see that the code ( - - - » - - ) is used 
for this. 

(rule (subject ?agree ?x ?sub j - s l o t ext-subj 
(gap ?subj ) (gap n i l ) t ) = = > 

External ly real ized subject (the normal case for S) 
( r test (s lo t -const i tuent ?sub j - s l o t ?subj ?x ? ) 

( i f (= ?subj (NP ?agr ?case ?x ) ) 
(= ?agree ?agr ) 
(= ?agree (- - + - ) ) ) ) ) ;Non-NP subjects are 3sing 

In the second case we just parse a noun phrase as the subject. Note that the fourth 
argument to subject is either ext-subj or in t -subj depending on if the subject is 
realized internally or externally. This will be important when we cover sentences in 
the next section. In case it was not already clear, the second argument to both clause 
and subject is the metavariable representing the subject. 

(rule (subject ?agr ?x (? ro le 1 (NP ? x ) ) in t -subj ?gap ?gap ?sem) 
= => 
(NP ?agr (common nom) ?wh ?x (gap n i l ) (gap n i l ) ?sem)) 

Finally, the rules for subject-predicate agreement say that only finite predicates need 
to agree with their subject: 

(< - (subj-pred-agree ?agr ( f i n i te ?agr ? ) ) ) 
(< - (subj-pred-agree ? ? i n f l ) (atom ? i n f l ) ) 
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21.8 Sentences 

In the previous chapter we allowed only simple declarative sentences. The current 
grammar supports commands and four kinds of questions in addition to declarative 
sentences. It also supports thematic fronting: placing a nonsubject at the beginning of 
a sentence to emphasize its importance, as in "Smith he says his name is" or "Murder, 
she wrote" or "In God we trust." In the last example it is a prepositional phrase, not a 
noun phrase, that occurs first. It is also possible to have a subject that is not a noun 
phrase: "That the dog didn't hark puzzled Holmes." To support all these possibilities, 
we introduce a new category, XP, which stands for any kind of phrase. A declarative 
sentence is then just an XP followed by a clause, where the subject of the clause may 
or may not turn out to be the XP: 

(rule (S ? s :sem) = = > 
(:ex "Kim l i kes Lee" "Lee, I l i ke _" " In god, we t rust _" 

"Who l i kes Lee?" "Kim l i kes who?") 
(XP ?kind ?const i tuent ?wh ?x (gap n i l ) (gap n i l ) ?topic-sem) 
(clause ( f i n i te ? ? ) ?x ? ? s (gap ?const i tuent) (gap n i l ) ?sem)) 

As it turns out, this rule also serves for two types of questions. The simplest kind 
of question has an interrogative noun phrase as its subject: "Who likes Lee?" or 
"What man likes Lee?" Another kind is the so-called echo question, which can be 
used only as a reply to another statement: if I tell you Kim likes Jerry Lewis, you 
could reasonably reply "Kim likes whoT Both these question types have the same 
structure as declarative sentences, and thus are handled by the same rule. 

The following table lists some sentences that can be parsed by this rule, showing 
the XP and subject of each. 

Sentence XP Subject 
Kim likes Lee Kim Kim 
Lee, Kim likes Lee Kim 
In god, we trust In god we 
That Kim likes Lee amazes That Kim likes Lee That Kim likes Lee 
Who likes Lee? Who Who 

The most common type of command has no subject at all: "Be quiet" or "Go to 
your room." When the subject is missing, the meaning is that the command refers 
to you, the addressee of the command. The subject can also be mentioned explicitly, 
and it can be "you," as in "You be quiet," but it need not be: "Somebody shut the 
door" or "Everybody sing along." We provide a rule only for commands with subject 
omitted, since it can be difficult to distinguish a command with a subject from a 
declarative sentence. Note that commands are always nonfinite. 
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(rule (S ? s :sem) = = > 

Commands have implied second-person subject 

(:ex "Give the dog a bone.") 

(:sem (command ? s ) ) 

(:sem ( l i s tener ?x ) ) 

(clause nonf ini te ?x ext-subj ? s 

(gap (NP ? ? ?x ) ) (gap n i l ) ?sem)) 

Another form of command starts with "let," as in "Let me see what I can do" and 
"Let us all pray." The second word is better considered as the object of "let" rather 
than the subject of the sentence, since the subject would have to be "I" or "we." This 
kind of command can be handled with a lexical entry for "let" rather than with an 
additional rule. 

We now consider questions. Questions that can be answered by yes or no have 
the subject and auxiliary verb inverted: "Did you see him?" or "Should I have been 
doing this?" The latter example shows that it is only the first auxiliary verb that 
comes before the subject. The category a ux - i η ν - S is used to handle this case: 

(rule (S ? s (yes-no ? s ?sem)) = = > 

(:ex "Does Kim l i ke Lee?" " I s he a doctor?" ) 

(aux- inv-S ni l ? s ?sem)) 

Questions that begin with a wh-phrase also have the auxihary verb before the subject, 
as in "Who did you see?" or "Why should I have been doing this?" The first 
constituent can also be a prepositional phrase: "For whom am I doing this?" The 
following rule parses an XP that must have the +wh feature and then parses an 
aux - i nv- S to arrive at a question: 

(rule (S ? s :sem) = = > 
(:ex "Who does Kim l i ke _ ? " "To whom did he give i t _ ? " 

"What dog does Kim l i ke _ ? " ) 

(XP ? s l o t ?const i tuent +wh ?x (gap n i l ) (gap n i l ) ?subj-sem) 

(aux- inv-S ?const i tuent ? s ?sem)) 

A question can also be signaled by rising intonation in what would otherwise be a 
declarative statement: "You want some?" Since we don't have intonation informa
tion, we won't include this kind of question. 

The implementation for a u x - i n v - S is straightforward: parse an auxiliary and 
then a clause, pausing to look for modifiers in between. (So far, a "not" is the only 
modifier allowed in that position.) 
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(rule (aux- inv-S ?const i tuent ?v :sem) = = > 
(:ex "Does Kim l i ke Lee?" (who) "would Kim have l i ked" ) 
(aux ( f i n i te ?agr ?tense) ?needs- in f l ?v ?aux-sem) 
(modif iers post aux ? () ?v (gap n i l ) (gap n i l ) ?mod) 
(clause ?needs- inf l ?x in t -subj ?v (gap ?const i tuent) (gap n i l ) 

?clause-sem)) 

There is one more case to consider. The verb "to be" is the most idiosyncratic in 
English. It is the only verb that has agreement differences for anything besides third-
person singular. And it is also the only verb that can be used in an a ux - i η ν - S without 
a main verb. An example of this is "Is he a doctor?," where "is" clearly is not an 
auxihary, because there is no main verb that it could be auxiliary to. Other verb can 
not be used in this way: "*Seems he happy?" and"*Didtheyit?" are ungrammatical. 
The only possibiUty is "have," as in "Have you any wool?," but this use is rare. 

The following rule parses a verb, checks to see that it is a version of "be," and then 
parses the subject and the modifiers for the verb. 

(rule (aux- inv-S ?ext ?v :sem) = = > 
(:ex " I s he a doctor?") 
(verb ?be ( f i n i te ?agr ? ) ( ( ? ro le ?n ?xp) . ? s l o t s ) ?v ?sem) 
( r test (word ?be be)) 
(subject ?agr ?x (? ro le ?n ?xp) in t -subj 

(gap n i l ) (gap n i l ) ?subj-sem) 
(:sem (? ro le ?v ?x ) ) 
(modif iers post verb ? ? s l o t s ?v (gap ?ext) (gap n i l ) ?mod-sem)) 

21.9 XPs 
All that remains in our grammar is the XP category. XPs are used in two ways: First, 
a phrase can be extraposed, as in "In god we trust," where "in god" will be parsed as 
an XP and then placed on the gap list until it can be taken off as an adjunct to "trust." 
Second, a phrase can be a complement, as in "He wants to be a fireman" where the 
infinitive phrase is a complement of "wants." 

As it turns out, the amount of information that needs to appear in a gap list 
is slightly different from the information that appears in a complement slot. For 
example, one sense of the verb "want" has the following complement list: 

((agt 1 (NP ?x ) ) (con 3 (VP i n f i n i t i ve ? x ) ) ) 

This says that the first complement (the subject) is a noun phrase that serves as the 
agent of the wanting, and the second is an infinitive verb phrase that is the concept of 
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the wanting. The subject of this verb phrase is the same as the subject of the wanting, 
so in "She wants to go home," it is she who both wants and goes. (Contrast this to 
"He persuaded her to go home," where it is he that persuades, but she that goes.) 

But when we put a noun phrase on a gap list, we need to include its number and 
case as well as the fact that it is an NP and its metavariable, but we don't need to 
include the fact that it is an agent. This difference means we have two choices: either 
we can merge the notions of slots and gap lists so that they use a common notation 
containing all the information that either can use, or we need some way of mapping 
between them. I made the second choice, on the grounds that each notation was 
complicated enough without bringing in additional information. 

The relation s l o t - c o n s t i t u e n t maps between the slot notation used for com
plements and the constituent notation used in gap lists. There are eight types of 
complements, five of which can appear in gap lists: noun phrases, clauses, preposi
tional phrases, the word "it" (as in "it is raining"), and adverbial phrases. The three 
phrases that are allowed only as complements are verb phrases, particles (such as 
"up" in "look up the number"), and adjectives. Here is the mapping between the two 
notations. The *** indicates no mapping: 

« - (s lo t -const i tuent (? ro le ?n (NP ?x ) ) 
(NP ?agr ?case ?x) ?x ?h) ) 

(< - (s lo t -const i tuent (? ro le ?n (clause ?word ? i n f l ) ) 
(clause ?word ? i n f l ?v ) ?v ?h) ) 

(< - (s lo t -const i tuent (? ro le ?n (PP ?prep ?np)) 
(PP ?prep ? ro le ?np ?h) ?np ?h) ) 

(< - (s lo t -const i tuent (? ro le ?n i t ) ( i t ? ? ?x) ?x ? ) ) 
(< - (s lo t -const i tuent (manner 3 (advp ? x ) ) (advp ?v ) ? ? v ) ) 
(< - (s lo t -const i tuent (? ro le ?n (VP ? i n f l ? x ) ) * * * ? ? ) ) 
(< - (s lo t -const i tuent (? ro le ?n (Adj ?x ) ) * * * ?x ? ) ) 
(< - (s lo t -const i tuent (? ro le ?n (P ?pa r t i c l e ) ) * * * ? ? ) ) 

We are now ready to define compi ement. It takes a slot descrption, maps it into a 
constituent, and then calls XP to parse that constituent: 

(rule (complement ?cat ? in fo (? ro le ?n ?xp) ?h ?gapl ?gap2 :sem) 

; ; A complement i s anything expected by a s lo t 
(:sem (? ro le ?h ?x ) ) 
( i tes t (s lo t -const i tuent (? ro le ?n ?xp) ?const i tuent ?x ?h) ) 
(XP ?xp ?const i tuent ?wh ?x ?gapl ?gap2 ?sem)) 

The category XP takes seven arguments. The first two are the slot we are trying 
to fill and the constituent we need to fill it. The third is used for any additional 
information, and the fourth is the metavariable for the phrase. The last three supply 
gap and semantic information. 
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Here are the first five XP categories: 

(rule (XP (PP ?prep ?np) (PP ?prep ? ro le ?np ?h) ?wh ?np 
?gapl ?gap2 ?sem) = = > 

(PP ?prep ?ro le ?wh ?np ?h ?gapl ?gap2 ?sem)) 

(rule (XP (NP ?x) (NP ?agr ?case ?x ) ?wh ?x ?gapl ?gap2 ?sem) = = > 
(NP ?agr ?case ?wh ?x ?gapl ?gap2 ?sem)) 

( rule (XP i t ( i t ? ? ?x) -wh ?x ?gap ?gap t ) = = > 
(:word i t ) ) 

(rule (XP (clause ?word ? i n f l ) (clause ?word ? i n f l ?v ) -wh ?v 
?gapl ?gap2 ?sem) = = > 

(:ex (he th inks) "that she i s t a l l " ) 
(opt-word ?word) 

(clause ? i n f l ?x in t -subj ?v ?gapl ?gap2 ?sem)) 

(rule (XP (? ro le ?n (advp ? v ) ) (advp ?v) ?wh ?v ?gapl ?gap2 ?sem) 

(advp ?wh ?v ?gapl ?gap2 ?sem)) 

The category opt -word parses a word, which may be optional. For example, one 
sense of "know" subcategorizes for a clause with an optional "that": we can say 
either "I know that he's here" or "I know he's here." The complement hst for "know" 
thuscontains the slot (con 2 (clause ( t h a t ) ( f i n i t e ? ? ) ) ) . If the "that" had 
been obligatory, it would not have parentheses around it. 

(rule (opt-word ?word) = = > (:word ?word)) 
(rule (opt-word (?word)) = = > (iword ?word)) 
(rule (opt-word (?word)) ==>) 

Finally, here are the three XPs that can not be extraposed: 

(rule (XP (VP ? in f l ?x) * * * -wh ?v ?gapl ?gap2 ?sem) = = > 
(:ex (he promised her) "to s leep") 
(VP ? in f l ?x ?sub j - s l o t ?v ?gapl ?gap2 ?sem)) 

(rule (XP (Adj ?x) * * * -wh ?x ?gap ?gap ?sem) = = > 
(Adj ?x ?sem)) 

(rule (XP (P ?par t i c le ) * * * -wh ?x ?gap ?gap t ) = = > 
(prep ?par t i c le t ) ) 
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21.10 Word Categories 

Each word category has a rule that looks words up in the lexicon and assigns the right 
features. The relation word is used for all lexicon access. We will describe the most 
complicated word class, verb, and just list the others. 

Verbs are complex because they often are polysemous—they have many meanings. 
In addition, each meaning can have several different complement lists. Thus, an 
entry for a verb in the lexicon will consist of the verb form, its inflection, and a list 
of senses, where each sense is a semantics followed by a list of possible complement 
lists. Here is the entry for the verb "sees," indicating that it is a present-tense verb with 
three senses. The understand sense has two complement lists, which correspond to 
"He sees" and "He sees that you are right." The 100k sense has one complement list 
corresponding to "He sees the picture," and the dat i ng sense, corresponding to "He 
sees her (only on Friday nights)," has the same complement list. 

> ( ? - (word sees verb ? in f l ?senses) ) 
?INFL = (FINITE ( - - + - ) PRESENT) 
7SENSES = ((UNDERSTAND ((AGT 1 (NP ? 3 ) ) ) 

((EXP 1 (NP ?4 ) ) 
(CON 2 (CLAUSE (THAT) (FINITE ?5 ? 6 ) ) ) ) ) 

(LOOK ((AGT 1 (NP 17)) (OBJ 2 (NP ? 8 ) ) ) ) 
(DATING ((AGT 1 (NP ?9 ) ) (OBJ 2 (NP ? 1 0 ) ) ) ) ) 

The category verb takes five arguments: the verb itself, its inflection, its complement 
list, its metavariable, and its semantics. The member relations are used to pick a sense 
from the list of senses and a complement Hst from the list of lists, and the semantics 
is built from semantic predicate for the chosen sense and the metavariable for the 
verb: 

(rule (verb ?verb ? i n f l ? s l o t s ?v :sem) = = > 
(:word ?verb) 
( : test (word ?verb verb ? i n f l ?senses) 

(member (?sem . ?subcats) ?senses) 
(member ? s l o t s ?subcats) 
(tense-sem ? in f l ?v ?tense-sem)) 

(:sem ?tense-sem) 
(:sem (?sem ? v ) ) ) 

It is difficulty to know how to translate tense information into a semantic interpre
tation. Different applications will have different models of time and thus will want 
different interpretations. The relation tense-sem gives semantics for each tense. 
Here is a very simple definition of tense-sem: 
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(< - (tense-sem ( f i n i te ? ?tense) ?v (?tense ? Y ) ) ) 
(< - (tense-sem - ing ?v (progressive ? v ) ) ) 
(< - (tense-sem -en ?v (pas t -par t i c ip le ? v ) ) ) 
(< - (tense-sem i n f i n i t i ve ?v t ) ) 
(< - (tense-sem nonf in i te ?v t ) ) 
(< - (tense-sem passive ?v (passive ? v ) ) ) 

Auxiliary verbs and modal verbs are listed separately: 

(rule (aux ? in f l ?needs- inf l ?v ?tense-sem) = = > 
(:word ?aux) 
( i tes t (word ?aux aux ? in f l ?needs- in f l ) 

(tense-sem ? i n f l ?v ?tense-sem))) 

( rule (aux ( f i n i te ?agr ?tense) nonf in i te ?v (?sem ? v ) ) = = > 
(:word ?modal) 
( : test (word ?modal modal ?sem ? tense) ) ) 

Nouns, pronouns, and names are also listed separately, although they have much 
in common. For pronouns we use quantifier wh or pro, depending on if it is a wh-
pronoun or not. 

(rule (noun ?agr ? s l o t s ?x (?sem ?x ) ) = = > 
(:word ?noun) 
( : test (word ?noun noun ?agr ? s l o t s ?sem))) 

(rule (pronoun ?agr ?case ?wh ?x (?quant ?x (?sem ? x ) ) ) = = > 
(rword ?pro) 
( : test (word ?pro pronoun ?agr ?case ?wh ?sem) 

( i f (= ?wh +wh) (= ?quant wh) (= ?quant p ro ) ) ) ) 

(rule (name ?agr ?name) = = > 
(iword ?name) 

(: test (word ?name name ? a g r ) ) ) 

Here are the rules for the remaining word classes: 
( ru le (adj ?x (?sem ? x ) ) = = > 

(:word ?adj) 
( : test (word ?adj adj ?sem))) 

( rule (adj ?x ((nth ?n) ?x ) ) = = > (ordinal ?n ) ) 

( ru le (art ?agr ?quant) = = > 
(:word ?a r t ) 
( : test (word ?ar t art ?agr ?quant))) 
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(rule (prep ?prep t ) = = > 
(:word ?prep) 
( : test (word ?prep prep))) 

(rule (adverb ?wh ?x ?sem) = = > 
(rword ?adv) 
( : test (word ?adv adv ?wh ?pred) 

( i f (= ?wh +wh) 
(= ?sem (wh ?y (?pred ?x ? y ) ) ) 
(= ?sem (?pred ? x ) ) ) ) ) 

(rule (cardinal ?n ?agr ) = = > 
(:ex " f i ve" ) 
(rword ?num) 
( r test (word ?nuni cardinal ?n ?ag r ) ) ) 

( rule (cardinal ?n ?agr) = = > 
(rex "5" ) 
(rword ?n) 
( r test (numberp ?n) 

( i f (= ?n 1) 
(= ?agr (- - + - ) ) ;3s ing 
(= ?agr ( + ) ) ) ) ) ;3plur 

(rule (ordinal ?n) = = > 
(rex " f i f th" ) 
(rword ?num) 
( r test (word ?num ordinal ? n ) ) ) 

21.11 The Lexicon 
The lexicon itself consists of a large number of entries in the word relation, and it 
would certainly be possible to ask the lexicon writer to make a long list of word facts. 
But to make the lexicon easier to read and write, we adopt three useful tools. First, 
we introduce a system of abbreviations. Common expressions can be abbreviated 
with a symbol that will be expanded by word. Second, we provide the macros verb 
and noun to cover the two most complex word classes. Third, we provide a macro 
word that makes entries into a hash table. This is more efficient than compiling a 
word relation consisting of hundreds of Prolog clauses. 

The implementation of these tools is left for the next section; here we show the 
actual lexicon, starting with the list of abbreviations. 

The first set of abbreviations defines the agreement features. The obvious way to 
handle agreement is with two features, one for person and one for number. So first-
person singular might be represented (1 si n g ) . A problem arises when we want 
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to describe verbs. Every verb except "be" makes the distinction only between third-
person singular and all the others. We don't want to make five separate entries in the 
lexicon to represent all the others. One alternative is to have the agreement feature be 
a set of possible values, so all the others would be a single set of five values rather than 
five separate values. This makes a big difference in cutting down on backtracking. 
The problem with this approach is keeping track of when to intersect sets. Another 
approach is to make the agreement feature be a list of four binary features, one each 
for first-person singular, first-person plural, third-person singular, and third-person 
plural. Then "all the others" can be represented by the list that is negative in the third 
feature and unknown in all the others. There is no way to distinguish second-person 
singular from plural in this scheme, but English does not make that distinction. Here 
are the necessary abbreviations: 

(abbrev I s i n g ( + - - - ) ) 
(abbrev Ip lur (- + - - ) ) 
(abbrev 3sing ( - - + - ) ) 
(abbrev Splur ( - - - + ) ) 
(abbrev 2pers (- - - - ) ) 
(abbrev ~3sing ( ? ? - ? ) ) 

The next step is to provide abbreviations for some of the common verb complement 
lists: 

(abbrev v / in t rans ((agt 1 (NP ? ) ) ) ) 
(abbrev v / t rans ((agt 1 (NP ? ) ) (obj 2 (NP ? ) ) ) ) 
(abbrev v /d i t rans ((agt 1 (NP ? ) ) (goal 2 (NP ? ) ) (obj 3 (NP ? ) ) ) ) 
(abbrev v / t rans2 ((agt 1 (NP ? ) ) (obj 2 (NP ? ) ) (goal 2 (PP to ? ) ) ) ) 
(abbrev v / t rans4 ((agt 1 (NP ? ) ) (obj 2 (NP ? ) ) (ben 2 (PP for ? ) ) ) ) 
(abbrev v / i t -nu l l ( (n i l 1 i t ) ) ) 
(abbrev v/opt- that ((exp 1 (NP ? ) ) (con 2 (clause (that) ( f i n i t e ? ? ) ) ) ) ) 
(abbrev v /subj - that ((con 1 (clause that ( f i n i te ? ? ) ) ) (exp 2 (NP ? ) ) ) ) 
(abbrev v / i t - tha t ( (n i l 1 i t ) (exp 2 (NP ? ) ) 

(con 3 (clause that ( f i n i te ? ? ) ) ) ) ) 
(abbrev v / i n f ( (agt 1 (NP ? x ) ) (con 3 (VP i n f i n i t i ve ? x ) ) ) ) 
(abbrev v/promise ((agt 1 (NP ?x ) ) (goal (2) (NP ? y ) ) 

(con 3 (VP i n f i n i t i ve ? x ) ) ) ) 
(abbrev v/persuade ((agt 1 (NP ?x ) ) (goal 2 (NP ? y ) ) 

(con 3 (VP i n f i n i t i ve ? y ) ) ) ) 
(abbrev v/want ((agt 1 (NP ?x ) ) (con 3 (VP i n f i n i t i ve ? x ) ) ) ) 
(abbrev v/p-up ((agt 1 (NP ? ) ) (pat 2 (NP ? ) ) (ni l 3 (P up)) ) ) 
(abbrev v/pp-for ((agt 1 (NP ? ) ) (pat 2 (PP for ? ) ) ) ) 
(abbrev v/pp-after ((agt 1 (NP ? ) ) (pat 2 (PP after ? ) ) ) ) 
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Verbs 

The macro verb allows us to list verbs in the form below, where the spellings of each 
tense can be omitted if the verb is regular: 

(verb (base past-tense past-participle present-participle present-plural) 
{semantics complement-list,..) ...) 

For example, in the following list "ask" is regular, so only its base-form spelling is 
necessary. "Do," on the other hand, is irregular, so each form is spelled out. The 
haphazard list includes verbs that are either useful for examples or illustrate some 
unusual complement list. 

(verb (ask) (query v /d i t rans ) ) 
(verb (delete) (delete v / t rans ) ) 
(verb (do did done doing does) (perform v / t rans ) ) 
(verb (eat ate eaten) (eat v / t rans ) ) 
(verb (give gave given g iv ing ) (g ive -1 v / t rans2 v /d i t rans) 

(donate v / t rans v / i n t rans ) ) 
(verb (go went gone going goes)) 
(verb (have had had having has) (possess v / t rans ) ) 
(verb (know knew known) (know-that v/opt- that) (know-of v / t rans ) ) 
(verb ( l i ke ) ( l i k e - 1 v / t rans ) ) 
(verb ( look) (look-up v/p-up) (search v /pp- for ) 

(take-care v/pp-af ter) (look v / i n t rans ) ) 
(verb (move moved moved moving moves) 

(sel f -propel v / in t rans) ( t ransfer v / t rans2) ) 
(verb (persuade) (persuade v/persuade)) 
(verb (promise) (promise v/promise)) 
(verb (put put put put t ing)) 
(verb ( ra in) ( ra in v / i t - n u l D ) 
(verb (saw) (cut-with-saw v / t rans v / i n t rans ) ) 
(verb (see saw seen seeing) (understand v / in t rans v/opt- that) 

(look v / t rans ) (da t ing v / t rans ) ) 
(verb (sleep s lept ) (sleep v / i n t rans ) ) 
(verb (surpr ise) (surpr ise v/subj - that v / i t - t ha t ) ) 
(verb ( te l l to ld) ( te l l v/persuade)) 
(verb ( t rus t ) ( t rust v / t rans ((agt 1 (NP ? ) ) (obj 2 (PP in ? ) ) ) ) ) 
(verb (try t r ied t r ied t ry ing t r i e s ) (attempt v / i n f ) ) 
(verb ( v i s i t ) ( v i s i t v / t rans ) ) 
(verb (want) (desire v/want v/persuade)) 
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Auxiliary Verbs 

Auxiliary verbs are simple enough to be described directly with the word macro. Each 
entry lists the auxiliary itself, the tense it is used to construct, and the tense it must 
be followed by. The auxiliaries "have" and "do" are listed, along with "to," which is 
used to construct infinitive clauses and thus can be treated as if it were an auxiliary. 

(word have aux nonf in i te -en) 
(word have aux ( f i n i t e ~3sing present) -en) 
(word has aux ( f i n i t e 3s ing present) -en) 
(word had aux ( f i n i t e ? past) -en) 
(word having aux - ing -en) 

(word do aux ( f i n i te ~3sing present) nonf in i te) 
(word does aux ( f i n i te 3sing present) nonf in i te) 
(word did aux ( f i n i te ? past) nonf in i te) 

(word to aux i n f i n i t i ve nonf in i te) 

The auxiliary "be" is special: in addition to its use as both an auxiliary and main 
verb, it also is used in passives and as the main verb in aux-inverted sentences. The 
function copul a is used to keep track of all these uses. It will be defined in the next 
section, but you can see it takes two arguments, a list of senses for the main verb, and 
a list of entries for the auxiliary verb. The three senses correspond to the examples 
"He is a fool," "He is a Republican," and "He is in Indiana," respectively. 

(copula 
' ( ( n i l ( (n i l 1 (NP ?x ) ) (ni l 2 (Adj ? x ) ) ) ) 

( i s - a ((exp 1 (NP ?x ) ) (arg2 2 (NP ? y ) ) ) ) 
( i s - l o c ((exp 1 (NP ?x ) ) (?prep 2 (PP ?prep ? ) ) ) ) ) 

' ( (be nonf in i te - ing) 
(been -en - ing) 
(being - ing -en) 
(am ( f i n i te I s i n g present) - ing) 
( i s ( f i n i te 3sing present) - ing) 
(are ( f i n i te 2pers present) - ing) 
(were ( f i n i te ( - - ? ? ) past) - ing) ; 2nd s ing or pi 
(was ( f i n i te ( ? - ? - ) past) - i ng ) ) ) ; 1st or 3rd s ing 

Following are the modal auxiliary verbs. Again, it is difficult to specify semantics 
for them. The word "not" is also listed here; it is not an auxiliary, but it does modify 
them. 
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(word can modal able past) 
(word could modal able present) 
(word may modal poss ib le past) 
(word might modal poss ib le present) 
(word shal l modal mandatory past) 
(word should modal mandatory present) 
(word wi l l modal expected past) 
(word would modal expected present) 
(word must modal necessary present) 

(word not not) 

Nouns 

No attempt has been made to treat nouns seriously. We list enough nouns here to 
make some of the examples work. The first noun shows a complement list that is 
sufficient to parse "the destruction of the city by the enemy." 

(noun destruct ion * destruct ion 
(pat (2) (PP of ? ) ) (agt (2) (PP by ? ) ) ) 

(noun beach) 
(noun bone) 
(noun box boxes) 
(noun c i ty c i t i e s ) 
(noun color) 
(noun cube) 
(noun doctor) 
(noun dog dogs) 
(noun enemy enemies) 
(noun f i l e ) 
(noun fr iend f r iends f r iend ( f r iend-of (2) (PP of ? ) ) ) 
(noun furni ture * ) 
(noun hat) 
(noun man men) 
(noun saw) 
(noun woman women) 

Pronouns 

Here we list the nominative, objective, and genitive pronouns, followed by interrog
ative and relative pronouns. The only thing missing are reflexive pronouns, such as 
"myself." 
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(word I pronoun I s i n g (common nom) -wh speaker) 
(word we pronoun Ip lu r (common nom) -wh speaker+other) 
(word you pronoun 2pers (common ?) -wh 1istener) 
(word he pronoun 3sing (common nom) -wh male) 
(word she pronoun 3s ing (common nom) -wh female) 
(word i t pronoun 3s ing (common ?) -wh anything) 
(word they pronoun 3plur (common nom) -wh anything) 

(word me pronoun I s i n g (common obj) -wh speaker) 
(word us pronoun Ip lu r (common obj) -wh speaker+other) 
(word him pronoun 3sing (common obj) -wh male) 
(word her pronoun 3sing (common obj) -wh female) 
(word them pronoun 3plur (common obj) -wh anything) 

(word my pronoun I s i n g gen -wh speaker) 
(word our pronoun Ip lu r gen -wh speaker+other) 
(word your pronoun 2pers gen -wh 1istener) 
(word h is pronoun 3sing gen -wh male) 
(word her pronoun 3sing gen -wh female) 
(word i t s pronoun 3s ing gen -wh anything) 
(word their pronoun 3plur gen -wh anything) 
(word whose pronoun 3sing gen +wh anything) 

(word who pronoun ? (common ? ) +wh person) 
(word whom pronoun ? (common obj) +wh person) 
(word what pronoun ? (common ? ) +wh thing) 
(word which pronoun ? (common ? ) +wh thing) 

(word who re l -pro ? person) 
(word which re l -pro ? th ing) 
(word that re l -pro ? th ing) 
(word whom rel -pro (common obj) person) 

Names 

The following names were convenient for one example or another: 

(word God 
(word Jan 
(word John 
(word Kim 
(word Lee 

name 3s ing) 
name 3s ing) 
name 3s ing) 
name 3s ing) 
name 3s ing) 

(word Lynn 
(word Mary 
(word NY 
(word LA 
(word SF 

name 3s ing) 
name 3s ing) 
name 3s ing) 
name 3s ing) 
name 3s ing) 
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Adjectives 

Here are a few adjectives: 

(word big adj b ig) 
(word old adj old) 
(word green adj green) 
(word ta l l adj t a l l ) 

(word bad adj bad) 
(word smart adj smart) 
(word red adj red) 
(word fun adj fun) 

Adverbs 

The adverbs covered here include interrogatives: 

(word quickly adv -wh quick ly) 
(word slowly adv -wh slowly) 

(word where adv +wh loc) 
(word when adv +wh time) 
(word why adv +wh reason) 
(word how adv +wh manner) 

Articles 

The common articles are listed here: 

(word the art 3sing the) 
(word the art Splur group) 
(word a art Ss ing a) 
(word an art Ss ing a) 
(word every art Ss ing every) 
(word each art Ss ing each) 
(word al l art Ss ing a l l ) 
(word some art ? some) 

(word th i s art Ss ing t h i s ) 
(word that art Ss ing that) 
(word these art Splur t h i s ) 
(word those art Splur that) 

(word what art ? wh) 
(word which art ? wh) 
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Cardinal and Ordinal Numbers 

We can take advantage of format ' s capabilities to fill up the lexicon. To go beyond 
20, we would need a subgrammar of numbers. 

This puts in numbers up to twenty, as i f by 
(word f ive cardinal 5 3plur) 
(word f i f t h ordinal 5) 

(dotimes ( i 21) 
(add-word (read-from-str ing (format ni l "~r" i ) ) 

'cardinal i ( i f (= i 1) ' S s i n g 'Sp lu r ) ) 
(add-word (read-from-str ing (format ni l "~:r" i ) ) Ord ina l i ) ) 

Prepositions 

Here is a fairly complete list of prepositions: 

(word above prep) (word about prep) (word around prep) 
(word across prep) (word after prep) (word against prep) 
(word along prep) (word at prep) (word away prep) 
(word before prep) (word behind prep) (word below prep) 
(word beyond prep) (word by prep) (word down prep) 
(word for prep) (word from prep) (word in prep) 
(word of prep) (word off prep) (word on prep) 
(word out prep) (word over prep) (word past prep) 
(word since prep) (word through prep)(word throughout prep) 
(word t i l l prep) (word to prep) (word under prep) 
(word unti l prep) (word up prep) (word with prep) 
(word without prep) 

21.12 Supporting the Lexicon 
This section describes the implementation of the macros word, verb , noun, and 
abbrev. Abbreviations are stored in a hash table. The macro abbrev and the functions 
ge t -abbrev and c l e a r - a b b r e v s define the interface. We will see how to expand 
abbreviations later. 
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(defvar *abbrevs* (make-hash-table)) 

(defmacro abbrev (symbol de f in i t ion) 
"Make symbol be an abbreviat ion for de f i n i t i on . " 
• (set f (gethash '.symbol *abbrevs*) ' . de f i n i t i on ) ) 

(defun clear-abbrevs () (c l rhash *abbrevs*)) 
(defun get-abbrev (symbol) (gethash symbol *abbrevs*)) 

Words are also stored in a hash table. Currently, words are symbols, but it might 
be a better idea to use strings for words, since then we could maintain capitalization 
information. The macro word or the function add-word adds a word to the lexicon. 
When used as an index into the hash table, each word returns a list of entries, where 
the first element of each entry is the word's category, and the other elements depend 
on the category. 

(defvar *words* (make-hash-table : s i ze 500)) 

(defmacro word (word cat &rest info) 
"Put word, with category and subcat in fo , into lex icon . " 
'(add-word '.word ' . ca t ..(mapcar #'kwote i n fo ) ) ) 

(defun add-word (word cat &rest info) 
"Put word, with category and other in fo , into lex icon . " 
(push (cons cat (mapcar #'expand-abbrevs-and-var iables in fo ) ) 

(gethash word *words*)) 
word) 

(defun kwote (x) ( l i s t 'quote x ) ) 

The function expand-abbrevs -and-var iab les expands abbreviations and substi
tutes variable structures for symbols beginning with ?. This makes it easier to make 
a copy of the structure, which will be needed later. 

(defun expand-abbrevs-and-variables (exp) 
"Replace al l var iables in exp with va rs , and expand abbrevs." 
( let ( (b indings n i l ) ) 

( labels 
((expand (exp) 

(cond 
((lookup exp b ind ings) ) 
((eq exp ' ? ) ( ? ) ) 
( (var iab le-p exp) 

( le t ( (var ( ? ) ) ) 
(push (cons exp var) b indings) 
var) ) 

((consp exp) 
(reuse-cons (expand ( f i r s t exp)) 
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(expand (rest exp)) 
exp)) 

(t (multiple-value-bind (expansion found?) 
(get-abbrev exp) 

( i f found? 
(expand-abbrevs-and-variables expansion) 
exp)))))) 

(expand exp)))) 

Now we can store words in the lexicon, but we need some way of getting them out. 
The function word/η takes a word (which must be instantiated to a symbol) and a 
category and optional additional information and finds the entries in the lexicon for 
that word that unify with the category and additional information. For each match, 
it calls the supplied continuation. This means that word/η is a replacement for a long 
list of word facts. There are three differences: word/n hashes, so it will be faster; it is 
incremental (you can add a word at a time without needing to recompile); and it can 
not be used when the word is unbound. (It is not difficult to change it to handle an 
unbound word using maphash, but there are better ways of addressing that problem.) 

(defun word/n (word cat cont &rest info) 
"Retrieve a word from the lexicon." 
(unless (unbound-var-p (deref word)) 

(let ((old-trail (f i l 1-pointer n r a i l * ) ) ) 
(dolist (old-entry (gethash word *words*)) 

( let ((entry (deref-copy old-entry))) 
(when (and (consp entry) 

(unify! cat ( f i rs t entry)) 
(unify! info (rest entry))) 

(funcall cont))) 
(undo-bindings! o ld- t ra i l ) ) ) ) ) 

Note that word/n does not follow our convention of putting the continuation last. 
Therefore, we will need the following additional functions: 

(defun word/2 (w cat cont) (word/n w cat cont)) 
(defun word/3 (w cat a cont) (word/n w cat cont a)) 
(defun word/4 (w cat a b cont) (word/n w cat cont a b)) 
(defun word/5 (w cat a b c cont) (word/n w cat cont a b c)) 
(defun word/6 (w cat a b c d cont) (word/n w cat cont a b e d ) ) 

We could create the whole lexicon with the macro word, but it is convenient to create 
specific macros for some classes. The macro noun is used to generate two entries, one 
for the singular and one for the plural. The arguments are the base noun, optionally 
followed by the plural (which defaults to the base plus "s"), the semantics (which 
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defaults to the base), and a list of complements. Mass nouns, like "furniture," have 
only one entry, and are marked by an asterisk where the plural would otherwise be. 

(defmacro noun (base &rest args) 
"Add a noun and i t s plural to the lex icon . " 
*(add-noun-form ' .base ,©(mapcar #'kwote a rgs ) ) ) 

(defun add-noun-form (base &optional (plural (symbol base ' s ) ) 
(sem base) &rest s l o t s ) 

( i f (eq plural ' * ) 
(add-word base 'noun * ? s l o t s sem) 
(progn 

(add-word base 'noun ' 3s ing s l o t s sem) 
(add-word plural 'noun '3plur s l o t s sem)))) 

Verbs are more complex. Each verb has seven entries: the base or nonfinite, the 
present tense singular and plural, the past tense, the past-participle, the present-
participle, and the passive. The macro verb automatically generates all seven entries. 
Verbs that do not have all of them can be handled by individual calls to word. We 
automatically handle the spelling for the simple cases of adding "s," "ing," and "ed," 
and perhaps stripping a trailing vowel. More irregular spellings have to be specified 
explicitly. Here are three examples of the use of verb: 

(verb (do did done doing does) (perform v / t rans ) ) 
(verb (eat ate eaten) (eat v / t rans ) ) 

(verb ( t rus t ) ( t rust v / t rans ((agt 1 (NP ? ) ) (obj 2 (PP in ? ) ) ) ) ) 

And here is the macro definition: 
(defmacro verb ((base &rest forms) &body senses) 

"Enter a verb into the lex icon . " 
•(add-verb ' . s e n s e s ' . base .©(mapcar #'kwote (mkl ist forms)))) 

(defun add-verb (senses base Äoptional 
(past (symbol (str ip-vowel base) 'ed)) 
(past-part past) 
(pres-part (symbol (str ip-vowel base) ' i n g ) ) 
(plural (symbol base ' s ) ) ) 

"Enter a verb into the lex icon . " 
(add-word base 'verb 'nonf in i te senses) 
(add-word base 'verb ' ( f i n i t e ~3sing present) senses) 
(add-word past 'verb ' ( f i n i t e ? past) senses) 
(add-word past-part 'verb ' -en senses) 
(add-word pres-part 'verb ' - i n g senses) 
(add-word plural 'verb ' ( f i n i t e 3s ing present) senses) 
(add-word past-part 'verb 'pass ive 
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(mapcar # 'pass i v i ze -sense 
(expand-abbrevs-and-vari ables senses) ) ) ) 

This uses a few auxiliary functions. First, s t r i p-vowel removes a vowel if it is the 
last character of the given argument. The idea is that for a verb like "fire," stripping 
the vowel yields "fir," from which we can get "fired" and "firing" automatically. 

(defun strip-vowel (word) 
"S t r ip off a t r a i l i ng vowel from a s t r i n g . " 
( le t * ( ( s t r (s t r ing word)) 

(end (- ( length s t r ) 1 ) ) ) 
( i f (vowel-p (char s t r end)) 

(subseq s t r 0 end) 
s t r ) ) ) 

(defun vowel-p (char) ( f ind char "aeiou" : test # 'char-equal ) ) 

We also provide a function to generate automatically the passive sense with the 
proper complement list(s). The idea is that the subject slot of the active verb becomes 
an optional slot marked by the preposition "by," and any slot that is marked with 
number 2 can be promoted to become the subject: 

(defun pass iv ize-sense (sense) 
The f i r s t element of sense i s the semantics; rest are s l o t s 

(cons ( f i r s t sense) (mapcan #*pass iv ize-subcat ( rest sense) ) ) ) 

(defun pass iv ize-subcat ( s l o t s ) 
"Return a l i s t of pass iv iza t ions of th i s subcat frame." 

Whenever the 1 s lo t i s of the form (?any 1 (NP ? ) ) , 
demote the 1 to a ( 3 ) , and promote any 2 to a 1 . 

(when (and (eql (slot-number ( f i r s t s l o t s ) ) 1) 
(s tar ts-wi th ( th i rd ( f i r s t s l o t s ) ) 'NP)) 

( le t ( (o ld -1 · ( , ( f i r s t ( f i r s t s l o t s ) ) (3) (PP by ? ) ) ) ) 
(loop for s lo t in s l o t s 

when (eql (slot-number s l o t ) 2) 
co l lect ' ( ( . ( f i r s t s l o t ) 1 . ( th i rd s l o t ) ) 

,®(remove s lo t ( rest s l o t s ) ) 
. o l d -1 ) ) ) ) ) 

(defun slot-number ( s lo t ) ( f i r s t - o r - s e l f (second s l o t ) ) ) 

Finally, we provide a special function just to define the copula, "be." 
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(defun copula (senses ent r ies) 
"Copula entr ies are both aux and main verb." 

They a lso are used in passive verb phrases and aux- inv-S 
(do l i s t (entry ent r ies) 

(add-word ( f i r s t entry) 'aux (second entry) ( th i rd entry)) 
(add-word ( f i r s t entry) 'verb (second entry) senses) 
(add-word ( f i r s t entry) 'aux (second entry) 'pass ive) 
(add-word ( f i r s t entry) 'be) ) ) 

The remaining functions are used for testing, debugging, and extending the grammar. 
First, we need functions to clear everything so that we can start over. These functions 
can be placed at the top of the lexicon and grammar files, respectively: 

(defun c lear- lex icon () 
(c l rhash *words*) 
(c lear-abbrevs)) 

(defun clear-grammar () 
(clear-examples) 
(c lear-db)) 

Testing could be done with run-exampl e s , but it is convenient to provide another 
interface, the macro t ry (and its corresponding function, try-dcg). Both macro and 
function can be invoked three ways. With no argument, all the examples stored by 
: ex are run. When the name of a category is given, all the examples for that category 
alone are run. Finally, the user can supply both the name of a category and a list of 
words to test whether those words can be parsed as that category. This option is only 
available for categories that are listed in the definition: 

(defmacro try (&optional cat &rest words) 
"Tr ies to parse WORDS as a consti tuent of category CAT. 
With no words, runs al l the :ex examples for category. 
With no cat . runs al l the examples." 
' ( t ry -dcg ' . ca t ' .words)) 

(defun try-dcg (&optional cat words) 
"Tr ies to parse WORDS as a consti tuent of category CAT. 
With no words, runs al l the :ex examples for category. 
With no cat . runs al l the examples." 
( i f (null words) 

(run-examples cat) 
( le t ( (args ' ( (gap n i l ) (gap n i l ) ?sem .words ( ) ) ) ) 

(mapc #'test-unknown-word words) 
( top- level-prove 

(ecase cat 
(np ' ( (np ? ? ?wh ?x .©args))) 
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(vp ' ( (vp ? in f l ?x ? s l ?v ,@args))) 
(pp ' ( (pp ?prep ?ro le ?wh ?x ,@args))) 
(xp *((xp ? s l o t ?const i tuent ?wh ?x .©args))) 
(s * ( (s ? ?sem .words ( ) ) ) ) 
( re l -c lause ' ( ( r e l - c l ause ? ?x ?sem .words ( ) ) ) ) 
(clause ' ( ( c lause ? i n f l ?x ? in t - sub j ?v ? g l ?g2 

?sem .words ( ) ) ) ) ) ) ) ) ) 

(defun test-unknown-word (word) 
"Pr int a warning message i f th is i s an unknown word." 
(unless (or (gethash word *words*) (numberp word)) 

(warn ""ÄUnknown word: ~a" word))) 

21.13 Other Primitives 

To support the -.test predicates made in various grammar rules we need definitions 
of the Prolog predicates i f, member, =, numberp, and atom. They are repeated here: 

« - ( i f ? tes t ?then) ( i f ?then ?e lse ( f a i l ) ) ) 
(< - ( i f ? tes t ?then ?e lse ) (cal l ? tes t ) ! (cal l ?then)) 
(< - ( i f ? tes t ?then ?e lse ) (cal l ?e l se ) ) 

(< - (member ?item (?item . ? r e s t ) ) ) 
(< - (member ?item (?x . ? r e s t ) ) (member ?item ? r e s t ) ) 

(< - (= ?x ?x ) ) 

(defun numberp/1 (x cont) 
(when (numberp (deref x ) ) 

(funcall cont))) 

(defun atom/1 (x cont) 
(when (atom (deref x ) ) 

(funcall cont))) 

(defun cal 1/1 (goal cont) 
"Try to prove goal by ca l l i ng i t . " 
(deref goal) 
(apply (make-predicate ( f i r s t goal) 

( length (args goa l ) ) ) 
(append (args goal) ( l i s t cont ) ) ) ) 
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21.14 Examples 

Here are some examples of what the parser can handle. I have edited the output 
by changing variable names like ? 168 to more readable names like ? J . The first 
two examples show that nested clauses are supported and that we can extract a 
constituent from a nested clause: 

> ( try S John promised Kim to persuade Lee to sleep) 
?SEM = (AND (THE ?J (NAME JOHN ? J ) ) (AGT ?P ?J ) 

(PAST ?P) (PROMISE ?P) 
(GOAL ?P ?K) (THE ?K (NAME KIM ?K) ) 
(CON ?P ?PER) (PERSUADE ?PER) (GOAL ?PER ?L) 
(THE ?L (NAME LEE ? L ) ) (CON ?PER ? S ) (SLEEP ? S ) ) ; 

> ( try S Who did John promise Kim to persuade to sleep) 
?SEM = (AND (WH ?W (PERSON ?W)) (PAST ?P) 

(THE ?J (NAME JOHN ? J ) ) (AGT ?P ?J ) 
(PROMISE ?P) (GOAL ?P ?K) 
(THE ?K (NAME KIM ?K) ) (CON ?P ?PER) 
(PERSUADE ?PER) (GOAL ?PER ?W) 
(CON ?PER ? S ) (SLEEP ? S ) ) ; 

In the next example, the "when" can be interpreted as asking about the time of any of 
the three events: the promising, the persuading, or the sleeping. The grammar finds 
all three. 

> ( t ry S When did John promise Kim to persuade Lee to sleep) 
?SEM = (AND (WH ?W (TIME ? S ?W)) (PAST ?P) 

(THE ?J (NAME JOHN ? J ) ) (AGT ?P ?J ) 
(PROMISE ?P) (GOAL ?P ?K) 
(THE ?K (NAME KIM ?K) ) (CON ?P ?PER) 
(PERSUADE ?PER) (GOAL ?PER ?L) 
(THE ?L (NAME LEE ? L ) ) (CON ?PER ? S ) 
(SLEEP ? S ) ) ; 

?SEM = (AND (WH ?W (TIME ?PER ?W)) (PAST ?P) 
(THE ?J (NAME JOHN ? J ) ) (AGT ?P ? J ) 
(PROMISE ?P) (GOAL ?P ?K) 
(THE ?K (NAME KIM ?K) ) (CON ?P ?PER) 
(PERSUADE ?PER) (GOAL ?PER ?L) 
(THE ?L (NAME LEE ? L ) ) (CON ?PER ? S ) 
(SLEEP ? S ) ) ; 
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?SEM = (AND (WH ?W (TIME ?P ?W)) (PAST ?P) 
(THE ?J (NAME JOHN ? J ) ) (AGT ?P ?J ) 
(PROMISE ?P) (GOAL ?P ?K) 
(THE ?K (NAME KIM ?K)) (CON ?P ?PER) 
(PERSUADE ?PER) (GOAL ?PER ?L) 
(THE ?L (NAME LEE ? L ) ) (CON ?PER ? S ) 
(SLEEP ? S ) ) . 

The next example shows auxiliary verbs and negation. It is ambiguous between 
an interpretation where Kim is searching for Lee and one where Kim is looking at 
something unspecified, on Lee's behalf. 

> (try S Kim would not have been looking for Lee) 
?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?S ?K) 

(EXPECTED ? S ) (NOT ? S ) (PAST-PARTICIPLE ? S ) 
(PROGRESSIVE ?S) (SEARCH ? S ) (PAT ?S ?L) 
(PAT ?S ?L) (THE ?L (NAME LEE ? L ) ) ) ; 

?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?2 ?K) 
(EXPECTED ?2) (NOT ?2) (PAST-PARTICIPLE ?LOOK) 
(PROGRESSIVE ?LOOK) (LOOK ?LOOK) (FOR ?LOOK ?L) 
(THE ?L (NAME LEE ? L ) ) ) ; 

The next two examples are unambiguous: 

> (try s I t should not surpr ise you that Kim does not l i ke Lee) 
?SEM = (AND (MANDATORY ?2) (NOT ?2) (SURPRISE ?2) (EXP ?2 ?YOU) 

(PRO ?YOU (LISTENER ?YOU)) (CON ?2 ?LIKE) 
(THE ?K (NAME KIM ?K) ) (AGT ?LIKE ?K) 
(PRESENT ?LIKE) (NOT ?LIKE) (L IKE-1 ?L IKE) 
(OBJ ?LIKE ?L) (THE ?L (NAME LEE ? L ) ) ) ; 

> ( try s Kim did not want Lee to know that the man knew her) 
?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?W ?K) (PAST ?W) 

(NOT ?W) (DESIRE ?W) (GOAL ?W ?L) 
(THE ?L (NAME LEE ? L ) ) (CON ?W ?KN) 
(KNOW-THAT ?KN) (CON ?KN ?KN2) 
(THE ?M (MAN ?M)) (AGT ?KN2 ?M) (PAST ?KN2) 
(KNOW-OF ?KN2) (OBJ ?KN2 ?HER) 
(PRO ?HER (FEMALE ?HER) ) ) . 

The final example appears to be unambiguous, but the parser finds four separate 
parses. The first is the obvious interpretation where the looking up is done quickly, 
and the second has quickly modifying the surprise. The last two interpretations are 
the same as the first two; they are artifacts of the search process. A disambiguation 
procedure should be equipped to weed out such duplicates. 
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> ( try s That Kim looked her up quickly surpr ised me) 
?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?LU1 ?K) (PAST ?LU1) 

(LOOK-UP ?LU1) (PAT ?LU1 ?H) (PRO ?H (FEMALE ?H)) 
(QUICKLY ?LU1) (CON ? S ?LU1) (PAST ? S ) (SURPRISE ? S ) 
(EXP ? S ?ME1) (PRO ?ME1 (SPEAKER ?ME1) ) ) ; 

?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?LU2 ?K) (PAST ?LU2) 
(LOOK-UP ?LU2) (PAT ?LU2 ?H) (PRO ?H (FEMALE ?H)) 
(CON ? S ?LU2) (QUICKLY ? S ) (PAST ? S ) (SURPRISE ? S ) 
(EXP ? S ?ME2) (PRO ?ME2 (SPEAKER ?ME2) ) ) ; 

?SEM = (AND (THE ?K (NAME KIM ?K)) (AGT ?LU3 ?K) (PAST ?LU3) 
(LOOK-UP ?LU3) (PAT ?LU3 ?H) (PRO ?H (FEMALE ?H)) 
(QUICKLY ?LU3) (CON ? S ?LU3) (PAST ? S ) (SURPRISE ?S) 
(EXP ? S ?ME3) (PRO ?ME3 (SPEAKER ?ME3) ) ) ; 

?SEM = (AND (THE ?K (NAME KIM ?K) ) (AGT ?LU4 ?K) (PAST ?LU4) 
(LOOK-UP ?LU4) (PAT ?LU4 ?H) (PRO ?H (FEMALE ?H)) 
(CON ?S ?LU4) (QUICKLY ? S ) (PAST ? S ) (SURPRISE ? S ) 
(EXP ?S ?ME4) (PRO ?ME4 (SPEAKER ?ME4) ) ) : 

21.15 History and References 
Chapter 20 provides some basic references on natural language. Here we will con
centrate on references that provide: 

1. A comprehensive grammar of English. 

2. A complete implementation. 

There are a few good textbooks that partially address both issues. Both Winograd 
(1983) and Allen (1987) do a good job of presenting the major grammatical features of 
English and discuss implementation techniques, but they do not provide actual code. 

There are also a few textbooks that concentrate on the second issue. Ramsey and 
Barrett (1987) and Walker et al. (1990) provide chapter-length implementations at 
about the same level of detail as this chapter. Both are recommended. Pereira and 
Shieber 1987 and Gazdar and Mellish 1989 are book-length treatments, but because 
they cover a variety of parsing techniques rather than concentrating on one in depth, 
they are actually less comprehensive. 

Several linguists have made serious attempts at addressing the first issue. The 
largest is the aptly namedA Comprehensive Grammar of Contemporary English by Quirk, 
Greenbaum, Leech and Svartik (1985). More manageable (although hardly concise) 
is their abridged edition, A Concise Grammar of Contemporary English. Both editions 
contain a gold mine of examples and facts about the English langauge, but the authors 
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do not attempt to write rigorous rules. Harris (1982) and Huddleston (1984) offer 
less complete grammars with greater linguistic rigor. 

Naomi Sager (1981) presents the most complete computerized grammar ever 
published. The grammar is separated into a simple, neat, context-free component 
and a rather baroque augmentation that manipulates features. 

21.16 Exercises 

@ Exercise 21.1 [m] Change the grammar to account better for mass nouns. The cur
rent grammar treats mass nouns by making them vague between singular and plural, 
which is incorrect. They should be treated separately, since there are determiners 
such as "much" that work only with mass nouns, and other determiners such as 
"these" that work only with plural count nouns. 

t¿3 Exercise 21.2 [m] Change the grammar to make a distinction between attributive 
and predicative adjectives. Most adjectives fall into both classes, but some can be used 
only attributively, as in "an utter fool" but not" * the fool is utter." Other adjectives can 
only be used predicatively, as in "the woman was loath to admit it" but not "*a loath 
(to admit it) woman." 

[¿3 Exercise 21.3 Pi] Implement complement lists for adjectives, so that "loath" would 
take an obligatory infinitive complement, and "proud" would take an optional (PP 
of) complement. In connection to the previous exercise, note that it is rare if not 
impossible for attributive adjectives to take complements: "he is proud," "he is proud 
of his country" and "a proud citizen" are all acceptable, but "*a proud of his country 
citizen" is not. 

Gl Exercise 21.4 [m] Add rules to advp to allow for adverbs to modify other adverbs, 
as in "extremely likely" or "very strongly." 

@ Exercise 21.5 [h] Allow adverbs to modify adjectives, as in "very good" or "really 
delicious." The syntax will be easy, but it is harder to get a reasonable semantics. 
While you're at it, make sure that you can handle adjectives with so-called noninter-
sective semantics. Some adjectives can be handled by intersective semantics: a red 
circle is something that is red and is a circle. But for other adjectives, this model 
does not work: a former senator is not something that is former and is a senator—a 
former senator is not a senator at all. Similarly, a toy elephant is not an elephant. 
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The semantics should be represented by something closer to ( ( t o y elephant) ?x ) 
rather than (and ( toy ?x) (elephant ? x ) ) . 

G3 Exercise 21.6 [m] Write a function that notices punctuation instead of ignoring it. 
It should work something like this: 

> (str ing->words "Who asked Lee. Kim and John?") 
(WHO ASKED LEE I.I KIM AND JOHN l ? l ) 

t¿3 Exercise 21.7 [m] Change the grammar to allow optional punctuation marks at the 
end of sentences and before relative clauses. 

Exercise 21.8 [m] Change the grammar to allow conjunction with more than two 
elements, using commas. Can these rules be generated automatically by conj - rule? 

@ Exercise 21.9 [h] Make a distinction between restrictive and nonrestrictive relative 
clauses. In "The truck that has á-wheel drive costs $5000," the italicized relative clause 
is restrictive. It serves to identify the truck and thus would be part of the quantifier's 
restriction. The complete sentence might be interpreted as: 

(and (the ?x (and (truck ?x) (4-wheel-drive ? x ) ) ) 
(costs ?x $5000)) 

Contrast this to "The truck, which has 4-wheel drive, costs $5000." Here the relative 
clause is nonrestrictive and thus belongs outside the quantifier's restriction: 

(and (the ?x (truck ?x)) 
(4-wheel-drive ? x ) ( c o s t s ?x $5000)) 



CHAPTER 22 

Scheme: An Uncommon Lisp 

The best laid schemes o' mice an' men 
-Robert Burns (1759-1796) 

r I 1 his chapter presents the Scheme dialect of Lisp and an interpreter for it. While it is not 
I likely that you would use this interpreter for any serious programming, understanding 

JL how the interpreter works can give you a better appreciation of how Lisp works, and 
thus make you a better programmer. A Scheme interpreter is used instead of a Common Lisp 
one because Scheme is simpler, and also because Scheme is an important language that is worth 
knowing about. 

Scheme is the only dialect of Lisp besides Common Lisp that is currently flourishing. Where 
Common Lisp tries to standardize all the important features that are in current use by Lisp 
programmers. Scheme tries to give a minimal set of very powerful features that can be used to 
implement the others. It is interesting that among all the programming languages in the world. 
Scheme is one of the smallest, while Common Lisp is one of the largest. The Scheme manual 
is only 45 pages (only 38 if you omit the example, bibliography, and index), while Common Lisp 
the Language, 2d edition, is 1029 pages. Here is a partial list of the ways Scheme is simpler than 
Common Lisp: 
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1. Scheme has fewer buUt-in functions and special forms. 

2. Scheme has no special variables, only lexical variables. 

3. Scheme uses the same name space for functions and variables (and everything 
else). 

4. Scheme evaluates the function part of a function call in exactly the same way 
as the arguments. 

5. Scheme functions can not have optional and keyword parameters. However, 
they can have the equivalent of a &rest parameter. 

6. Scheme has no block, return, go, or throw; a single function (cal 1 /cc ) replaces 
all of these (and does much more). 

7. Scheme has no packages. Lexical variables can be used to implement package
like structures. 

8. Scheme, as a standard, has no macros, although most implementations provide 
macros as an extension. 

9. Scheme has no special forms for looping; instead it asks the user to use recursion 
and promises to implement the recursion efficiently. 

The five main special forms in Scheme are quote and i f , which are just as in 
Common Lisp; begin and s e t l , which are just different spellings for progn and 
setq; and 1 ambda, which is as in Common Lisp, except that it doesn't require a 
# ' before it. In addition. Scheme allows variables, constants (numbers, strings, and 
characters), and function calls. The function call is different because the function 
itself is evaluated in the same way as the arguments. In Common Lisp, ( f x ) means 
to look up the function binding of f and apply that to the value of x. In Scheme, ( f x ) 
means to evaluate f (in this case by looking up the value of the variable f ) , evaluate 
X (by looking up the value of the variable in exactly the same way) and then apply 
the function to the argument. Any expression can be in the function position, and 
it is evaluated just like the arguments. Another difference is that Scheme uses # t 
and # f for true and false, instead of t and n i l . The empty list is denoted by ( ) , and 
it is distinct from the false value, # f . There are also nünor lexical differences in the 
conventions for complex numbers and numbers in different bases, but these can be 
ignored for all the programs in this book. Also, in Scheme a single macro, def i ne, 
serves to define both variables and functions. 
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Scheme Common Lisp 
var var 
constant constant 
(quotes) or *x (quotes) or 'x 
(beginx..) (progn X . . ) 
( se t ! varx) (setq varx) 
(ifpab) (ifpab) 
(lambda parms x...) # ' ( 1 ambda parmsx...) 
{fn arg.) (fnarg...) or (funcall fnarg...) 
#t t 
#f nil 
() nil 
(define varexp) (defparameter varexp) 
(define ifnparm...) body) (defun fniparm...) body) 

@ Exercise 22.1 [s] What does the following expression evaluate to in Scheme? How 
many errors does it have as a Common Lisp expression? 

( ( i f (= (+ 2 2) 4) 
(lambda (x y) (+ (* χ y) 12)) 
cons) 

5 
6) 

A great many functions, such as car, cdr, cons, append, +, *, and l i s t are 
the same (or nearly the same) in both dialects. However, Scheme has some spelling 
conventions that are different from Common Lisp. Most Scheme mutators, like 
set! , end in ' ! ' . Common Lisp has no consistent convention for this; some mutators 
start with η (nreverse, nsubst, nintersection) while others have idiosyncratic 
names (del e te versus remove). Scheme would use consistent names—reverse! and 
remove! —if these functions were defined at all (they are not defined in the standard). 
Most Scheme predicates end in ' ? ' , not 'p'. This makes predicates more obvious 
and eliminates the complicated conventions for adding a hyphen before the p.̂  The 
only problem with this convention is in spoken language: is equal ? pronounced 
"equal-question-mark" or "equal-q" or perhaps equal, with rising intonation? This 
would make Scheme a tone language, like Chinese. 

^One writes numberp because there is no hyphen in number but random-state-ρ because 
there is a hyphen in random-state. However, defstruct concatenates -p in all its predicates, 
regardless of the presence of a hyphen in the structure's name. 
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In Scheme, it is an error to apply car or cdr to the empty list. Despite the fact that 
Scheme has cons, it calls the result a pai r rather than a cons cell, so the predicate is 
pair?, not consp. 

Scheme recognizes not all lambda expressions will be "functions" according to 
the mathematical definition of function, and so it uses the term "procedure" instead. 
Here is a partial list of correspondences between the two dialects: 

Scheme Procedure Common Lisp Ftmction 
char - ready? l i s t e n 
char? characterp 
eq? eq 
equal? equal 
eqv? eql 
even? evenp 
for -each mapc 
i n t e g e r ? in tegerp 
l i s t - > s t r i n g coerce 
l i s t - > v e c t o r coerce 
l i s t - r e f nth 
l i s t - t a i l nthcdr 
map mapcar 
negat ive? minusp 
p a i r ? consp 
procedure? funct ionp 
s e t ! setq 
s e t - c a r ! replaca 
v e c t o r - s e t ! s e t f 
s t r i n g - s e t ! s e t f 

22.1 A Scheme Interpreter 
As we have seen, an interpreter takes a program (or expression) as input and returns 
the value computed by that program. The Lisp function eval is thus an interpreter, 
and that is essentially the function we are trying to write in this section. We have 
to be careful, however, in that it is possible to confuse the notions of interpreter and 
compiler. A compiler takes a program as input and produces as output a translation 
of that program into some other language—usually a language that can be directly 
(or more easily) executed on some machine. So it is also possible to write eval by 
compiling the argument and then interpreting the resulting machine-level program. 
Most modern Lisp systems support both possibilities, although some only interpret 
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code directly, and others compile all code before executing it. To make the distinction 
clear, we will not write a function called eval. Instead, we will write versions of two 
functions: interp, a Scheme interpreter, and, in the next chapter, comp, a Scheme 
compiler. 

An interpreter that handles the Scheme primitives is easy to write. In the in
terpreter interp, the main conditional has eight cases, corresponding to the five 
special forms, symbols, other atoms, and procedure applications (otherwise known 
as function calls). For the moment we will stick with t and η i 1 instead of #t and 
#f. After developing a simple interpreter, we will add support for macros, then 
develop a tail-recursive interpreter, and finally a continuation-passing interpreter. 
(These terms will be defined when the time comes.). The glossary for i nterp is in 
figure 22.1. 

Top-Level Fimctions 
scheme A Scheme read-interp-print loop. 
interp Interpret (evaluate) an expression in an environment. 
def-scheme-macro Define a Scheme macro. 

Special Variables 
*scheme-procs* Some procedures to store in the global environment. 

Auxiliary Functions 
set-var! Set a variable to a value. 
get-var Get the value of a variable in an environment. 
set-global-var! Set a global variable to a value. 
get-global-var Get the value of a variable fron the global environment. 
extend-env Add some variables and values to an environment. 
init-scheme-interp Initialize some global variables. 
init-scheme-proc Define a primitive Scheme procedure. 
scheme-macro Retrieve the Scheme macro for a symbol. 
scheme-macro-expand Macro-expand a Scheme expression. 
maybe-add Add an element to the front of a non-singleton list. 
print-proc Print a procedure. 

Data Type (tail-recursive version only) 
proc A Scheme procedure. 

Functions (continuation version only) 
interp-begin Interpret a beg i η expression. 
interp-call Interpret a function application. 
map-interp Map i nterp over a list. 
cal l /cc call with current continuation. 

Previously Defined Functions 
las t l Select the last element of a list. 
length=l Is this a list of lengthl? 

Figure 22.1: Glossary for the Scheme Interpreter 
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The simple interpreter has eight cases to worry about: (1) If the expression is a 
symbol, look up its value in the environment. (2) If it is an atom that is not a symbol 
(such as a number), just return it. Otherwise, the expression must be a list. (3) If it 
starts with quote, return the quoted expression. (4) If it starts with beg i η, interpret 
each subexpression, and return the last one. (5) If it starts with se t 1, interpret the 
value and then set the variable to that value. (6) If it starts with i f, then interpret 
the conditional, and depending on if it is true or not, interpret the then-part or the 
else-part. (7) If it starts with 1 ambda, build a new procedure—a closure over the ctu*-
rent environment. (8) Otherwise, it must be a procedure application. Interpret the 
procedure and all the arguments, and apply the procedure value to the argument 
values. 

(defun interp (x &optiona1 env) 
" Interpret (evaluate) the expression χ in the environment env." 
(cond 

((symbolp x) (get-var χ env)) 
((atom x) x) 
((case ( f i r s t x) 

(QUOTE (second x) ) 
(BEGIN ( l a s t l (mapcar #*(lambda (y) ( interp y env)) 

( rest x ) ) ) ) 
(SET! (se t -var ! (second x) ( interp ( th i rd x) env) env)) 
( IF ( i f ( interp (second x) env) 

( interp ( th i rd x) env) 
( interp (fourth x) env))) 

(LAMBDA ( le t ((parms (second x ) ) 
(code (maybe-add 'begin ( rest2 x ) ) ) ) 

#*(lambda (&rest args) 
( interp code (extend-env parms args env) ) ) ) ) 

(t ; ; a procedure appl icat ion 
(apply ( interp ( f i r s t x) env) 

(mapcar #'(lambda (v) ( interp ν env)) 
( rest x ) ) ) ) ) ) ) ) 

An environment is represented as an association list of variable/value pairs, ex
cept for the global environment, which is represented by values on the g l obal - val 
property of symbols. It would be simpler to represent the global environment 
in the same way as local environments, but it is more efficient to use property 
lists than one big global a-list. Furthermore, the global environment is distinct 
in that every symbol is implicitly defined in the global environment, while local 
environments only contain variables that are explicitly mentioned (in a 1 ambda ex
pression). 
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(defun se t -var ! (var val env) 
"Set a var iable to a value, in the given or global environment." 
( i f (assoc var env) 

(set f (second (assoc var env)) va l ) 
( se t -g loba l -var ! var va l ) ) 

val ) 

(defun get-var (var env) 
"Get the value of a var iab le , from the given or global environment, 

( i f (assoc var env) 
(second (assoc var env)) 
(get -g lobal -var var ) ) ) 

(defun se t -g loba l -va r ! (var va l ) 
(set f (get var ' g l oba l - va l ) va l ) ) 

(defun get -g lobal -var (var) 
( le t * ((defaul t "unbound") 

(val (get var 'g loba l -va l defau l t ) ) ) 
( i f (eq val default) 

(error "Unbound scheme var iab le : '"a" var) 
va l ) ) ) 

(defun extend-env (vars va ls env) 
"Add some var iables and values to an environment." 
(nconc (mapcar # ' l i s t vars va ls ) env)) 

(defparameter *scheme-procs* 
· ( + - • / = < > < = > = cons car cdr not append l i s t read member 

(nu l l ? nu l l ) (eq? eq) (equal? equal) (eqv? eql) 
(write p r in l ) (d isplay pr inc) (newline te rp r i ) ) ) 

As an example, suppose we interpret the function call ( f 1 2 3 ) , and that the 
functions f has been defined by the Scheme expression: 

(set! f (lambda (a b c) (+ a (g b c ) ) ) ) 

Then we will interpret ( f 1 2 3) by interpreting the body of f with the environment: 

((a 1) (b 2) (c 3)) 

Scheme procedures are implemented as Common Lisp functions, and in fact all the 
Scheme data types are implemented by the corresponding Common Lisp types. I 
include the function i η i t - s eherne - i η te rp to initialize a few global values and repeat 
the definitions of 1 a s t l and 1 ength=l: 
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(defun ini t-scheme-interp () 
" I n i t i a l i z e the scheme interpreter with some global va r i ab les . " 

Define Scheme procedures as CL funct ions: 
(mapc #*ini t-scheme-proc *scheme-procs*) 

Define the Boolean ' cons tan ts* . Unfortunately, t h i s won't 
; ; stop someone from say ing : (set l t n i l ) 
( se t -g loba l -var ! t t ) 
(se t -g loba l -var i n i l n i l ) ) 

(defun init-scheme-proc ( f ) 
"Define a Scheme procedure as a corresponding CL func t ion . " 
( i f ( l i s t p f ) 

( se t -g loba l -var ! ( f i r s t f ) (symbol-function (second f ) ) ) 
( se t -g loba l -va r ! f (symbol-function f ) ) ) ) 

(defun maybe-add (op exps Äoptional i f - n i l ) 
"For example, (maybe-add 'and exps t ) returns 
t i f exps i s n i l , exps i f there i s only one, 
and (and expl e x p 2 . . . ) i f there are several exps . " 
(cond ((nul l exps) i f - n i l ) 

( ( length=l exps) ( f i r s t exps)) 
(t (cons op exps) ) ) ) 

(defun length=l (x) 
" I s X a l i s t of length 1 ? " 
(and (consp x) (null (cdr x ) ) ) ) 

(defun l a s t l ( l i s t ) 
"Return the las t element (not las t cons ce l l ) of l i s t " 
( f i r s t ( l as t l i s t ) ) ) 

To test the interpreter, we add a simple read-eval-print loop: 

(defun scheme () 
"A Scheme read-eval-pr int loop (using in terp)" 
( in i t -scheme-interp) 
(loop (format t ""&==> ") 

(pr int ( interp (read) n i l ) ) ) ) 

And now we're ready to try out the interpreter. Note the Common Lisp prompt is 
" > , " while the Scheme prompt is " = = > . " 

> (scheme) 
= = > (+ 2 2) 
4 

= = > ( ( i f (= 1 2) * +) 3 4) 
7 
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= => ( ( i f (= 1 1) * +) 3 4) 
12 

= = > (set l fact (lambda (n) 
( i f (= η 0) 1 

(* η (fact (- η 1 ) ) ) ) ) ) 
#<DTP-LEXICAL-CLOSURE 36722615> 

= = > (fact 5) 
120 

= = > (set l table (lambda (f s tar t end) 
( i f (<= s tar t end) 

(begin 
(write ( l i s t s tar t ( f s t a r t ) ) ) 
(newline) 
(table f (+ s tar t 1) end)) ) ) ) 

#<DTP-LEXICAL-CLOSURE 41072172> 

= = > (table fact 1 10) 
(1 1) 
(2 2) 
(3 6) 
(4 24) 
(5 120) 
(6 720) 
(7 5040) 
(8 40320) 
(9 362880) 
(10 3628800) 
NIL 

= = > (table (lambda (x) (* χ χ χ) ) 5 10) 
(5 125) 
(6 216) 
(7 343) 
(8 512) 
(9 729) 
(10 1000) 
NIL 

= => [ABORT] 
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22.2 Syntactic Extension with Macros 

Scheme has a number of other special forms that were not listed above. Actually, 
Scheme uses the term "syntax" where we have been using "special form." The remain
ing syntax can be defined as "derived expressions" in terms of the five primitives. 
The Scheme standard does not recognize a concept of macros, but it is clear that a 
"derived expression" is like a macro, and we will implement them using macros. The 
following forms are used (nearly) identically in Scheme and Common Lisp: 

let le t * and or do cond case 

One difference is that Scheme is less lenient as to what counts as a binding in 1 et , 
1 et* and do. Every binding must be (var init); just (var) or var is not allowed. In do, 
a binding can be either (var init step) or (var init). Notice there is no do* . The other 
difference is in ca se and cond. Where Common Lisp uses the symbol t or otherwi se 
to mark the final case. Scheme uses el se. The final three syntactic extensions are 
unique to Scheme: 

(define var val) or (define (proc-name arg...) body...) 
(delay expression) 
( letrec {{varinit)...) body...) 

def ine is a combination of defun and defparameter. In its first form, it assigns a 
value to a variable. Since there are no special variables in Scheme, this is no different 
than using s e t ! . (There is a difference when the def i ne is nested inside another 
definition, but that is not yet considered.) In the second form, it defines a function, 
del ay is used to delay evaluation, as described in section 9.3, page 281. 1 e t rec is 
similar to 1 et . The difference is that all the init forms are evaluated in an environment 
that includes all the pars. Thus, 1 e t rec can be used to define local recursive functions, 
just as 1 abel s does in Common Lisp. 

The first step in implementing these syntactic extensions is to change i nterp to 
allow macros. Only one clause has to be added, but we'll repeat the whole definition: 

(defun interp (x Äoptional env) 
" Interpret (evaluate) the expression χ in the environment env. 
This vers ion handles macros." 
(cond 

((symbolp x) (get-var χ env)) 
((atom x) x) 
((scheme-macro ( f i r s t x ) ) ; * * * 
( interp (scheme-macro-expand x) env)) ; * * * 

((case ( f i r s t x) 
(QUOTE (second x) ) 
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(BEGIN ( l as t l (mapcar #'(lambda (y) ( interp y env)) 
( rest X ) ) ) ) 

(SET! (se t -var ! (second x) ( interp ( th i rd x) env) env)) 
( IF ( i f ( interp (second x) env) 

( interp ( th i rd x) env) 
( interp (fourth x) env))) 

(LAMBDA ( let ((parms (second x ) ) 

(code (maybe-add 'begin ( rest2 x ) ) ) ) 
#'(lambda (&rest args) 

( interp code (extend-env parms args env) ) ) ) ) 
(t ; ; a procedure appl icat ion 

(apply ( interp ( f i r s t x) env) 
(mapcar #*(lambda (v) ( interp ν env)) 

( rest X ) ) ) ) ) ) ) ) 

Now we provide a mechanism for defining macros. The macro definitions can be in 
any convenient language; the easiest choices are Scheme itself or Common Lisp. I 
have chosen the latter. This makes it clear that macros are not part of Scheme itself but 
rather are used to implement Scheme. If we wanted to offer the macro facility to the 
Scheme programmer, we would make the other choice. (But then we would be sure to 
add the backquote notation, which is so useful in writing macros.) def - s cheme - ma c r o 
(which happens to be a macro itself) provides a way of adding new Scheme macros. 
It does that by storing a Common Lisp function on the scheme-macro property of 
a symbol. This^furiction, when given a list of ai-gumehts, returns the code that the 
macro call should expand into. The function scheme-macro tests if a symbol has a 
macro attached to it, and scheme-macro-expand does the actual macro-expansion: 

(defun scheme-macro (symbol) 
(and (symbolp symbol) (get symbol 'scheme-macro))) 

(defmacro def-scheme-macro (name parmlist &body body) 
"Define a Scheme macro." 
' ( se t f (get '.name 'scheme-macro) 

#'(lambda .parmlist . .body)) ) 

(defun scheme-macro-expand (x) 
"Macro-expand th i s Scheme express ion . " 
( i f (and d i s t p x) (scheme-macro ( f i r s t x ) ) ) 

(scheme-macro-expand 
(apply (scheme-macro ( f i r s t x ) ) ( rest x ) ) ) 

X ) ) 



764 SCHEME- AN UNCOMMON LISP 

Here are the definitions of nine important macros in Scheme: 

(def-scheme-macro let (bindings &rest body) 
'((lambda ,(mapcar # ' f i r s t b indings) . .body) 

..(mapcar #*second b ind ings) ) ) 

(def-scheme-macro le t * (bindings &rest body) 
( i f (null b indings) 

' (begin . .body) 
' ( l e t ( . ( f i r s t b ind ings)) 

( le t * . ( res t b indings) . .body)))) 

(def-scheme-macro and (&rest args) 
(cond ((nul l args) *T) 

(( length=l args) ( f i r s t a rgs) ) 
(t ' ( i f . ( f i r s t args) 

(and . . ( res t a r g s ) ) ) ) ) ) 

(def-scheme-macro or (&rest args) 
(cond ((nul l args) ' n i l ) 

( ( length=l args) ( f i r s t a rgs) ) 
(t ( le t ((var (gensym))) 

• ( le t ( ( . va r . ( f i r s t a rgs ) ) ) 
( i f ,var .var (or . . ( res t a r g s ) ) ) ) ) ) ) ) 

(def-scheme-macro cond (&rest c lauses) 
(cond ((nul l c lauses) n i l ) 

( ( length=l ( f i r s t c lauses) ) 
' (o r . ( f i r s t c lauses) (cond . . ( r e s t c l auses ) ) ) ) 

( (s ta r ts -w i th ( f i r s t c lauses) ' e l se ) 
' (begin . . ( r e s t ( f i r s t c l auses ) ) ) ) 

(t ' ( i f . ( f i r s t ( f i r s t c lauses) ) 
(begin . . ( r e s t ( f i r s t c lauses) ) ) 
(cond . . ( r e s t c l a u s e s ) ) ) ) ) ) 

(def-scheme-macro case (key &rest c lauses) 
( let ((key-val (gensym "KEY") ) ) 

' ( l e t ( ( .key-val .key)) 
(cond .©(mapcar 

#*(lambda (clause) 
( i f (s tar ts -wi th clause ' e l se ) 

clause 
'((member ,key-val ' . ( f i r s t c lause)) 

. . ( r e s t c lause) ) ) ) 
c l auses ) ) ) ) ) 

(def-scheme-macro define (name &rest body) 
( i f (atom name) 

' (begin (set l .name . .body) '.name) 
•(define . ( f i r s t name) 

(lambda . ( res t name) . .body)))) 
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(def-scheme-macro delay (computation) 
'(lambda () .computation)) 

(def-scheme-macro letrec (bindings &rest body) 
' ( l e t .(mapcar #'(lambda (v) ( l i s t ( f i r s t v) n i l ) ) b indings) 

.©(mapcar #*(lambda (v) ' ( s e t ! . . v ) ) bindings) 

. .body)) 

W e can test out the macro faciUty: 

> (scheme-macro-expand '(and ρ q)) ( IF Ρ (AND Q)) 

> (scheme-macro-expand '(and q)) =^ Q 

> (scheme-macro-expand ' ( l e t ((x 1) (y 2)) (+ χ y ) ) ) 
((LAMBDA (X Y) (+ Χ Y)) 1 2) 

> (scheme-macro-expand 
' ( le t rec 

((even? (lambda (χ) (or (= χ 0) (odd? (- χ 1 ) ) ) ) ) 
(odd? (lambda (χ) (even? (- χ 1 ) ) ) ) ) 

(even? ζ))) 
(LET ((EVEN? NIL) 

(ODD? NIL) ) 
(SET! EVEN? (LAMBDA (X) (OR (= X 0) (ODD? (- X 1 ) ) ) ) ) 
(SET! ODD? (LAMBDA (X) (EVEN? (- X 1 ) ) ) ) 
(EVEN? Z)) 

> (scheme) 
= = > (define (reverse 1) 

( i f ( nu l l ? 1) n i l 
(append (reverse (cdr 1)) ( l i s t (car 1 ) ) ) ) ) 

REVERSE 

= = > (reverse ' (a b c d)) 
(D C Β A) 

= = > ( le t * ( ( X 5) (y (+ χ χ ) ) ) 
( i f (or (= X 0) (and (< O y ) « y 20)) ) 

( l i s t X y) 
(+ y χ ) ) ) 

(5 10) 

The macro def i ne is just like s e t ! , except that it returns the symbol rather than the 
value assigned to the symbol. In addition, def i ne provides an optional syntax for 
defining functions—it serves the purposes of both defun and de fvar . The syntax 
( de f i ne {fn. args). Í7ody) is an abbreviation for ( d e f i n e (lambda args . body)). 
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In addition. Scheme provides a notation where def i ne can be used inside a function 
definition in a way that makes it work like 1 et rather than se t ! . 

The advantage of the macro-based approach to special forms is that we don't have 
to change the interpreter to add new special forms. The interpreter remains simple, 
even while the language grows. This also holds for the compiler, as we see in the next 
section. 

22.3 A Properly Tail-Recursive Interpreter 

Unfortunately, the interpreter presented above can not lay claim to the name Scheme, 
because a true Scheme must be properly tail-recursive. Our interpreter is tail-
recursive only when run in a Common Lisp that is tail-recursive. To see the problem, 
consider the following Scheme procedure: 

(define (traverse lyst) 
( i f lyst (traverse (cdr lys t ) ) ) ) 

Trace the function interp and execute ( interp ' ( t r ave rse ' ( a b c d ) ) ) . The 
nested calls to i nterp go 16 levels deep. In general, the level of nesting is 4 plus 3 
times the length of the hst. Each call to interp requires Common Lisp to allocate 
some storage on the stack, so for very long lists, we will eventually run out of storage. 
To earn the name Scheme, a language must guarantee that such a program does not 
run out of storage. 

The problem, in this example, lies in two places. Everytime we interpret an i f 
form or a procedure call, we descend another recursive level into i nterp. But that 
extra level is not necessary. Consider the i f form. It is certainly necessary to call 
i nterp recursively to decide if the test is true or not. For the sake of argument, let's 
say the test is true. Thenwecall i nterp again on the i/zen part This recursive call will 
return a value, which will then be immediately returned as the value of the original 
call as well. 

The alternative is to replace the recursive call to interp with a renaming of 
variables, followed by a got o statement. That is, instead of calling interp and thereby 
binding a new instance of the variable χ to the then part, we just assign the then part 
to X , and branch to the top of the i nterp routine. This works because we know we 
have no more use for the old value of x. A similar technique is used to eliminate the 
recursive call for the last expression in a beg i η form. (Many programmers have been 
taught the "structured programming" party line that goto statements are harmful. In 
this case, the goto is necessary to implement a low-level feature efficiently.) 
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The final thing we need to do is explicitly manage Scheme procedures. Instead 
of implementing Scheme procedures as Common Lisp closures, we will define a 
structure, ρ roc, to contain the code, environment, parameter list, and optionally the 
name of the procedure. Then when we are evaluating a procedure call, we can assign 
the body of the procedure to x rather than recursively calling i n te rp . 

(defstruct (proc ( rpr in t - funct ion pr in t -proc)) 
"Represent a Scheme procedure" 
code (env n i l ) (name n i l ) (parms n i l ) ) 

The following is a properly tail-recursive interpreter. The macro prog sets up a 
tagbody within which we can use go statements to branch to labels, and it also sets 
up a bl ock from which we can return a value. It can also bind variables like 1 et , 
although in this usage, the variable list is empty. Any symbol within the body of a 
prog is considered a label. In this case, the label : INTERP is the target of the branch 
statements (GO : I NTERP). I use uppercase to indicate that go-to statements are being 
used, but this convention has not been widely adopted. 

(defun interp (x &optional env) 
"Evaluate the expression χ in the environment env. 
This version i s properly t a i l - r e c u r s i v e . " 
(prog () 

:INTERP 
(return 

(cond 
((symbolp x) (get-var χ env)) 
((atom x) x) 
((scheme-macro ( f i r s t x ) ) 
(set f X (scheme-macro-expand x) ) (go :INTERP)) 

((case ( f i r s t x) 
(QUOTE (second x) ) 
(BEGIN (pop x) ; pop off the BEGIN to get at the args 

Now interpret al l but the las t expression 
(loop while ( rest x) do ( interp (pop x) env)) 

F ina l l y , rename the las t expression as χ 
(set f X ( f i r s t X ) ) 
(GO :INTERP)) 

(SETI (set -var l (second x) ( interp ( th i rd x) env) env)) 
( IF (set f X ( i f ( interp (second x) env) 

( th i rd X ) 
(fourth X ) ) ) 

That i s . rename the r ight expression as χ 
(GO :INTERP)) 

(LAMBDA (make-proc :env env :parms (second x) 
:code (maybe-add 'begin (rest2 x ) ) ) ) 



768 SCHEME: AN UNCOMMON LISP 

(t a procedure appl icat ion 
( le t ((proc ( interp ( f i r s t x) env)) 

(args (mapcar #*(lambda (v) ( interp ν env)) 
( rest X ) ) ) ) 

( i f (proc-p proc) 
Execute procedure with rename+goto 

(progn 
(set f X (proc-code proc)) 
(set f env (extend-env (proc-parms proc) args 

(proc-env proc))) 
(GO :INTERP)) 
e lse apply pr imit ive procedure 

(apply proc a r g s ) ) ) ) ) ) ) ) ) ) 

(defun pr int-proc (proc &optional (stream *standard-output*) depth) 
(declare ( ignore depth)) 
(format stream "{~a}" (or (proc-name proc) ' ? ? ) ) ) 

By tracing the tail-recursive version of interp, you can see that calls to t raverse 
descend only three recursive levels of interp, regardless of the length of the list 
traversed. 

Note that we are not claiming that this interpreter allocates no storage when 
it makes tail-recursive calls. Indeed, it wastes quite a bit of storage in evaluating 
arguments and building environments. The claim is that since the storage is allocated 
on the heap rather than on the stack, it can be reclaimed by the garbage collector. So 
even if t raverse is applied to an infinitely long list (i.e., a circular list), the interpreter 
will never run out of space—it will always be able to garbage-collect and continue. 

There are many improvements that could be made to this interpreter, but effort 
is better spent in improving a compiler rather than an interpreter. The next chapter 
does just that. 

22.4 Throw, Catch, and Call/cc 

Tail-recursion is crucial to Scheme. The idea is that when the language is guaranteed 
to optimize tail-recursive calls, then there is no need for special forms to do iteration. 
All loops can be written using recursion, without any worry of overflowing the nm-
time stack. This helps keep the language simple and rules out the goto statement, the 
scourge of the structured programming movement. However, there are cases where 
some kind of nonlocal exit is the best alternative. Suppose that some unexpected 
event happens deep inside your program. The best action is to print an error message 
and pop back up to the top level of your program. This could be done trivially with a 
goto-like statement. Without it, every function along the calling path would have to 



22.4 THROW, CATCH, AND CALL/CC 769 

be altered to accept either a valid result or an indication of the exceptional condition, 
which just gets passed up to the next level. 

In Common Lisp, the functions throw and catch are provided for this kind of 
nonlocal exit. Scott Zimmerman, the perennial world Frisbee champion, is also 
a programmer for a Southern California firm. He once told me, "I'm starting to 
learn Lisp, and it must be a good language because it's got throw and catch in it." 
Unfortunately for Scott, throw and catch don't refer to Frisbees but to transfer of 
control. They are both special forms, with the following syntax: 

(catch tag body...) 
(throw tag value) 

The first argument to catch is a tag, or label. The remaining arguments are evaluated 
one at a time, and the last one is returned. Thus, catch is much like progn. The 
difference is that if any code in the dynamic extent of the body of the catch evaluates 
the special form throw, then control is immediately passed to the enclosing catch 
with the same tag. 

For example, the form 

(catch ' tag 
(pr int 1) (throw ' tag 2) (pr int 3)) 

prints 1 and returns 2, without going on to print 3. A more representative example 
is: 

(defun pr int - table ( 1 ) 
(catch 'not-a-number (mapcar #*pr in t -sqr t -abs 1 ) ) ) 

(defun pr in t -sqr t -abs (x) 
(pr int (sqrt (abs (must-be-number x ) ) ) ) ) 

(defun must-be-number (x) 
( i f (numberp x) χ 

(throw 'not-a-number "huh?" ) ) ) 

> (pr int - table ' ( 1 4 -9 χ 10 20)) 
1 
2 
3 
"huh?" 

Here pr i nt - tablecal ls p r i n t - s q r t - a b s , which callsmust-be-number. Thefirstthree 
times all is fine and the values 1,2,3 get printed. The next time χ is not a number, so 
the value "huh?" gets thrown to the tag not-a-number established by catch in f. The 
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throw bypasses the pending calls to abs, s q r t , and p r i n t , as well as the rest of the 
call to mapcar. 

This kind of control is provided in Scheme with a very general and powerful 
procedure, cal 1 - w i t h - c u r r e n t - c o n t i n u a t i on, which is often abbreviated cal 1 / c c . 
cal 1 / cc is a normal procedure (not a special form like throw and catch) that takes 
a single argument. Let's call the argument computation, computation must be a 
procedure of one argument. When cal 1 / c c is invoked, it calls computation, and 
whatever computat i on returns is the value of the call to c a l l / c c . The trick is that the 
procedure computati on also takes an argument (which we'll call cc) that is another 
procedure representing the current continuation point. If cc is applied to some value, 
that value is returned as the value of the call to c a l l / cc. Here are some examples: 

> (scheme) 
=> (+ 1 ( ca l l / cc (lambda (cc) (+ 20 300)) ) ) 
321 

This example ignores cc and just computes (+ 1 (+ 20 300) ) . More precisely, it is 
equivalent to: 

((lambda (va l ) (+ 1 va l ) ) 
(+ 20 300)) 

The next example does make use of cc: 

=> (+ 1 ( ca l l / cc (lambda (cc) (+ 20 (cc 300) ) ) ) ) 

301 

This passes 300 to cc, thus bypassing the addition of 20. It effectively throws 300 out 
of the computation to the catch point estabUshed by cal 1 / cc. It is equivalent to: 

((lambda (va l ) (+ 1 va l ) ) 
300) 

or to: 

((lambda (va l ) (+ 1 va l ) ) 
(catch 'cc 

((lambda (v) (+ 20 v) ) 
(throw 'cc 300)) ) ) 
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Here's how the throw/catch mechanism would look in Scheme: 

(define (pr in t - table 1 ) 
( ca l l / cc 

(lambda (escape) 
(set ! not-a-number escape) 
(map pr in t -sqr t -abs 1 ) ) ) ) 

(define (pr in t -sqr t -abs x) 
(write (sqr t (abs (must-be-number x ) ) ) ) ) 

(define (must-be-number x) 
( i f (numberp x) χ 

(not-a-number "huh?" ) ) ) 

(define (map fn 1 ) 
( i f ( nu l l ? 1 ) 

· ( ) 

(cons (fn ( f i r s t D ) 
(map fn ( rest 1 ) ) ) ) ) 

The ability to return to a pending point in the computation is useful for this kind of 
error and interrupt handling. However, the truly amazing, wonderful thing about 
cal 1 / cc is the ability to return to a continuation point more than once. Consider a 
slight variation: 

=> (+ 1 (ca l l / c c (lambda (cc) 
(se t ! old-cc cc) 
(+ 20 (cc 300) ) ) ) ) 

301 

=> (old-cc 500) 
501 

Here, we first computed 301, just as before, but along the way saved cc in the global 
variable old-cc. Afterward, calling (old-cc 500) returns (for the second time) to the 
point in the computation where 1 is added, this time returning 501. The equivalent 
Common Lisp code leads to an error: 

> (+ 1 (catch ' tag (+ 20 (throw ' tag 300)) ) ) 
301 

> (throw ' tag 500) 
Error: there was no pending CATCH for the tag TAG 

In other words, cal 1 /cc ' s continuations have indefinite extent, while throw/catch 
tags only have dynamic extent. 
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We can use cal 1 / c c to implement automatic backtracking (among other things). 
Suppose we had a special form, amb, the "ambiguous" operator, which returns one of 
its arguments, chosen at random. We could write: 

(define ( integer) (amb 1 (+ 1 ( in teger ) ) ) ) 

and a call to in teger would return some random positive integer. In addition, 
suppose we had a function, f a i l , which doesn't return at all but instead causes 
execution to continue at a prior amb point, with the other choice taken. Then we could 
write succinct^ backtracking code like the following: 

(define (prime) 
( le t ((n ( in teger ) ) ) 

( i f (prime? n) η ( f a i l ) ) ) ) 

If pr i me? is a predicate that returns true only when its argument is a prime number, 
then prime will always return some prime number, decided by generating random 
integers. While this looks like a major change to the language—adding backtracking 
and nondeterminism—it turns out that amb and fa i 1 can be implemented quite easily 
with cal 1 / c c . First, we need to make amb be a macro: 

(def-scheme-macro amb (x y) 
'(random-choice (lambda () ,x) (lambda () . y ) ) ) ) 

The rest is pure Scheme. We maintain a Ust of b a c k t r a c k - p o i n t s , which are im
plemented as functions of no arguments. To backtrack, we just call one of these 
functions. Thatis what f a i l does. The function c h o o s e - f i rs t takes two functions 
and pushes the second, along with the proper continuation, on b a c k t r a c k - p o i n t s , 
and then calls the first, returning that value. The function random-choi ce is what 
amb expands into: it decides which choice is first, and which is second. (Note that 
the convention in Scheme is to write global variables like backt rack- poi nts without 
asterisks.) 

(define backtrack-points n i l ) 

(define ( f a i l ) 
( le t ( ( las t -cho ice (car backtrack-points)) ) 

(set l backtrack-points (cdr backtrack-points)) 
( las t -cho ice) ) ) 

although inefficient 
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(define (random-choice f g) 
( i f (= 1 (random 2)) 

(choose- f i rs t f g) 
(choose- f i rs t g f ) ) ) 

(define (choose- f i rs t f g) 
( ca l l / cc 

(lambda (k) 
(se t ! backtrack-points 

(cons (lambda () (k (g ) ) ) backtrack-points)) 
( f ) ) ) ) 

This implements chronological backtracking, as in Prolog. However, we actually 
have the freedom to do other kinds of backtracking as well. Instead of having f a i 1 
take the first element of b a c k t r a c k - p o i n t s , we could choose a random element 
instead. Or, we could do some more complex analysis to choose a good backtrack 
point. 

c a l 1 / cc can be used to implement a variety of control structures. As another 
example, many Lisp implementations provide a re s et function that aborts the current 
computation and returns control to the top-level read-eval-print loop, reset can be 
defined quite easily using c a l 1 / c c . The trick is to capture a continuation that is at 
the top level and save it away for future use. The following expression, evaluated at 
the top level, saves the appropriate continuation in the value of reset: 

( ca l l / cc (lambda (cc) (se t ! reset (lambda () 
(cc "Back to top l e v e l " ) ) ) ) ) 

@ Exercise 22.2 [m] Can you implement c a l 1 / c c in Common Lisp? 

Exercise 22.3 [s] Can you implement amb and f a i 1 in Common Lisp? 

@ Exercise 22.4 [m] f a i 1 could be written 
( d e f i n e ( f a i l ) ( ( p o p b a c k t r a c k - p o i n t s ) ) ) if we had the pop macro in Scheme. 
Write pop. 

22.5 An Interpreter Supporting Call/cc 
It is interesting that the more a host language has to offer, the easier it is to write 
an interpreter. Perhaps the hardest part of writing a Lisp interpreter (or compiler) 
is garbage collection. By writing our interpreter in Lisp, we bypassed the problem 
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all together—the host language automatically collects garbage. Similarly, if we are 
using a Common Lisp that is properly tail-recursive, then our interpreter will be too, 
without taking any special steps. If not, the interpreter must be rewritten to take care 
of tail-recursion, as we have seen above. 

It is the same with cal 1 / c c . If our host language provides continuations with 
indefinite extent, then it is trivial to implement cal 1 / c c . If not, we have to rewrite 
the whole interpreter, so that it explicitly handles continuations. The best way to do 
this is to make i η te rp a function of three arguments: an expression, an environment, 
and a continuation. That means the top level will have to change too. Rather than 
having i nterp return a value that gets printed, we just pass it the function pri nt as 
a continuation: 

(defun scheme () 
"A Scheme read-eval-pr int loop (using in te rp) . 
Handles ca l l / c c by exp l i c i t l y passing cont inuat ions." 
( in i t -scheme-interp) 
(loop (format t " "&==> ") 

( interp (read) n i l # ' p r i n t ) ) ) 

Nowweareready to tackle i nterp. For clarity, we will base it on the non-tail-recursive 
version. The cases for symbols, atoms, macros, and quote are almost the same as 
before. The difference is that the result of each computation gets passed to the 
continuation, cc, rather than just being returned. 

The other cases are all more complex, because they all require explicit represen
tation of continuations. That means that calls to i nterp cannot be nested. Instead, 
we call i nterp with a continuation that includes another call to i nterp. For example, 
to interpret ( I f ρ χ y ) , we first call interp on the second element of the form, 
the predicate p. The continuation for this call is a function that tests the value of 
ρ and interprets either χ or y accordingly, using the original continuation for the 
recursive call to i nterp. The other cases are similar. One important change is that 
Scheme procedures are implemented as Lisp functions where the first argument is 
the continuation: 

(defun interp (x env cc) 
"Evaluate the expression χ in the environment env. 
and pass the resul t to the continuation c c . " 
(cond 

((symbolp x) (funcal l cc (get-var χ env))) 
((atom x) (funcall cc x ) ) 
((scheme-macro ( f i r s t x ) ) 
( interp (scheme-macro-expand x) env cc)) 

((case ( f i r s t x) 
(QUOTE (funcal l cc (second x ) ) ) 
(BEGIN ( interp-begin ( rest x) env cc)) 
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(SET! ( interp ( th i rd x) env 
#*(lambda (va l ) 

(funcal l cc (se t -var ! (second x) 
val env) ) ) ) ) 

( IF ( interp (second x) env 
#·(lambda (pred) 

( interp ( i f pred ( th i rd x) (fourth x ) ) 
env cc ) ) ) ) 

(LAMBDA ( le t ((parms (second x) ) 
(code (maybe-add 'begin (rest2 x ) ) ) ) 

(funcal l 
cc 
#*(lambda (cont &rest args) 

( interp code 
(extend-env parms args env) 
con t ) ) ) ) ) 

(t ( in terp-cal l χ env c c ) ) ) ) ) ) 

A few auxi l iary funct ions are def ined, i n the same cont inuat ion-pass ing style: 

(defun interp-begin (body env cc) 
" Interpret each element of BODY, passing the las t to CC . " 
( interp ( f i r s t body) env 

#·(lambda (va l ) 
( i f (null ( rest body)) 

( funcal l cc va l ) 
( interp-begin ( res t body) env cc ) ) ) ) ) 

(defun interp-cal l (cal l env cc) 
" Interpret the cal l ( f x . . . ) and pass the resul t to CC . " 
(map-interp cal l env 

#'(lambda ( fn-and-args) 
(apply ( f i r s t fn-and-args) 

cc 
( rest fn -and-a rgs ) ) ) ) ) 

(defun map-interp ( l i s t env cc) 
" Interpret each element of L IST, and pass the l i s t to C C . " 
( i f (nul l l i s t ) 

(funcal l cc n i l ) 
( interp ( f i r s t l i s t ) env 

#'(lambda (x) 
(map-interp ( rest l i s t ) env 

#'(lambda (y) 
(funcal l cc (cons χ y ) ) ) ) ) ) ) ) 
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Because Scheme procedures expect a continuation as the first argument, we need to 
redefine init-scheme-proc to install procedures that accept and apply the 
continuation: 

(defun init-scheme-proc ( f ) 
"Define a Scheme pr imit ive procedure as a CL funct ion. " 
( i f ( l i s t p f ) 

(se t -g loba l -va r ! ( f i r s t f ) 
#'(lambda (cont &rest args) 

( funcal l cont (apply (second f ) a r g s ) ) ) ) 
( init-scheme-proc ( l i s t f f ) ) ) ) 

We also need to define cal 1 / cc . Think for a moment about what cal 1 / c c must do. 
Like all Scheme procedures, it takes the current continuation as its first argument. 
The second argument is a procedure—a computation to be performed, c a l l / c c 
performs the computation by calling the procedure. This is just a normal call, 
so it uses the current continuation. The tricky part is what c a l l / c c passes the 
computation as its argument. It passes an escape procedure, which can be invoked 
to return to the same point that the original call to cal 1 / cc would have returned to. 
Once the working of cal 1 / c c is understood, the implementation is obvious: 

(defun ca l l / c c (cc computation) 
"Make the continuation accessib le to a Scheme procedure." 
(funcall computation cc 

; ; Package up CC into a Scheme funct ion: 
#·(lambda (cont va l ) 

(declare ( ignore cont)) 
(funcall cc v a l ) ) ) ) 

Now ins ta l l ca l l / c c in the global environment 
(se t -g loba l -var ! ' c a l l / c c # ' c a n / c c ) 
(se t -g loba l -var ! 'ca l l -wi th-current-cont inuat ion # ' c a l l / c c ) 

22.6 History and References 
Lisp interpreters and AI have a long history together. MIT AI Lab Memo No. 1 
(McCarthy 1958) was the first paper on Lisp. McCarthy's students were working 
on a Lisp compiler, had written certain routines—read, p r i n t , etc.—in assembly 
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language, and were trying to develop a full Lisp interpreter in assembler. Sometime 
around the end of 1958, McCarthy wrote a theoretical paper showing that Lisp was 
powerful enough to write the universal function, eva 1. A programmer on the project, 
Steve Russell, saw the paper, and, according to McCarthy: 

Steve Russell said, look, lohy don't I program this eval and-you remember the 
interpreter-and I said to him, ho, ho, you're confusing theory with practice, this 
eval is intended for reading not for computing. But he went ahead and did it. 
That is, he compiled the eval in my paper into 704 machine code fixing bugs 
and then advertised this as a Lisp interpreter, which it certainly was.^ 

So the first Lisp interpreter was the result of a programmer ignoring his boss's 
advice. The first compiler was for the Lisp 1.5 system (McCarthy et al. 1962). The 
compiler was written in Lisp; it was probably the first compiler written in its own 
language. 

Allen's Anatomy of Lisp (1978) was one of the first overviews of Lisp implemen
tation techniques, and it remains one of the best. However, it concentrates on the 
dynamic-scoping Lisp dialects that were in use at the time. The more modern view 
of a lexically scoped Lisp was documented in an influential pair of papers by Guy 
Steele (1976a,b). His papers "Lambda: the ultimate goto" and "Compiler optimiza
tion based on viewing lambda as rename plus goto" describe properly tail-recursive 
interpreters and compilers. 

The Scheme dialect was invented by Gerald Sussman and Guy Steele around 
1975 (see their MIT AI Memo 349). The Revised^ Report on the Algorithmic Language 
Scheme (dinger et al. 1991) is the definitive reference manual for the current version 
of Scheme. 

Abelson and Sussman (1985) is probably the best introduction to computer sci
ence ever written. It may or may not be a coincidence that it uses Scheme as the 
programming language. It includes a Scheme interpreter. Winston and Horn's Lisp 
(1989) also develops a Lisp interpreter. 

The amb operator for nondeterministic choice was proposed by John McCarthy 
(1963) and used in SCHEMER (Zabih et al. 1987), a nondeterministic Lisp. Ruf 
and Weise (1990) present another implementation of backtracking in Scheme that 
incorporates all of logic programming. 

^McCarthy's words from a talk on the history of Lisp, 1974, recorded by Stoyan (1984). 
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22.7 Exercises 

S Exercise 22.5 [m] While Scheme does not provide full-blown support for optional 
and keyword arguments, it does support rest parameters. Modify the interpreter to 
support the Scheme syntax for rest parameters: 

Scheme Common Lisp 
(lambda χ body) (lambda (&rest x) body) 
(lambda (x y . ζ) body) (lambda (x y &rest z) body) 

@ Exercise 22.6 ßi] The representation of environments is somewhat wasteful. Cur
rently it takes 3n cons cells to represent an environment with η variables. Change 
the representation to take less space. 

@ Exercise 22.7 [m] As we've implemented macros, they need to be expanded each 
time they are encountered. This is not so bad for the compiler—you expand the 
source code and compile it, and then never refer to the source code again. But for 
the interpreter, this treatment of macros is most unsatisfactory: the work of macro-
expansion must be done again and again. How can you eliminate this duplicated 
effort? 

@ Exercise 22.8 [m] It turns out Scheme allows some additional syntax in 1 e t and 
cond. First, there is the "named-let" expression, which binds initial values for vari
ables but also defines a local function that can be called within the body of the 1 e t . 
Second, cond recognizes the symbol => when it is the second element of a cond clause, 
and treats it as a directive to pass the value of the test (when it is not false) to the 
third element of the clause, which must be a function of one argument. Here are two 
examples: 

(define (fact n) 
I terat ive f ac to r i a l : does not grow the stack 

( le t loop ( ( resu l t 1) ( i n)) 
( i f (= i 0) resu l t (loop (* resul t i ) (- i 1 ) ) ) ) ) 

(define (lookup key a l i s t ) 
: : Find key 's value in a l i s t 
(cond ( (assoc key a l i s t ) => cdr) 

(e lse # f ) ) ) 

These are equivalent to: 
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(define (fact n) 
( letrec 

(( loop (lambda ( resu l t i ) 
( i f (= i 0) 

resul t 
(loop (* resul t i ) (- i 1 ) ) ) ) ) ) 

(loop 1 n) ) ) 

(define (lookup key a l i s t ) 
( let ((g0030 (assoc key a l i s t ) ) ) 

( i f gOOSO 
(cdr g0030) 
# f ) ) ) 

Write macro definitions for 1 e t and cond allowing these variations. 

@ Exercise 22.9 Pi] Some Scheme implementations permit def i ne statements inside 
the body of a 1 ambda (and thus of a def i ne, 1 et , 1 e t * , or 1 e t rec as well). Here is an 
example: 

(define (length 1) 
(define (len 1 n) 

( i f ( nu l l ? 1) η ( len (cdr 1) (+ η 1 ) ) ) ) 
(len 1 0)) 

The internal definition of len is interpreted not as defining a global name but rather 
as defining a local name as if with 1 e t rec . The above definition is equivalent to: 

(define (length 1) 
( letrec ( d e n (lambda (1 n) 

( i f ( nu l l ? 1) η ( len (cdr 1) (+ η 1 ) ) ) ) ) ) 
( len 1 0 ) ) ) 

Make changes to the interpreter to allow this kind of internal definition. 

@ Exercise 22.10 Scheme programmers are often disdainful of the func t ion or # ' 
notation in Common Lisp. Is it possible (without changing the compiler) to make 
Common Lisp accept (1 ambda ( ) . . . ) instead of # ' (1 ambda ( ) . . . ) and f η 
instead of # ' f n ? 

@ Exercise 22.11 [m] The top level of the continuation-passing version of scheme 
includes the call: ( i nterp (read) n i l # ' pr i n t ) . Will this always result in some 
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value being printed? Or is it possible that the expression read might call some escape 
function that ignores the value without printing anything? 

@ Exercise 22.12 [h] What would have to be added or changed to turn the Scheme 
interpreter into a Common Lisp interpreter? 

S Exercise 22.13 \h] How would you change the interpreter to allow for multiple 
values? Explain how this would be done both for the first version of the interpreter 
and for the continuation-passing version. 

22.8 Answers 

Answer 22.2 There is no way to implement a full ca Π / cc to Common Lisp, but the 
following works for cases where the continuation is only used with dynamic extent: 

(defun ca l l / c c (computation) 
"Call computation, passing i t the current cont inuat ion. 
The continuation has only dynamic extent." 
( funcal l computation #'(lambda (x) (return-from ca l l / c c x ) ) ) ) 

Answer 22.3 No. f a i l requires continuations with dynamic extent. 

Answer 22.5 We need only modify extend - en ν to know about an atonüc vars list. 
While we're at it, we might as well add some error checking: 

(defun extend-env (vars va ls env) 
"Add some var iables and values to an environment." 
(cond ( (nul l vars) 

(asser t (nul l va l s ) ( ) "Too many arguments suppl ied") 
env) 

((atom vars) 
(cons ( l i s t vars va ls ) env)) 

(t (asser t ( rest va ls ) () "Too few arguments suppl ied") 
(cons ( l i s t ( f i r s t vars) ( f i r s t v a l s ) ) 

(extend-env ( rest vars) ( res t va l s ) env) ) ) ) ) 
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Answer 22.6 Storing the environment as an association list, {{var val),,.), makes 
it easy to look up variables with assoc. We could save one cons cell per variable 
just by changing to {{var . val)..,). But even better is to switch to a different 
representation, one presented by Steele and Sussman in The Art of the Interpreter 
(1978). In this representation we switch from a single list of var/val pairs to a list of 
frames, where each frame is a var-list/val-list pair. It looks like this: 

{{{var...) . {val...)) 
{{var...) . {val...)) 
...) 

Now extend-env is trivial: 

(defun extend-env (vars va ls env) 

"Add some var iab les and values to an environment." 

(cons (cons vars va ls ) env)) 

The advantage of this approach is that in most cases we already have a list of 
variables (the procedure's parameter list) and values (from the mapcar of interp 
over the arguments). So it is cheaper to just cons these two lists together, rather than 
arranging them into pairs. Of course, get - va r and set - va r! become more complex. 

Answer 22.7 One answer is to destructively alter the source code as it is macro-
expanded, so that the next time the source code is interpreted, it will already be 
expanded. The following code takes care of that: 

(defun scheme-macro-expand (x) 

(displace χ (apply (scheme-macro ( f i r s t x ) ) ( rest x ) ) ) ) 

(defun displace (old new) 

"Destruct ively change old cons-cel l to new va lue. " 

( i f (consp new) 

(progn (set f (car old) (car new)) 

(set f (cdr old) (cdr new)) 

old) 

(d isplace old ' (begin .new)))) 

One drawback to this approach is that the user's source code is actually changed, 
which may make debugging confusing. An alternative is to expand into something 
that keeps both the original and macro-expanded code around: 
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(defun displace (old new) 
"Destruct ively change old to a DISPLACED s t ruc ture . " 
(set f (car old) 'DISPLACED) 
(set f (cdr old) ( l i s t new o ld) ) 
old) 

This means that DISPLACED is a new special form, and we need a clause for it in the 
interpreter. It would look something like this: 

(case ( f i r s t x) 

(DISPLACED ( interp (second x) env)) 

W e ' d a lso need to mod i fy the pr in t ing rout ines to pr int just ol d wheneve r they see 
( d i s p l a c e d o l d new). 

Answer 22.8 

(def-scheme-macro let (vars &rest body) 
( i f (symbolp vars) 

named let 
( let ( ( f vars) (vars ( f i r s t body)) (body ( rest body))) 

' ( l e t rec ( ( , f (lambda .(mapcar # ' f i r s t vars) . .body) ) ) 
(. f ..(mapcar #*second v a r s ) ) ) ) 

" regular" let 
'((lambda .(mapcar # ' f i r s t vars) . .body) 

. .(mapcar #*second v a r s ) ) ) ) ) 

(def-scheme-macro cond (&rest c lauses) 
(cond ( (nul l c lauses) n i l ) 

( ( length=l ( f i r s t c lauses) ) 
' (o r . ( f i r s t c lauses) (cond . . ( r e s t c lauses ) ) ) ) 

( (s ta r ts -w i th ( f i r s t c lauses) ' e l se ) 
•(begin . . ( r e s t ( f i r s t c l auses ) ) ) ) 

((eq (second ( f i r s t c lauses) ) *=>) 
(asser t (= ( length ( f i r s t c lauses) ) 3 ) ) 
( le t ( (var (gensym))) 

• ( le t ( ( . va r . ( f i r s t ( f i r s t c l auses ) ) ) ) 
( i f .var ( . ( th i rd ( f i r s t c lauses) ) .var) 

(cond . . ( r e s t c l a u s e s ) ) ) ) ) ) 
(t • ( i f . ( f i r s t ( f i r s t c lauses) ) 

(begin . . ( r e s t ( f i r s t c lauses) ) ) 
(cond . . ( r e s t c l a u s e s ) ) ) ) ) ) ) 
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Answer 22.10 It is easy to define Ί ambda as a macro, eliminating the need for 
#·(lambda . . . ) : 

(defmacro lambda (args &rest body) 
' ( funct ion (lambda ,args .©body))) 

If this were part of the Common Lisp standard, I would gladly use it. But because it 
is not, I have avoided it, on the grounds that it can be confusing. 

It is also possible to write a new function-defining macro that would do the 
following type of expansion: 

(defn double (x) (* 2 x) ) 
(defparameter double (defun double (x) (* 2 x ) ) ) 

This makes doubl e a special variable, so we can write doubl e instead of # 'doubl e. 
But this approach is not recommended—it is dangerous to define special variables 
that violate the asterisk convention, and the Common Lisp compiler may not be able 
to optimize special variable references the way it can f unct i on special forms. Also, 
this approach would not interact properly with f 1 et and 1 abel s. 



CHAPTER 23 

Compiling Lisp 

M any textbooks show simple interpreters for Lisp, because they are simple to write, 
and because it is useful to know how an interpreter works. Unfortunately, not as 
many textbooks show how to write a compiler, even though the same two reasons 

hold. The simplest compiler need not be much more complex than an interpreter. 
One thing that makes a compiler more complex is that we have to describe the output of 

the compiler: the instruction set of the machine we are compiling for. For the moment let's 
assume a stack-based machine. The calling sequence on this machine for a function call with 
η arguments is to push the η arguments onto the stack and then push the function to be called. 
A "CALL n" instruction saves the return point on the stack and goes to the first instruction of 
the called function. By convention, the first instruction of a function will always be "ARGS w", 
which pops η arguments off the stack, putting them in the new function's environment, where 
they can be accessed by LVAR and LSET instructions. The function should return with a RETURN 
instruction, which resets the program counter and the environment to the point of the original 
CALL instruction. 

In addition, our machine has three JUMP instructions; one that branches unconditionally, and 
two that branch depending on if the top of the stack is nil or non-nil. There is also an instruction 
for popping unneeded values off the stack, and for accessing and altering global variables. The 
instruction set is shown in figure 23.1. A glossary for the compiler program is given in figure 23.2. 
A summary of a more complex version of the compiler appears on page 795. 
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opcode args description 
CONST X push a constant on the stack 
LVAR push a local variable's value 
GVAR sym push a global variable's value 
LSET Μ store top-of-stack in a local variable 
GSET sym store top-of-stack in a global variable 
POP pop the stack 
TJUMP label go to label if top-of-stack is non-nil; pop stack 
FJUMP label go to label if top-of-stack is nil; pop stack 
JUMP label go to label (don't pop stack) 
RETURN go to last return point 
ARGS η move η arguments from stack to environment 
CALL η go to start of function, saving return point 

η is the number of arguments passed 
FN fn create a closure from argument and current environment 

and push it on the stack 

Figure 23.1: Instruction Set for Hypothetical Stack Machine 

As an example, the procedure 

(lambda () ( i f (= χ y) ( f (g x ) ) (h χ y (h 1 2 ) ) ) ) 

should compile into the following instructions: 

L I : 

ARGS 0 
GVAR X 
GVAR Y 
GVAR = 
CALL 2 
FJUMP L I 
GVAR X 
GVAR G 
CALL 1 
GVAR F 
CALL 1 
JUMP L2 
GVAR X 
GVAR Y 
CONST 1 
CONST 2 
GVAR Η 
CALL 2 
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GVAR Η 
CALL 3 

L2: RETURN 

comp-show 
compiler 

Top-Level Functions 
Compile an expression and show the resulting code. 
Compile an expression as a parameterless function. 

*1abel-num* 
*primitive-fns 

Special Variables 
Number for the next assembly language label. 

* List of built-in Scheme functions. 

fn 
Data Types 
A Scheme function. 

comp 
comp-begi η 
comp-if 
comp-lambda 

Major Functions 
Compile an expression into a list of instructions. 
Compile a sequence of expressions. 
Compile a conditional (i f) expression. 
Compile a lambda expression. 

gen 
seq 
gen-label 
gen-var 
gen-set 
namel 
print-fn 
show-fn 
label-p 
in-env-p 

Auxiliary Functions 
Generate a single instruction. 
Generate a sequence of instructions. 
Generate an assembly language label. 
Generate an instruction to reference a variable. 
Generate an instruction to set a variable. 
Set the name of a function to a given value. 
Print a Scheme function (just the name). 
Print the instructions in a Scheme function. 
Is the argument a label? 
Is the symbol in the environment? If so, where? 

Figure 23.2: Glossary for the Scheme Compiler 

The first version of the Scheme compiler is quite simple. It mimics the structure 
of the Scheme evaluator. The difference is that each case generates code rather than 
evaluating a subexpression: 

(defun comp (χ env) 
"Compile the expression χ into a l i s t of i ns t ruc t i ons . " 
(cond 

((symbolp x) (gen-var χ env)) 
((atom X) (gen 'CONST x ) ) 
((scheme-macro ( f i r s t x ) ) (comp (scheme-macro-expand x) env)) 
((case ( f i r s t x) 
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(QUOTE (gen 'CONST (second x ) ) ) 
(BEGIN (comp-begin ( rest x) env)) 
(SETI (seq (comp ( th i rd x) env) (gen-set (second x) env))) 
( IF (comp-if (second x) ( th i rd x) (fourth x) env)) 
(LAMBDA (gen 'FN (comp-lambda (second x) ( rest ( rest x ) ) env))) 

Procedure app l ica t ion : 
: : Compile a r g s . then f n , then the cal l 
(t (seq (mappend #'(lambda (y) (comp y env)) ( rest x ) ) 

(comp ( f i r s t x) env) 
(gen ' ca l l ( length ( rest x ) ) ) ) ) ) ) ) ) 

The compiler comp has the same nine cases—in fact the exact same structure—as 
the interpreter i n te rp from chapter 22. Each case is slightly more complex, so the 
three main cases have been made into separate fimctions: comp - beg i η, comp - i f, and 
comp-1 ambda. A begi η expression is compiled by compiling each argument in turn 
but making sure to pop each value but the last off the stack after it is computed. The 
last element in the beg i η stays on the stack as the value of the whole expression. Note 
that the function gen generates a single instruction (actually a list of one instruction), 
and seq makes a sequence of instructions out of two or more subsequences. 

(defun comp-begin (exps env) 
"Compile a sequence of express ions, popping a l l but the l a s t . " 
(cond ((nul l exps) (gen 'CONST n i l ) ) 

( ( length=l exps) (comp ( f i r s t exps) env)) 
(t (seq (comp ( f i r s t exps) env) 

(gen 'POP) 
(comp-begin ( rest exps) env) ) ) ) ) 

An i f expression is compiled by compiling the predicate, then part, and else part, 
and by inserting appropriate branch instructions. 

(defun comp-if (pred then e lse env) 
"Compile a condit ional express ion . " 
( le t ( ( L I (gen- label ) ) 

(L2 (gen- labe l ) ) ) 
(seq (comp pred env) (gen 'FJUMP L I ) 

(comp then env) (gen 'JUMP L2) 
( l i s t L I ) (comp e lse env) 
( l i s t L2) ) ) ) 

Finally, a 1 ambda expression is compiled by compiling the body, surrounding it with 
one instruction to set up the arguments and another to return from the function, and 
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then storing away the resulting compiled code, along with the environment. The 
data type f η is implemented as a structure with slots for the body of the code, the 
argument list, and the name of the function (for printing purposes only). 

(defstruct (fn ( :pr in t - funct ion p r in t - fn ) ) 
code (env ni l ) (name n i l ) (args n i l ) ) 

(defun comp-1ambda (args body env) 
"Compile a lambda form into a c losure with compiled code." 
(asser t (and d i s t p args) (every #*symbolp a rgs ) ) ( ) 

"Lambda a r g l i s t must be a l i s t of symbols, not ~a" args) 
; ; For now, no &rest parameters. 

The next vers ion wi l l support Scheme's vers ion of &rest 
(make-fn 

:env env :args args 
:code (seq (gen 'ARGS (length a rgs ) ) 

(comp-begin body (cons args env)) 
(gen 'RETURN)))) 

The advantage of compiling over interpreting is that much can be decided at compile 
time. For example, the compiler can determine if a variable reference is to a global 
or lexical variable, and if it is to a lexical variable, exactly where that lexical variable 
is stored. This computation is done only once by the compiler, but it has to be done 
each time the expression is encountered by the interpreter. Similarly, the compiler 
can count up the number of arguments once and for all, while the interpreter must 
go through a loop, counting up the number of arguments, and testing for the end of 
the arguments after each one is interpreted. So it is clear that the compiler can be 
more efficient than the interpreter. 

Another advantage is that the compiler can be more robust. For example, in 
comp-1 ambda, we check that the parameter list of a lambda expression is a list con
taining only symbols. It would be too expensive to make such checks in an interpreter, 
but in a compiler it is a worthwhile trade-off to check once at compile time for error 
conditions rather than checking repeatedly at run time. 

Before we show the rest of the compiler, here's a useful top-level interface to comp: 

(defvar *1abel-num* 0) 

(defun compiler (x) 
"Compile an expression as i f i t were in a parameterless lambda." 
(set f * label-num* 0) 
(comp-lambda ' ( ) ( l i s t x) n i l ) ) 
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(defun comp-show (x) 
"Compile an expression and show the resu l t ing code" 

(show-fn (compiler x ) ) 
(va lues)) 

Now here's the code to generate individual instructions and sequences of instruc
tions. A sequence of instructions is just a list, but we provide the function seq rather 
than using append directly for purposes of data abstraction. A label is just an atom. 

(defun gen (opcode &rest args) 
"Return a one-element l i s t of the speci f ied i ns t ruc t i on . ' 
( l i s t (cons opcode a rgs ) ) ) 

(defun seq (&rest code) 
"Return a sequence of ins t ruc t ions" 
(apply #'append code)) 

(defun gen-label (Äoptional (label Ί)) 
"Generate a label (a symbol of the form Lnnn)" 
( intern (format ni l "^a^d" label ( inc f *1abel-num*)))) 

Environments are now represented as lists of frames, where each frame is a sequence 
of variables. Local variables are referred to not by their name but by two integers: 
the index into the list of frames and the index into the individual frame. As usual, 
the indexes are zero-based. For example, given the code: 

( le t ((a 2.0) 
(b 2 .1 ) ) 

( le t ((c 1.0) 
(d l . D ) 

( le t ((e 0.0) 
( f O . D ) 

(+ a b c d e f ) ) ) ) 

the innermost environment i s ( ( e f ) (c d) (a b ) ) . The function i η - en ν - ρ tests 
if a variable appears in an environment. If this environment were called env, then 
(in-env-p ' f env) would return (2 1) and (in-env-p ' x env) would return n i l . 
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(defun gen-var (var env) 
"Generate an inst ruct ion to reference a va r i ab le ' s va lue. " 
( let ((p ( in-env-p var env))) 

( i f ρ 
(gen 'LVAR ( f i r s t p) (second p) " ; " var) 
(gen 'GVAR va r ) ) ) ) 

(defun gen-set (var env) 
"Generate an ins t ruct ion to set a var iable to top-o f -s tack . ' 
( le t ((p ( in-env-p var env))) 

( i f ρ 
(gen 'LSET ( f i r s t p) (second p) " ; " var) 
(gen 'GSET va r ) ) ) ) 

Finally, we have some auxiliary functions to print out the results, to distinguish 
between labels and instructions, and to determine the index of a variable in an 
environment. Scheme functions now are implemented as structures, which must 
have a field for the code, and one for the environment. In addition, we provide 
a field for the name of the function and for the argument list; these are used only 
for debugging purposes. We'll adopt the convention that the def i ne macro sets the 
function's name field, by calling name! (which is not part of standard Scheme). 

(def-scheme-macro define (name &rest body) 
( i f (atom name) 

•(name! (se t ! ,name . .body) '.name) 
(scheme-macro-expand 

' (def ine . ( f i r s t name) 
(lambda . ( res t name) . .body)) ) ) ) 

(defun namel (fn name) 
"Set the name f i e l d of f n . i f i t i s an un-named f n . " 
(when (and (fn-p fn) (nul l (fn-name fn ) ) ) 

(set f (fn-name fn) name)) 
name) 

; ; This should a lso go in in i t -scheme-interp: 
(se t -g loba l -var ! 'name! #'name!) 

(defun pr in t - fn (fn Äoptional (stream *standard-output*) depth) 
(declare ( ignore depth)) 
(format stream "{~a}" (or (fn-name fn) ' ? ? ) ) ) 
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(defun show-fn (fn Äoptional (stream *standard-output*) (depth 0) ) 
"Pr int a l l the ins t ruc t ions in a funct ion. 
I f the argument i s not a funct ion, jus t pr inc i t , 
but in a column at least 8 spaces wide." 
( i f (not (fn-p fn) ) 

(format stream " " B a " fn) 
(progn 

( f resh- l i ne ) 
( incf depth 8) 
(do l i s t ( i ns t r (fn-code fn) ) 

( i f ( label -p i ns t r ) 
(format stream " ~ a : " i ns t r ) 
(progn 

(format stream "'^VT" depth) 
(do l i s t (arg i ns t r ) 

(show-fn arg stream depth)) 
( f r e s h - l i n e ) ) ) ) ) ) ) 

(defun label-p (x) " I s χ a l abe l? " (atom x) ) 

(defun in-env-p (symbol env) 
" I f symbol i s in the environment, return i t s index numbers." 
( let ((frame ( f ind symbol env : test # ' f i n d ) ) ) 

( i f frame ( l i s t (pos i t ion frame env) (pos i t ion symbol f rame))))) 

Now we are ready to show the compiler at work: 

> (comp-show ' ( i f (= χ y) ( f (g x ) ) (h χ y (h 1 2 ) ) ) ) 

L I : 

L2: 

ARGS 0 
GVAR X 
GVAR Y 
GVAR = 
CALL 2 
FJUMP L I 
GVAR X 
GVAR G 
CALL 1 
GVAR F 
CALL 1 
JUMP L2 
GVAR X 
GVAR Y 
CONST 1 
CONST 2 
GVAR Η 
CALL 2 
GVAR Η 
CALL 3 
RETURN 
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This example should give the reader a feeling for the code generated by the compiler. 
Another reason a compiler has an advantage over an interpreter is that the com

piler can afford to spend some time trying to find a more efficient encoding of an 
expression, v^hile for the interpreter, the overhead of searching for a more efficient 
interpretation usually offsets any advantage gained. Here are some places where 
a compiler could do better than an interpreter (although our compiler currently 
does not): 

> (comp-show ' (begin "doc" (write x) y ) ) 
ARGS 0 
CONST doc 
POP 
GVAR X 
GVAR WRITE 
CALL 1 
POP 
GVAR Y 
RETURN 

In this example, code is generated to push the constant "doc" on the stack and then 
immediately pop it off. If we have the compiler keep track of what expressions are 
compiled "for value"—as y is the value of the expression above-and which are only 
compiled "for effect," then we can avoid generating any code at all for a reference to 
a constant or variable for effect. Here's another example: 

> (comp-show ' (begin (+ (* a x) ( f x ) ) x ) ) 
ARGS 0 
GVAR A 
GVAR X 
GVAR * 
CALL 2 
GVAR X 
GVAR F 
CALL 1 
GVAR + 
CALL 2 
POP 
GVAR X 
RETURN 
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In this expression, if we can be assured that + and * refer to the normal arithmetic 
functions, then we can compile this as if it were ( beg in ( f x ) χ). Furthermore, it 
is reasonable to assume that + and * will be instructions in our machine that can be 
invoked inline, rather than having to call out to a function. Many compilers spend 
a significant portion of their time optimizing arithmetic operations, by taking into 
account associativity, commutativity, distributivity, and other properties. 

Besides arithmetic, compilers often have expertise in conditional expressions. 
Consider the following: 

> (comp-show ' ( i f (and ρ q) χ y ) ) 
ARGS 0 
GVAR Ρ 
FJUMP L3 
GVAR Q 
JUMP L4 

L3: GVAR NIL 
L4: FJUMP LI 

GVAR X 
JUMP L2 

L I : GVAR Y 
L2: RETURN 

Note that (and ρ q) macro-expands to ( i f ρ q n i l ) . The resulting compiled code 
is correct, but inefficient. First, there is an unconditional jump to L4, which labels 
a conditional jump to LI. This could be replaced with a conditional jump to LI. 
Second, at L3 we load NIL and then jump on nil to LI. These two instructions could 
be replaced by an unconditional jump to LI. Third, the FJUMP to L3 could be replaced 
by an FJUMP to LI, since we now know that the code at L3 unconditionally goes to LI. 

Finally, some compilers, particularly Lisp compilers, have expertise in function 
calling. Consider the following: 

> (comp-show ' ( f (g χ y ) ) ) 
ARGS 0 
GVAR X 
GVAR Y 
GVAR G 
CALL 2 
GVAR F 
CALL 1 
RETURN 
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Here we call g and when g returns we call f , and when f returns we return from this 
function. But this last return is wasteful; we push a return address on the stack, and 
then pop it off, and return to the next return address. An alternative function-calling 
protocol involves pushing the return address before calling g, but then not pushing 
a return address before calling f; when f returns, it returns directly to the calling 
function, whatever that is. 

Such an optimization looks like a small gain; we basically eliminate a single 
instruction. In fact, the implications of this new protocol are enormous: we can 
now invoke a recursive function to an arbitrary depth without growing the stack at 
all—as long as the recursive call is the last statement in the function (or in a branch 
of the function when there are conditionals). A function that obeys this constraint 
on its recursive calls is known as a properly tail-recursive function. This subject was 
discussed in section 22.3. 

All the examples so far have only dealt with global variables. Here's an example 
using local variables: 

(comp-show '((lambda (x) ((lambda (y z) (f χ y ζ ) ) 3 χ) ) 4) ) 
ARGS 
CONST 
FN 

CALL 
RETURN 

ARGS 1 
CONST 3 
LVAR 0 
FN 

ARGS 
LVAR 
LVAR 
LVAR 
GVAR 
CALL 
RETURN 

CALL 2 
RETURN 
1 

The code is indented to show nested functions. The top-level function loads the 
constant 4 and an anonymous function, and calls the function. This function loads 
the constant 3 and the local variable x, which is the first (0th) element in the top 
(0th) frame. It then calls the double-nested function on these two arguments. This 
function loads x, y, and z: χ is now the 0th element in the next-to-top (1st) frame, 
and y and ζ are the 0th and 1st elements of the top frame. With all the arguments in 
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place, the function f is finally called. Note that no continuations are stored—f can 
return directly to the caller of this function. 

However, all this explicit manipulation of environments is inefficient; in this case 
we could have compiled the whole thing by simply pushing 4, 3, and 4 on the stack 
and calling f. 

Top-Level Functions 
scheme A read-compile-execute-print loop. 
comp-go Compile and execute an expression. 
machine Run the abstract machine. 

Data Types 
prim A Scheme primitive function. 
ret-addr A return address (function, program counter, environment). 

Auxiliary Functions 
arg-count Report an error for wrong number of arguments. 
comp-list Compile a list of expressions onto the stack. 
comp-const Compile a constant expression. 
comp-var Compile a variable reference. 
comp-funcal1 Compile a function application. 
primitive-ρ Is this function a primitive? 
init-scheme-comp Initialize primitives used by compiler. 
gen-args Generate code to load arguments to a function. 
make-true-list Convert a dotted list to a nondotted one. 
new-fn Build a new function. 
is Predicate is true if instructions opcode matches. 
optimize A peephole optimizer. 
geni Generate a single instruction. 
target The place a branch instruction branches to. 
next-instr The next instruction in a sequence. 
quasi-q Expand a quasiquote form into append, cons, etc. 

Functions for the Abstract Machine 
assemble Turn a list of instructions into a vector. 
asm-first-pass Find labels and length of code. 
asm-second-pass Put code into the code vector. 
opcode The opcode of an instruction. 
args The arguments of an instruction. 
argi For i = 1 , 2 , 3 — select zth argument of instruction. 

Figure 23.3: Glossary of the Scheme Compiler, Second Version 
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23.1 A Properly Tail-Recursive Lisp Compiler 

In this section we describe a new version of the compiler, first by showing examples 
of its output, and then by examining the compiler itself, which is summarized in 
figure 23.3. The new version of the compiler also makes use of a different function 
calling sequence, using two new instructions, CALLJ and SAVE. As the name implies, 
SAVE saves a return address on the stack. The CALLJ instruction no longer saves 
anything; it can be seen as an unconditional jump—hence the J in its name. 

First, we see how nested function calls work: 

> (comp-show ' ( f (g x ) ) ) 
ARGS 0 
SAVE Kl 
GVAR X 
GVAR G 
CALLJ 1 

K l : GVAR F 
CALLJ 1 

The continuation point Kl is saved so that g can return to it, but then no continuation 
is saved for f, so f returns to whatever continuation is on the stack. Thus, there is 
no need for an explicit RETURN instruction. The final CALL is like an unconditional 
branch. 

The following example shows that all functions but the last (f) need a continuation 
point: 

> (comp-show ' ( f (g (h x) (h y ) ) ) ) 

K2: 

K3: 

K l : 

ARGS 0 
SAVE Kl 
SAVE K2 
GVAR X 
GVAR Η 
CALLJ 1 
SAVE K3 
GVAR Y 
GVAR Η 
CALLJ 1 
GVAR G 
CALLJ 2 
GVAR F 
CALLJ 1 
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This code first computes (h χ) and returns to K2. Then it computes (h y) and returns 
to K3. Next it calls g on these two values, and returns to KI before transferring to f. 
Since whatever f returns will also be the final value of the function we are compiling, 
there is no need to save a continuation point for f to return to. 

In the next example we see that unneeded constants and variables in begin 
expressions are ignored: 

> (comp-show ' (begin "doc" χ ( f x) y ) ) 
ARGS 0 
SAVE KI 
GVAR X 
GVAR F 
CALLJ 1 

K I : POP 
GVAR Y 
RETURN 

One major flaw with the first version of the compiler is that it could pass data 
around, but it couldn't actually do anything to the data objects. We fix that problem 
by augmenting the machine with instructions to do arithmetic and other primitive 
operations. Unneeded primitive operations, like variables constants, and arithmetic 
operations are ignored when they are in the nonfinal position within begins. Contrast 
the following two expressions: 

> (comp-show ' (begin (+ (* a x) ( f x ) ) x ) ) 
ARGS 0 
SAVE KI 
GVAR X 
GVAR F 
CALLJ 1 

K I : POP 
GVAR X 
RETURN 

> (comp-show ' (begin (+ (* a x) ( f x ) ) ) ) 
ARGS 0 
GVAR A 
GVAR X 
• 
SAVE KI 
GVAR X 
GVAR F 
CALLJ 1 

K I : + 
RETURN 



798 COMPILING LISP 

The first version of the compiler was context-free, in that it compiled all equivalent ex
pressions equivalently, regardless of where they appeared. A properly tail-recursive 
compiler needs to be context-sensitive: it must compile a call that is the final value of 
a function differently than a call that is used as an intermediate value, or one whose 
value is ignored. In the first version of the compiler, comp -1 ambda was responsible for 
generating the RETURN instruction, and all code eventually reached that instruction. 
To make sure the RETURN was reached, the code for the two branches of i f expressions 
had to rejoin at the end. 

In the tail-recursive compiler, each piece of code is responsible for inserting its 
own RETURN instruction or implicitly returning by calling another function without 
saving a continuation point. 

We keep track of these possibilities with two flags. The parameter val ? is true 
when the expression we are compiling returns a value that is used elsewhere. The 
parameter more? is false when the expression represents the final value, and it is true 
when there is more to compute. In summary, there are three possibilities: 

val? more? example: the X in: 
true true 
true false 
false true 
false false 

( i f X y z ) o r ( f X y) 
( i f ρ X ζ)or(begin y X) 
(begin X y) 
impossible 

The code for the compiler employing these conventions follows: 

(defun comp (χ env va l? more?) 
"Compile the expression χ into a l i s t of i ns t ruc t i ons . " 

(cond 
((member χ ' ( t n i l ) ) (comp-const χ va l? more?)) 
((symbolp x) (comp-var χ env va l? more?)) 
((atom x) (comp-const χ va l? more?)) 

((scheme-macro ( f i r s t x ) ) (comp (scheme-macro-expand x) env va l? more?)) 
((case ( f i r s t x) 

(QUOTE (arg-count χ 1) 
(comp-const (second x) va l? more?)) 

(BEGIN (comp-begin ( rest x) env va l? more?)) 
(SET! (arg-count χ 2) 

(asser t (symbolp (second x) ) (x) 
"Only symbols can be s e t ! , not ''a in ~a" 
(second x) x) 

(seq (comp ( th i rd x) env t t ) 
(gen-set (second x) env) 
( i f (not v a l ? ) (gen 'POP)) 
(unless more? (gen 'RETURN)))) 
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( IF (arg-count χ 2 3) 

(comp-if (second x) ( th i rd x) (fourth x) 

env va l? more?)) 

(LAMBDA (when va l? 

( let ( ( f (comp-lambda (second x) (rest2 x) env))) 

(seq (gen 'FN f ) (unless more? (gen 'RETURN)))))) 

(t (comp-funcall ( f i r s t x) ( rest x) env va l? more?) ) ) ) ) ) 

Here we've added one more case: t and η i 1 compile directly into primitive instruc
tions, rather than relying on them being bound as global variables. (In real Scheme, 
the Boolean values are # t and #f, which need not be quoted, the empty list is ( ) , which 
must be quoted, and t and η i 1 are ordinary symbols with no special significance.) 

I've also added some error checking for the number of arguments supplied to 
quote, s e t ! and i f. Note that it is reasonable to do more error checking in a compiler 
than in an interpreter, since the checking need be done only once, not each time 
through. The function to check arguments is as follows: 

(defun arg-count (form min Äoptional (max min)) 

"Report an error i f form has wrong number of a r g s . " 

( let ( (n-args (length ( rest form)))) 

(asser t (<= min n-args max) (form) 

"Wrong number of arguments for ~a in ~a: 

~d suppl ied, ~d~@[ to ~d~] expected" 

( f i r s t form) form n-args min ( i f ( /= min max) max)))) 

@ Exercise 23.1 [m] Modify the compiler to check for additional compile-time errors 
suggested by the following erroneous expression: 

(cdr (+ ( l i s t X y ) ' y (3 x ) (car 3 x ) ) ) 

The tail-recursive compiler still has the familiar nine cases, but I have introduced 
comp - va r , comp - cons t , comp - i f, and comp - f un ca 11 to handle the increased complex
ity introduced by the v a r ? and more? parameters. 

Let's go through the comp- functions one at a time. First, comp-begin and 
comp-1 i s t just handle and pass on the additional parameters, comp-1 i s t will be 
used in comp - f unca 11 , a new function that will be introduced to compile a procedure 
appUcation. 
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(defun comp-begin (exps env va l? more?) 
"Compile a sequence of express ions, 
returning the las t one as the va lue. " 
(cond ((nul l exps) (comp-const ni l va l? more?)) 

( ( length=l exps) (comp ( f i r s t exps) env va l? more?)) 
(t (seq (comp ( f i r s t exps) env ni l t ) 

(comp-begin ( rest exps) env va l? more?)) ) ) ) 

(defun comp-l ist (exps env) 
"Compile a l i s t , leaving them al l on the s tack . " 
( i f (null exps) ni l 

(seq (comp ( f i r s t exps) env t t ) 
(comp-l ist ( rest exps) env)) ) ) 

Then there are two trivial functions to compile variable access and constants. If the 
value is not needed, these produce no instructions at all. If there is no more to be 
done, then these functions have to generate the return instruction. This is a change 
from the previous version of comp, where the caller generated the return instruction. 
Note I have extended the machine to include instructions for the most common 
constants: t, nil, and some small integers. 

(defun comp-const (x va l? more?) 
"Compile a constant express ion . " 
( i f va l? (seq ( i f (member χ ' ( t n i l - 1 0 1 2) ) 

(gen x) 
(gen 'CONST x ) ) 

(unless more? (gen 'RETURN))))) 

(defun comp-var (x env va l? more?) 
"Compile a var iable reference." 
( i f va l? (seq (gen-var χ env) (unless more? (gen 'RETURN))))) 

The remaining two functions are more complex. First consider comp - i f. Rather than 
blindly generating code for the predicate and both branches, we will consider some 
special cases. First, it is clear that ( i f t χ y) can reduce to x and ( i f nil χ y) 
can reduce to y. It is perhaps not as obvious that ( i f ρ χ x) can reduce to (begi η 
ρ χ), or that the comparison of equality between the two branches should be done 
on the object code, not the source code. Once these trivial special cases have been 
considered, we're left with three more cases: ( i f ρ x n i l ) , ( i f ρ nil y ) , and ( i f 
ρ χ y) . The pattern of labels and jumps is different for each. 
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(defun comp-if (pred then e lse env va l? more?) 
"Compile a condit ional ( IF ) express ion . " 
(cond 

((nul l pred) ; ( i f n i l χ y) = = > y 
(comp else env va l? more?)) 

((constantp pred) ; ( i f t χ y) = = > χ 
(comp then env va l? more?)) 

((and d i s t p pred) ; ( i f (not p) χ y) = = > ( i f p y x ) 
( length=l ( rest pred)) 
(pr imit ive-p ( f i r s t pred) env 1) 
(eq (prim-opcode (pr imit ive-p ( f i r s t pred) env 1)) *not)) 

(comp-if (second pred) e lse then env va l? more?)) 
(t d e t ((pcode (comp pred env t t ) ) 

(tcode (comp then env va l? more?)) 
(ecode (comp else env va l? more?))) 

(cond 
((equal tcode ecode) ; ( i f ρ χ x) = = > (begin ρ χ ) 

(seq (comp pred env ni l t ) ecode)) 
( (nul l tcode) ; ( i f ρ n i l y ) = = > ρ (TJUMP L2) y L2: 

d e t ((L2 (gen- labe l ) ) ) 
(seq pcode (gen 'TJUMP L2) ecode ( l i s t L2) 

(unless more? (gen 'RETURN))))) 
( (nul l ecode) ; ( i f ρ χ ) = = > ρ (FJUMP L I ) χ L I : 

d e t ( ( L I (gen- labe l ) ) ) 
(seq pcode (gen 'FJUMP L I ) tcode ( l i s t L I ) 

(unless more? (gen 'RETURN))))) 
(t ; ( i f ρ X y ) = = > ρ (FJUMP L I ) χ L I : y 

; or ρ (FJUMP L I ) χ (JUMP L2) L I : y L2: 
d e t ( ( L I (gen- label ) ) 

(L2 ( i f more? (gen- labe l ) ) ) ) 
(seq pcode (gen 'FJUMP L I ) tcode 

( i f more? (gen 'JUMP L2)) 
( l i s t L I ) ecode ( i f more? ( l i s t L 2 ) ) ) ) ) ) ) ) ) ) 

Here are some examples of i f expressions. First, a very simple example: 

> (comp-show ' ( i f ρ (+ χ y) (* χ y ) ) ) 
ARGS O 
GVAR Ρ 
FJUMP L I 
GVAR X 
GVAR Y 
+ 
RETURN 

L I : GVAR X 
GVAR Y 
• 
RETURN 
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Each branch has its own RETURN instruction. But note that the code generated is 
sensitive to its context. For example, if we put the same expression inside a beg i η 
expression, we get something quite different: 

> (comp-show '(begin ( i f ρ (+ χ y) (* χ y)) ζ)) 
ARGS O 
GVAR 
RETURN 

What happens here is that (+ χ y ) a n d ( * χ y ) , when compiled in a context where 
the value is ignored, both result in no generated code. Thus, the i f expression 
reduces to ( i f ρ nil n i l ) , which is compiled like (begin ρ n i l ) , which also 
generates no code when not evaluated for value, so the final code just references 
z. The compiler can only do this optimization because it knows that + and * are 
side-effect-free operations. Consider what happens when we replace + with f: 

> (comp-show '(begin ( i f ρ ( f x) (* χ χ)) ζ)) 
ARGS O 
GVAR Ρ 
FJUMP L2 
SAVE Kl 
GVAR X 
GVAR F 
CALU 1 

K l : POP 
L2: GVAR Ζ 

RETURN 

Here we have to call ( f χ) if ρ is true (and then throw away the value returned), but 
we don't have to compute (* χ χ) when ρ is false. 

These examples have inadvertently revealed some of the structure of comp -funcall , 
which handles five cases. First, it knows some primitive functions that have corre
sponding instructions and compiles these instructions inline when their values are 
needed. If the values are not needed, then the function can be ignored, and just the 
arguments can be compiled. This assumes true functions with no side effects. If 
there are primitive operations with side effects, they too can be compiled inline, but 
the operation can never be ignored. The next case is when the function is a lambda 
expression of no arguments. We can just compile the body of the lambda expression 
as if it were a begin expression. Nonprimitive functions require a function call. 
There are two cases: when there is more to compile we have to save a continuation 
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point, and when we are compiling the final value of a function, we can just branch to 
the called function. The whole thing looks like this: 

(defun comp-funcall ( f args env va l? more?) 
"Compile an appl icat ion of a function to arguments." 
( let ((prim (pr imit ive-p f env (length a rgs ) ) ) ) 

(cond 
(prim ; function compilable to a pr imit ive ins t ruct ion 
( i f (and (not v a l ? ) (not (pr im-side-ef fects prim))) 

Side-ef fect free pr imit ive when value unused 
(comp-begin args env ni l more?) 

Pr imit ive with value or cal l needed 
(seq (comp-l ist args env) 

(gen (prim-opcode prim)) 
(unless va l? (gen 'POP)) 
(unless more? (gen 'RETURN))))) 

((and (s tar ts-wi th f 'lambda) (null (second f ) ) ) 
((lambda () body)) => (begin body) 

(asser t (null args) () "Too many arguments suppl ied") 
(comp-begin (restZ f ) env va l? more?)) 

(more? ; Need to save the continuation point 
( le t ((k (gen-label ' k ) ) ) 

(seq (gen 'SAVE k) 
(comp-l ist args env) 
(comp f env t t ) 
(gen 'CALLJ (length args) ) 
( l i s t k) 
( i f (not v a l ? ) (gen 'POP)) ) ) ) 

(t ; function cal l as rename plus goto 
(seq (comp-l ist args env) 

(comp f env t t ) 
(gen 'CALLJ ( length a r g s ) ) ) ) ) ) ) 

The support for primitives is straightforward. The prim data type has five slots. The 
first holds the name of a symbol that is globally bound to a primitive operation. The 
second, η - a rgs, is the number of arguments that the primitive requires. We have to 
take into account the number of arguments to each function because we want (-»- χ 
y) to compile into a primitive addition instruction, while (+ x y z) should not. It 
will compile into a call to the function instead. The opcode slot gives the opcode 
that is used to implement the primitive. The always field is true if the primitive 
always returns non-nil, f al se if it always returns nil, and nil otherwise. It is used in 
exercise 23.6. Finally, the side- e f fec t s field says if the function has any side effects, 
like doing I/O or changing the value of an object. 
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(defstruct (prim (:type l i s t ) ) 
symbol n-args opcode always s ide-e f fec ts ) 

(defparameter *p r im i t i ve- fns* 
· ( (+ 2 + true) (- 2 - true) (* 2 * true) ( / 2 / true) 

(< 2 <) (> 2 » « = 2 <=) (>= 2 >=) ( /= 2 / = ) (= 2 =) 
(eq? 2 eq) (equal? 2 equal) (eqv? 2 eql) 
(not 1 not) (nu l l ? 1 not) 
(car 1 car) (cdr 1 cdr) (cadr 1 cadr) (cons 2 cons true) 
( l i s t 1 l i s t l true) ( l i s t 2 l i s t 2 true) ( l i s t 3 l i s t s true) 
(read 0 read ni l t ) (write 1 write n i l t ) (d isplay 1 d isp lay n i l t ) 
(newline 0 newline ni l t ) (compiler 1 compiler t ) 
(name! 2 name! true t) (random 1 random true n i l ) ) ) 

(defun pr imit ive-p ( f env n-args) 
"F i s a pr imit ive i f i t i s in the tab le, and i s not shadowed 
by something in the environment, and has the r ight number of a r g s . " 
(and (not ( in-env-p f env)) 

( f ind f *p r im i t i ve - fns* 
: test #*(lambda (f prim) 

(and (eq f (prim-symbol prim)) 
(= n-args (pr im-n-args p r im) ) ) ) ) ) ) 

(defun l i s t l (x) ( l i s t x ) ) 
(defun l i s t 2 (x y) ( l i s t χ y ) ) 
(defun l i s t a (χ y ζ) ( l i s t χ y ζ ) ) 
(defun d isp lay (χ) (pr inc χ) ) 
(defun newline O ( te rp r i ) ) 

These optimizations only work if the symbols are permanently bound to the global 
values given here. We can enforce that by altering g e n - s e t to preserve them as 
constants: 

(defun gen-set (var env) 
"Generate an inst ruct ion to set a var iable to top-o f -s tack . " 
( le t ((p ( in-env-p var env))) 

( i f ρ 
(gen 'LSET ( f i r s t p) (second p) " ; " var) 
( i f (assoc var *pr imi t i ve- fns* ) 

(error "Can' t a l ter the constant ~a" var) 
(gen 'GSET va r ) ) ) ) ) 
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Now an expression like (+ χ 1) will be properly compiled using the + instruction 
rather than a subroutine call, and an expression like ( s e t ! + *) will be flagged as 
an error when + is a global variable, but allowed when it has been locally bound. 
However, we still need to be able to handle expressions like ( s e t ! add +) and then 
(add χ y) . Thus, we need some function object that + will be globally bound to, even 
if the compiler normally optimizes away references to that function. The function 
i n i t - scheme - comp takes care of this requirement: 

(defun i nit-scheme-comp () 

" I n i t i a l i z e the pr imit ive func t ions . " 

(do l i s t (prim *pr imi t i ve- fns* ) 

(set f (get (prim-symbol prim) ' g loba l - va l ) 

(new-fn :env ni l :name (prim-symbol prim) 

icode (seq (gen 'PRIM (prim-symbol prim)) 

(gen 'RETURN)))))) 

There is one more change to make—rewriting comp-1 ambda. We still need to get the 
arguments off the stack, but we no longer generate a RETURN instruction, since that is 
done by comp-begi n, if necessary. At this point we'll provide a hook for a peephole 
optimizer, which will be introduced in section 23.4, and for an assembler to convert 
the assembly language to machine code, new-fn provides this interface, but for now, 
new- f η acts just like ma ke - f n. 

We also need to account for the possibility of rest arguments in a lambda list. A 
new function, g e n - a r g s , generates the single instruction to load the arguments of 
the stack. It introduces a new instruction, ARGS., into the abstract machine. This 
instruction works just like ARGS, except it also conses any remaining arguments on 
the stack into a list and stores that list as the value of the rest argument. With this 
innovation, the new version of comp -1 ambda looks like this: 
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(defun comp-lambda (args body env) 
"Compile a lambda form into a closure with compiled code." 
(new-fn :env env :args args 

:code (seq (gen-args args 0) 
(comp-begin body 

(cons (make-true- l is t args) env) 
t n i l ) ) ) ) 

(defun gen-args (args n-so- fa r ) 
"Generate an inst ruct ion to load the arguments." 
(cond ((nul l a rgs) (gen 'ARGS n -so - fa r ) ) 

((symbolp args) (gen 'ARGS. n -so- fa r ) ) 
((and (consp args) (symbolp ( f i r s t a rgs ) ) ) 

(gen-args ( rest args) (+ n-so- far 1) ) ) 
(t (error " I l l ega l argument l i s t " ) ) ) ) 

(defun make-true- l is t (dot ted -1 is t ) 
"Convert a poss ib ly dotted l i s t into a t rue, non-dotted l i s t . " 
(cond ((nul l do t ted- l i s t ) n i l ) 

((atom do t ted- l i s t ) ( l i s t do t ted - l i s t ) ) 
(t (cons ( f i r s t do t ted- l i s t ) 

(make-true- l is t ( rest d o t t e d - l i s t ) ) ) ) ) ) 

(defun new-fn (&key code env name args) 
"Bui ld a new funct ion. " 
(assemble (make-fn :env env :name name :args args 

:code (optimize code)))) 

new-fn includes calls to an assembler and an optimizer to generate actual machine 
code. For the moment, both will be identity functions: 

(defun optimize (code) code) 
(defun assemble ( fn) fn) 

Here are some more examples of the compiler at work: 

> (comp-show ' ( i f ( nu l l ? (car D ) ( f (+ (* a x) b)) 
(g ( / χ 2 ) ) ) ) 

L I : 

ARGS 0 
GVAR L 
CAR 
FJUMP L I 
GVAR X 
2 
/ 
GVAR G 
CALLJ 1 
GVAR A 
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GVAR X 
• 

GVAR Β 
+ 

GVAR F 

CALLJ 1 

There is no need to save any continuation points in this code, because the only calls to 
nonprimitive functions occur as the final values of the two branches of the function. 

> (comp-show '(define ( l a s t l 1) 

( i f (nu l l ? (cdr D ) (car 1) 

( l a s t l (cdr 1 ) ) ) ) ) 

ARGS 0 

FN 

ARGS 1 

LVAR 0 0 : L 

CDR 

FJUMP L I 

LVAR 0 0 ; L 

CDR 

GVAR LASTl 

CALLJ 1 

L I : LVAR 0 0 ; L 

CAR 

RETURN 

GSET LASTl 

CONST LASTl 

NAMEl 

RETURN 

The top-level function just assigns the nested function to the global variable 1 as t l . 
Since 1 a s t l is tail-recursive, it has only one return point, for the termination case, 
and just calls itself without saving continuations until that case is executed. 

Contrast that to the non-tail-recursive definition of 1 ength below. It is not tail-
recursive because before it calls length recursively, it must save a continuation point, 
Kl, so that it will know where to return to to add 1. 
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> (comp-show ' (def ine ( length 1) 
( i f ( nu l l ? 1) 0 (+ 1 ( length (cdr 1 ) ) ) ) ) ) 

ARGS 0 
FN 

ARGS 1 
LVAR 0 0 ; L 
FJUMP L2 
1 
SAVE KI 
LVAR 0 0 ; L 
CDR 
GVAR LENGTH 
CALLJ 1 

K I : + 
RETURN 

L2: 0 
RETURN 

GSET LENGTH 
CONST LENGTH 
NAME! 
RETURN 

Of course, it is possible to write 1 ength in tail-recursive fashion: 

> (comp-show ' (def ine (length 1) 
( let rec ( d e n (lambda (1 n) 

( i f ( nu l l ? 1) η 
( len ( rest 1) (+ η 1 ) ) ) ) ) ) 

( len 1 0 ) ) ) ) 
ARGS 0 
FN 

ARGS 1 
NIL 
FN 

ARGS 
FN 

K I : 

1 

ARGS 2 
LVAR 0 0 ; L 
FJUMP L2 
SAVE KI 
LVAR 0 0 ; L 
GVAR REST 
CALLJ 1 
LVAR 0 1 : Ν 
1 
+ 
LVAR 1 0 ; LEN 
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L2: 

CALLJ 

GSET LENGTH 

CONST LENGTH 

NAME! 

RETURN 

LSET 

POP 

LVAR 

0 

LVAR 

CALLJ 

1 

CALLJ 

LVAR 

RETURN 

0 LEN 

L 

LEN 

Let's look once again at an example with nested conditionals: 

> (comp-show ' ( i f (not (and ρ q (not r ) ) ) χ y ) ) 

ARGS 0 
GVAR Ρ 

FJUMP L3 

GVAR Q 
FJUMP L I 

GVAR R 

NOT 

JUMP L2 

L I : NIL 

L2: JUMP L4 

L3: NIL 
L4: FJUMP L5 

GVAR Y 

RETURN 

L5: GVAR X 
RETURN 

Here the problem is with multiple JUMPs and with not recognizing negation. If ρ is 
false, then the and expression is false, and the whole predicate is true, so we should 
return x. The code does in fact return x, but it first jumps to L3, loads NIL, and then 
does an FJUMP that will always jump to L5. Other branches have similar inefficiencies. 
A sufficiently clever compiler should be able to generate the following code: 
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ARGS O 
GVAR Ρ 
FJUMP L I 
GVAR Q 
FJUMP L I 
GVAR R 
TJUMP L I 
GVAR Y 
RETURN 

L I : GVAR X 
RETURN 

23.2 Introducing Call/cc 
Now that the basic compiler works, we can think about how to implement c a l l / c c 
in our compiler. First, remember that c a l l / cc is a normal function, not a special 
form. So we could define it as a primitive, in the manner of ca r and cons. However, 
primitives as they have been defined only get to see their arguments, and cal 1 / cc 
will need to see the run-time stack, in order to save away the current continuation. 
One choice is to install cal 1 / cc as a normal Scheme nonprimitive function but to 
write its body in assembly code ourselves. We need to introduce one new instruction, 
CC, which places on the stack a function (to which we also have to write the assembly 
code by hand) that saves the current continuation (the stack) in its environment, and, 
when called, fetches that continuation and installs it, by setting the stack back to that 
value. This requires one more instruction, SET-CC. The details of this, and of all the 
other instructions, are revealed in the next section. 

23.3 The Abstract Machine 
So far we have defined the instruction set of a mythical abstract machine and gen
erated assembly code for that instruction set. It's now time to actually execute the 
assembly code and hence have a useful compiler. There are several paths we could 
pursue: we could implement the machine in hardware, software, or microcode, or 
we could translate the assembly code for our abstract machine into the assembly 
code of some existing machine. Each of these approaches has been taken in the past. 

Hardware. If the abstract machine is simple enough, it can be implemented di
rectly in hardware. The Scheme-79 and Scheme-81 Chips (Steele and Sussman 1980; 
Batali et al. 1982) were VLSI implementations of a machine designed specifically to 
run Scheme. 
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Macro-Assembler. In the translation or macro-assembler approach, each in
struction in the abstract machine language is translated into one or more instructions 
in the host computer's instruction set. This can be done either directly or by gener
ating assembly code and passing it to the host computer's assembler. In general this 
will lead to code expansion, because the host computer probably will not provide 
direct support for Scheme's data types. Thus, whereas in our abstract machine we 
could write a single instruction for addition, with native code we might have to exe
cute a series of instructions to check the type of the arguments, do an integer add if 
they are both integers, a floating-point add if they are both floating-point numbers, 
and so on. We might also have to check the result for overflow, and perhaps convert 
to bignum representation. Compilers that generate native code often include more 
sophisticated data-flow analysis to know when such checks are required and when 
they can be omitted. 

Microcode. The MIT Lisp Machine project, unlike the Scheme Chip, actually 
resulted in working machines. One important decision was to go with microcode 
instead of a single chip. This made it easy to change the system as experienced was 
gained, and as the host language was changed from ZetaLisp to Common Lisp. The 
most important architectural feature of the Lisp Machine was the inclusion of tag 
bits on each word to specify data types. Also important was microcode to implement 
certain frequently used generic operations. For example, in the Symbolics 3 6 0 0 
Lisp Machine, the microcode for addition simultaneously did an integer add, a 
floating-point add, and a check of the tag bits. If both arguments turned out to 
be either integers or floating-point numbers, then the appropriate result was taken. 
Otherwise, a trap was signaled, and a converison routine was entered. This approach 
makes the compiler relatively simple, but the trend in architecture is away from highly 
microcoded processors toward simpler (RISC) processors. 

Software. We can remove many of these problems with a technique known as 
byte-code assembly. Here we translate the instructions into a vector of bytes and then 
interpret the bytes with a byte-code interpreter. This gives us (almost) the machine 
we want; it solves the code expansion problem, but it may be slower than native code 
compilation, because the byte-code interpreter is written in software, not hardware 
or microcode. 

Each opcode is a single byte (we have less than 2 5 6 opcodes, so this will work). 
The instructions with arguments take their arguments in the following bytes of the 
instruction stream. So, for example, a CALL instruction occupies two bytes; one for 
the opcode and one for the argument count. This means we have imposed a limit 
of 2 5 6 arguments to a function call. An LVAR instruction would take three bytes; 
one for the opcode, one for the frame offset, and one for the offset within the frame. 
Again, we have imposed 2 5 6 as the limit on nesting level and variables per frame. 
These limits seem high enough for any code written by a human, but remember, 
not only humans write code. It is possible that some complex macro may expand 
into something with more than 2 5 6 variables, so a full implementation would have 
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some way of accounting for this. The GVAR and CONST instructions have to refer to an 
arbitrary object; either we can allocate enough bytes to fit a pointer to this object, or 
we can add a constants field to the f η structure, and follow the instructions with a 
single-byte index into this vector of constants. This latter approach is more common. 

We can now handle branches by changing the program counter to an index into 
the code vector. (It seems severe to limit functions to 256 bytes of code; a two-byte 
label allows for 65536 bytes of code per function.) In summary, the code is more 
compact, branching is efficient, and dispatching can be fast because the opcode is a 
small integer, and we can use a branch table to go to the right piece of code for each 
instruction. 

Another source of inefficiency is implementing the stack as a list, and consing up 
new cells every time something is added to the stack. The alternative is to implement 
the stack as a vector with a fill-pointer. That way a push requires no consing, only a 
change to the pointer (and a check for overflow). The check is worthwhile, however, 
because it allows us to detect infinite loops in the user's code. 

Here follows an assembler that generates a sequence of instructions (as a vector). 
This is a compromise between byte codes and the assembly language format. First, 
we need some accessor functions to get at parts of an instruction: 

(defun opcode ( i ns t r ) ( i f ( label -p i ns t r ) i label ( f i r s t i n s t r ) ) ) 
(defun args ( i ns t r ) ( i f ( l i s t p i ns t r ) ( rest i n s t r ) ) ) 
(defun argl ( i ns t r ) ( i f ( l i s t p i ns t r ) (second i n s t r ) ) ) 
(defun arg2 ( i ns t r ) ( i f ( l i s t p i ns t r ) ( th i rd i n s t r ) ) ) 
(defun arg3 ( i ns t r ) ( i f ( l i s t p i ns t r ) (fourth i n s t r ) ) ) 

(defsetf argl ( i ns t r ) (va l ) ' ( s e t f (second . i ns t r ) , va l ) ) 

Now we write the assembler, which already is integrated into the compiler with a 
hook in new-fn. 

(defun assemble (fn) 
"Turn a l i s t of ins t ruct ions into a vector." 
(mult iple-value-bind (length labe ls) 

(asm- f i rs t -pass (fn-code fn)) 
(set f (fn-code fn) 

(asm-second-pass (fn-code fn) 
length labe ls ) ) 

fn) ) 

(defun asm- f i rs t -pass (code) 
"Return the labels and the total code length . " 
( let (( length 0) 

( labels n i l ) ) 
(do l i s t ( i ns t r code) 

( i f ( label-p i ns t r ) 
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(push (cons ins t r length) labe ls) 
( incf length))) 

(values length l abe ls ) ) ) 

(defun asm-second-pass (code length labe ls ) 
"Put code into code-vector, adjust ing for l a b e l s . " 
( let ((addr 0) 

(code-vector (make-array length)) ) 
(do l i s t ( i ns t r code) 

(unless ( label-p i ns t r ) 
( i f ( i s ins t r '(JUMP TJUMP FJUMP SAVE)) 

(set f (arg l i ns t r ) 
(cdr (assoc (arg l i ns t r ) l abe l s ) ) ) ) 

(set f (aref code-vector addr) i ns t r ) 
( incf addr))) 

code-vector)) 

If we want to be able to look at assembled code, we need a new printing function: 

(defun show-fn (fn Äoptional (stream *standard-output*) (indent 2)) 
"Pr int al l the ins t ruct ions in a funct ion. 
I f the argument i s not a funct ion, jus t princ i t , 
but in a column at least 8 spaces wide." 

This version handles code that has been assembled into a vector 
( i f (not (fn-p fn) ) 

(format stream " " S a " fn) 
(progn 

( f resh -1 ine) 
(dotimes (i ( length (fn-code fn ) ) ) 

( let ( ( i ns t r (e l t (fn-code fn) i ) ) ) 
( i f ( label -p i ns t r ) 

(format stream " " a : " i ns t r ) 
(progn 

(format stream "~VT~2d: " indent i ) 
(do l i s t (arg i ns t r ) 

(show-fn arg stream (+ indent 8 ) ) ) 
( f r e s h - l i n e ) ) ) ) ) ) ) ) 

(defstruct ret-addr fn pc env) 

(defun i s ( i ns t r op) 
"True i f i n s t r ' s opcode i s OP, or one of OP when OP i s a l i s t . " 
( i f ( l i s t p op) 

(member (opcode i ns t r ) op) 
(eq (opcode ins t r ) op))) 

(defun top (stack) ( f i r s t s tack)) 
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(defun machine ( f ) 
"Run the abstract machine on the code for f." 
( le t * ((code (fn-code f ) ) 

(pc 0) 
(env n i l ) 
(stack n i l ) 
(n-args 0) 
( i n s t r ) ) 

(loop 
(set f i ns t r (e l t code pc)) 
( inc f pc) 
(case (opcode ins t r ) 

Var iable/s tack manipulation ins t ruc t ions : 
(LVAR (push (e l t (e l t env (arg l i n s t r ) ) (arg2 i n s t r ) ) 

s tack)) 
(LSET (set f (e l t (e l t env (arg l i n s t r ) ) (arg2 i n s t r ) ) 

(top s tack) ) ) 
(GVAR (push (get (arg l i ns t r ) ' g l oba l - va l ) s tack)) 
(GSET (set f (get (arg l i ns t r ) ' g l oba l - va l ) (top s tack) ) ) 
(POP (pop stack)) 
(CONST (push (arg l i ns t r ) s tack)) 

Branching ins t ruc t ions : 
(JUMP (set f pc (arg l i n s t r ) ) ) 
(FJUMP ( i f (nul l (pop stack)) (set f pc (arg l i n s t r ) ) ) ) 
(TJUMP ( i f (pop stack) (set f pc (arg l i n s t r ) ) ) ) 

; ; Function ca l l / re tu rn ins t ruc t ions : 
(SAVE (push (make-ret-addr :pc (arg l i ns t r ) 

: fn f :env env) 
s tack)) 

(RETURN return value i s top of s tack; ret-addr i s second 
(set f f ( ret-addr- fn (second stack)) 

code (fn-code f ) 
env (ret-addr-env (second stack)) 
pc (ret-addr-pc (second s tack) ) ) 

; ; Get r id of the ret-addr. but keep the value 
(set f stack (cons ( f i r s t stack) ( rest2 s tack ) ) ) ) 

(CALLJ (pop env) : d iscard the top frame 
(set f f (pop stack) 

code (fn-code f ) 
env (fn-env f ) 
pc 0 
n-args (arg l i n s t r ) ) ) 

(ARGS (asser t (= n-args (arg l i n s t r ) ) () 
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"Wrong number of arguments:~ 
"d expected, ~d suppl ied" 
(arg l i ns t r ) n-args) 

(push (make-array (arg l i n s t r ) ) env) 
(loop for i from (- n-args 1) downto 0 do 

(set f (e l t ( f i r s t env) i ) (pop s tack ) ) ) ) 
(ARGS. (asser t (>= n-args (arg l i n s t r ) ) () 

"Wrong number of arguments:~ 
~d or more expected, ~d suppl ied" 
(arg l i ns t r ) n-args) 

(push (make-array (+ 1 (arg l i n s t r ) ) ) env) 
(loop repeat (- n-args (arg l i n s t r ) ) do 

(push (pop stack) (e l t ( f i r s t env) (arg l i n s t r ) ) ) ) 
(loop for i from (- (arg l i ns t r ) 1) downto 0 do 

(set f (e l t ( f i r s t env) i ) (pop s tack ) ) ) ) 
(FN (push (make-fn :code (fn-code (arg l i n s t r ) ) 

:env env) s tack)) 
(PRIM (push (apply (arg l i ns t r ) 

(loop with args = ni l repeat n-args 
do (push (pop stack) args) 
f i na l l y (return a rgs ) ) ) 

s tack)) 

Continuation ins t ruc t ions : 
(SET-CC (set f stack (top s tack) ) ) 
(CC (push (make-fn 

:env ( l i s t (vector s tack) ) 
:code '((ARGS 1) (LVAR 1 0 " ; " stack) (SET-CC) 

(LVAR 0 0) (RETURN))) 
s tack)) 

Nul lary operat ions: 
((SCHEME-READ NEWLINE) 

(push (funcal l (opcode i n s t r ) ) s tack)) 

Unary operat ions: 
((CAR CDR CADR NOT LISTl COMPILER DISPLAY WRITE RANDOM) 

(push (funcal l (opcode i ns t r ) (pop stack)) s tack)) 

Binary operat ions: 
( ( + . * / < > < = > = / : . = CONS LIST2 NAME! EQ EQUAL EQL) 
(set f stack (cons (funcal l (opcode i ns t r ) (second stack) 

( f i r s t s tack)) 
( rest2 s tack ) ) ) ) 
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Ternary operat ions: 
(LIST3 
(set f stack (cons (funcal l (opcode i ns t r ) ( th i rd stack) 

(second stack) ( f i r s t s tack)) 
( res ts s tack ) ) ) ) 

; ; Constants: 
((T NIL - 1 0 1 2 ) 

(push (opcode i ns t r ) s tack)) 

Other: 
((HALT) (RETURN (top s tack) ) ) 
(otherwise (error "Unknown opcode: ~a" i n s t r ) ) ) ) ) ) 

(defun init-scheme-comp () 
" I n i t i a l i z e values ( inc luding ca l l / c c ) for the Scheme compiler." 
( se t -g loba l -va r ! ' ex i t 

(new-fn :name 'ex i t :args ' ( v a l ) :code ' ( (HALT)) ) ) 
( se t -g loba l -va r ! ' c a l l / c c 

(new-fn :name ' c a l l / c c :args ' ( f ) 
:code '((ARGS 1) (CC) (LVAR 0 0 f ) (CALLJ 1 ) ) ) ) 

(do l i s t (prim *pr im i t i ve- fns* ) 
(set f (get (prim-symbol prim) ' g l oba l - va l ) 

(new-fn :env n i l :name (prim-symbol prim) 
:code (seq (gen 'PRIM (prim-symbol prim)) 

(gen 'RETURN)))))) 

Here's the Scheme top level. Note that it is written in Scheme itself; we compile 
the definition of the read-eval-print loop/ load it into the machine, and then start 
executing it. There's also an interface to compile and execute a single expression, 
comp-go. 

(defconstant scheme-top-level 
' (beg in(def ine (scheme) 

(newline) 
(d isp lay "=> ") 
(write ((compiler ( read)) ) ) 
(scheme)) 

(scheme))) 

(defun scheme () 
"A compiled Scheme read-eval-pr int loop" 
(init-scheme-comp) 
(machine (compiler scheme-top-1evel))) 

^Strictly speaking, this is a read-compile-funcall-vmte loop. 
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(defun comp-go (exp) 
"Compile and execute the express ion . " 
(machine (compiler ' ( ex i t .exp)) ) ) 

[¿3 Exercise 23.2 [m] This implementation of the machine is wasteful in its represen
tation of environments. For example, consider what happens in a tail-recursive 
function. Each ARG instruction builds a new frame and pushes it on the environment. 
Then each CALL pops the latest frame off the environment. So, while the stack does 
not grow with tail-recursive calls, the heap certainly does. Eventually, we will have 
to garbage-collect all those unused frames (and the cons cells used to make lists out 
of them). How could we avoid or limit this garbage collection? 

23.4 A Peephole Optimizer 

In this section we investigate a simple technique that will generate slightly better 
code in cases where the compiler gives inefficient sequences of instructions. The 
idea is to look at short sequences of instructions for prespecified patterns and replace 
them with equivalent but more efficient instructions. 

In the following example, comp - i f has already done some source-level optimiza
tion, such as eliminating the ( f x ) call, 

> (comp-show ' (begin ( i f ( i f t 1 ( f x ) ) ( se t ! χ 2)) χ ) ) 
O: ARGS O 
1 : 1 
2: FJUMP 6 
3 : 2 
4: GSET X 
5: POP 
6: GVAR X 
7: RETURN 

But the generated code could be made much better. This could be done with more 
source-level optimizations to transform the expression into ( s e t ! χ 2 ) . Alterna
tively, it could also be done by looking at the preceding instruction sequence and 
transforming local inefficiencies. The optimizer presented in this section is capable 
of generating the following code: 



818 COMPILING LISP 

> (comp-show ' (begin ( i f ( i f t 1 ( f x ) ) (se t ! χ 2)) χ ) ) 
0: ARGS O 
1 : 2 
2 : GSET X 
3: RETURN 

The function opt imize is implemented as a data-driven function that looks at 
the opcode of each instruction and makes optimizations based on the following 
instructions. To be more specific, opt i mi ze takes a hst of assembly language instruc
tions and looks at each instruction in order, trying to apply an optimization. If any 
changes at all are made, then opt i mi ze will be called again on the whole instruction 
list, because further changes might be triggered by the first round of changes. 

(defun optimize (code) 
"Perform peephole optimization on assembly code." 
( le t ((any-change n i l ) ) 

Optimize each ta i l 
(loop for code-tai l on code do 

(set f any-change (or (optimize-1 code-tai l code) 
any-change))) 

; ; I f any changes were made, cal l optimize again 
( i f any-change 

(optimize code) 
code))) 

The function opt imize -1 is responsible for each individual attempt to optimize. It 
is passed two arguments: a list of instructions starting at the current one and going 
to the end of the list, and a list of all the instructions. The second argument is 
rarely used. The whole idea of a peephole optimizer is that it should look at only a 
few instructions following the current one. opt i mi ze -1 is data-driven, based on the 
opcode of the first instruction. Note that the optimizer functions do their work by 
destructively modifying the instruction sequence, not by consing up and returning a 
new sequence. 

(defun optimize-1 (code a l l -code) 
"Perform peephole optimization on a ta i l of the assembly code. 
I f a change i s made, return t rue. " 
; ; Data-driven by the opcode of the f i r s t ins t ruct ion 
( le t * ( ( i ns t r ( f i r s t code)) 

(optimizer (get-optimizer (opcode i n s t r ) ) ) ) 
(when optimizer 

(funcall optimizer ins t r code a l l - code) ) ) ) 
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We need a table to associate the individual optimizer functions with the opcodes. 
Since opcodes include numbers as well as symbols, an eq 1 hash table is an appropriate 
choice: 

( let ((optimizers (make-hash-table : test # ' e q l ) ) ) 

(defun get-optimizer (opcode) 
"Get the assembly language optimizer for th i s opcode." 
(gethash opcode opt imizers)) 

(defun put-optimizer (opcode fn) 
"Store an assembly language optimizer for th is opcode." 
(set f (gethash opcode optimizers) fn ) ) ) 

We could now build a table with put-opt i mi zer, but it is worth defining a macro to 
make this a Httle neater: 

(defmacro def-optimizer (opcodes args &body body) 
"Define assembly language optimizers for these opcodes." 
(assert (and ( l i s t p opcodes) ( l i s t p args) (= (length args) 3 ) ) ) 
' ( d o l i s t (op ' .opcodes) 

(put-optimizer op #*(lambda .args . .body) ) ) ) 

Before showing example optimizer functions, we will introduce three auxiliary func
tions, geni generates a single instruction, target finds the code sequence that a 
jump instruction branches to, and next- i nstr finds the next actual instruction in a 
sequence, skipping labels. 

(defun geni (&rest args) "Generate a s ing le ins t ruc t ion" args) 
(defun target ( i ns t r code) (second (member (argl i ns t r ) code))) 
(defun next - ins t r (code) ( f i nd - i f (complement #* label -p) code)) 

Here are six optimizer functions that implement a few important peephole optimiza
tions. 

(def-optimizer (:LABEL) ( i ns t r code a l l -code) 
. . . L . . . => ; i f no reference to L 

(when (not ( f ind ins t r a l l -code :key # ' a r g l ) ) 
(set f ( f i r s t code) (second code) 

( rest code) (rest2 code)) 
t ) ) 
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(def-optimizer (GSET LSET) ( i ns t r code a l l -code) 

; ; ex: (begin (se t ! χ y) ( i f χ ζ ) ) 

(SET Χ) (POP) (VAR X) = = > (SET X) 

(when (and ( i s (second code) 'POP) 

( i s ( th i rd code) '(GVAR LVAR)) 

(eq (argl i ns t r ) (argl ( th i rd code)))) 

(set f ( rest code) (nthcdr 3 code)) 

t ) ) 

(def-optimizer (JUMP CALL CALLJ RETURN) ( i ns t r code a l l -code) 

(JUMP L I ) . . .dead code . . . L2 = = > (JUMP L I ) L2 

(set f ( rest code) (member-if # ' l abe l -ρ ( rest code))) 

(JUMP L I ) . . . L I (JUMP L2) = = > (JUMP L2) . . . L I (JUMP L2) 

(when (and ( i s ins t r 'JUMP) 

( i s (target ins t r code) '(JUMP RETURN)) 

(set f ( f i r s t code) ( copy - l i s t (target ins t r code))) 

t ) ) ) 

(def-optimizer (TJUMP FJUMP) ( i ns t r code a l l -code) 

(FJUMP L I ) . . . L I (JUMP L2) = = > (FJUMP L2) . . . L I (JUMP L2) 

(when ( i s (target ins t r code) 'JUMP) 

(set f (second i ns t r ) (arg l (target ins t r code))) 

t ) ) 

(def-optimizer (T -1 0 1 2) ( i ns t r code a l l -code) 

(case (opcode (second code)) 

(NOT : ; (T) (NOT) = = > NIL 

(set f ( f i r s t code) (geni ' N I D 

( rest code) ( rest2 code)) 

t ) 

(FJUMP (T) (FJUMP L) . . . => . . . 

(set f ( f i r s t code) ( th i rd code) 

( rest code) ( rest3 code)) 

t ) 

(TJUMP ; : (T) (TJUMP L) . . . => (JUMP L) . . . 

(set f ( f i r s t code) (geni 'JUMP (argl (next - ins t r code)))) 

t ) ) ) 
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(def-optimizer (NIL) ( i ns t r code a l l -code) 
(case (opcode (second code)) 

(NOT ; ; (NIL) (NOT) = = > Τ 
(set f ( f i r s t code) (geni 'Τ) 

( rest code) (rest2 code)) 
t) 

(TJUMP (NIL) (TJUMP L) . . . => . . . 
(set f ( f i r s t code) ( th i rd code) 

( rest code) ( rest3 code)) 
t) 

(FJUMP (NIL) (FJUMP L) = = > (JUMP L) 
(set f ( f i r s t code) (geni 'JUMP (arg l (next - ins t r code)))) 
t ) ) ) 

23.5 Languages with Different Lexical 
Conventions 

This chapter has shown how to evaluate a language with Lisp-like syntax, by writing 
a read-eval-print loop where only the eval needs to be replaced. In this section we 
see how to make the read part slightly more general. We still read Lisp-like syntax, 
but the lexical conventions can be slightly different. 

The Lisp function read is driven by an object called the readtable, which is stored 
in the special variable *readtabl e*. This table associates some action to take with 
each of the possible characters that can be read. The entry in the readtable for the 
character # \ (, for example, would be directions to read a list. The entry for # \ ; would 
be directions to ignore every character up to the end of the line. 

Because the readtable is stored in a special variable, it is possible to alter com
pletely the way read works just by dynamically rebinding this variable. 

The new function scheme - read temporarily changes the readtable to a new one, 
the Scheme readtable. It also accepts an optional argument, the stream to read 
from, and it returns a special marker on end of file. This can be tested for with the 
predicate eof-object? . Note that once scheme- read is installed as the value of the 
Scheme symbol read we need do no more-scheme- read will always be called when 
appropriate (by the top level of Scheme, and by any user Scheme program). 

(defconstant eof "EoF") 
(defun eof-object? (x) (eq χ eof)) 
(defvar *scheme-readtable* (copy-readtable)) 
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(defun scheme-read (Äoptional (stream *standard- input*) ) 
( le t ( (*readtable* *scheme-readtable*)) 

(read stream ni l eo f ) ) ) 

The point of having a special eof constant is that it is unforgeable. The user cannot 
type in a sequence of characters that will be read as something eq to eof. In Common 
Lisp, but not Scheme, there is an escape mechanism that makes eof forgable. The 
user can type # .eof to get the effect of an end of file. This is sinülar to the "D 
convention in UNIX systems, and it can be quite handy. 

So far the Scheme readtable is just a copy of the standard readtable. The next step 
in implementing scheme-read is to alter *scheme- readtabl e*, adding read macros 
for whatever characters are necessary. Here we define macros for # t and #f (the true 
and false values), for #d (decimal numbers) and for the backquote read macro (called 
quasiquote in Scheme). Note that the backquote and conruna characters are defined 
as read macros, but the ® in ,® is processed by reading the next character, not by a 
read macro on ®. 

(set-dispatch-macro-character #\# # \ t 
#*(lambda (&rest ignore) t ) 
*scheme-readtable*) 

(set-dispatch-macro-character #\# # \ f 
#·(lambda (&rest ignore) n i l ) 
*scheme-readtable*) 

(set-dispatch-macro-character #\# #\d 
In both Common Lisp and Scheme, 

; ; #x, # 0 and #b are hexidecimal, oc ta l , and binary, 
e . g . #xff = #o377 = # b l l l l l l l l = 255 
In Scheme only , #d255 i s decimal 255. 

#*(lambda (stream &rest ignore) 
( le t ( (* read-base* 10)) (scheme-read stream))) 

*scheme-readtable*) 

(set-macro-character # \* 
#*(lambda (s ignore) ( l i s t 'quasiquote (scheme-read s ) ) ) 
ni l *scheme-readtable*) 

(set-macro-character # \ , 
#'(lambda (stream ignore) 

( le t ((ch (read-char stream))) 
( i f (char= ch #\®) 

( l i s t 'unquote-spl ic ing (read stream)) 
(progn (unread-char ch stream) 

( l i s t 'unquote (read s t ream))) ) ) ) 
n i l *scheme-readtable*) 

Finally, we install scheme- read and eof -ob j ec t ? as prinütives: 
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(defparameter *p r im i t i ve - fns* 
· ( (+ 2 + true n i l ) (- 2 - true n i l ) (* 2 * true n i l ) ( / 2 / true n i l ) 

« 2 < ni l n i l ) (> 2 > ni l n i l ) (<= 2 <= ni l n i l ) (>= 2 >= ni l n i l ) 
( /= 2 / = ni l n i l ) (= 2 = ni l n i l ) 
(eq? 2 eq ni l n i l ) (equal? 2 equal ni l n i l ) (eqv? 2 eql ni l n i l ) 
(not 1 not n i l n i l ) ( nu l l ? 1 not n i l n i l ) (cons 2 cons true n i l ) 
(car 1 car n i l n i l ) (cdr 1 cdr n i l n i l ) (cadr 1 cadr n i l n i l ) 
( l i s t 1 l i s t l true n i l ) ( l i s t 2 l i s t 2 true n i l ) ( l i s t 3 l i s t 3 true n i l ) 
(read 0 read ni l t ) (write 1 write ni l t ) (d isp lay 1 d isp lay ni l t ) 
(newline 0 newline ni l t ) (compiler 1 compiler t n i l ) 
(name! 2 name! true t ) (random 1 random true n i l ) ) ) 

Here we test scheme - read. The characters in italics were typed as a response to the 
scheme-read. 

> (scheme-read) #f 
Τ 

> (scheme-read) # / 
NIL 

> (scheme-read) '(a,b,@cd) 
(QUASIQUOTE (A (UNQUOTE B) (UNQUOTE-SPLICING C) D)) 

The final step is to make quasi quote a macro that expands into the proper sequence 
of calls to cons, 1 i st, and append. The careful reader will keep track of the difference 
between the form returned by scheme-read (something starting with quasi quote), 
the expansion of this form with the Scheme macro quasi quote (which is imple
mented with the Common Lisp function qua s i - q), and the eventual evaluation of the 
expansion. In an environment where b is bound to the number 2 and c is bound to 
the Ust (cl c2 ) , we might have: 

Typed: '(a ,b .®c d) 
Read: (quasiquote (a (unquote b) (unquote-splicing c) d)) 
Expanded: (cons 'a (cons b (append c ' (d)))) 
Evaluated: (a 2 cl c2 d) 

The implementation of the quasi quote macro is modeled closely on the one given 
in Charniak et al.'s Artificial Intelligence Programming. I added support for vectors. In 
combi ne - quas i quote I add the trick of reusing the old cons cell χ rather than consing 
together 1 eft and ri ght when that is possible. However, the implementation still 
wastes cons cells—a more efficient version would pass back multiple values rather 
than consing quote onto a list, only to strip it off again. 
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(set f (scheme-macro 'quasiquote) 'quas i -q ) 

(defun quasi-q (x) 
"Expand a quasi quote form into append, l i s t , and cons c a l l s . " 
(cond 

((vectorp x) 
( l i s t 'apply 'vector (quasi-q (coerce χ ' l i s t ) ) ) ) 

((atom x) 
( i f (constantp x) χ ( l i s t 'quote x ) ) ) 

( (s ta r ts -w i th χ 'unquote) 
(asser t (and ( rest x) (null ( rest2 x ) ) ) ) 
(second x) ) 

( (s tar ts -w i th χ 'quasiquote) 
(asser t (and ( rest x) (nul l ( rest2 x ) ) ) ) 
(quasi-q (quasi-q (second x ) ) ) ) 

( (s tar ts -w i th ( f i r s t x) 'unquote-sp l ic ing) 
( i f (null ( rest x ) ) 

(second ( f i r s t x ) ) 
( l i s t 'append (second ( f i r s t x ) ) (quasi-q ( rest x ) ) ) ) ) 

(t (combine-quasiquote (quasi-q (car x) ) 
(quasi -q (cdr x ) ) 
x ) ) ) ) 

(defun combine-quasiquote ( le f t r ight x) 
"Combine le f t and r ight (car and cd r ) , poss ib ly re-us ing x . " 
(cond ((and (constantp le f t ) (constantp r igh t ) ) 

( i f (and (eql (eval le f t ) ( f i r s t x ) ) 
(eql (eval r ight ) ( rest x ) ) ) 

( l i s t 'quote x) 
( l i s t 'quote (cons (eval le f t ) (eval r i g h t ) ) ) ) ) 

( (nul l r ight ) ( l i s t ' l i s t l e f t ) ) 
( (s ta r ts -w i th r ight ' l i s t ) 
( l i s t * ' l i s t le f t ( rest r i gh t ) ) ) 

(t ( l i s t 'cons le f t r i gh t ) ) ) ) 

Actually, there is a major problem with the quas i quote macro, or more accurately, in 
the entire approach to macro-expansion based on textual substitution. Suppose we 
wanted a function that acted like this: 

> (extrema ' ( 3 1 10 5 20 2)) 
((max 20) (min D ) 
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We could write the Scheme function: 

(define (extrema l i s t ) 
Given a l i s t of numbers, return an a - l i s t 
with max and min values 

'((max .(apply max l i s t ) ) (min .(apply min l i s t ) ) ) ) 

After expansion of the quasiquote, the definition of extrema will be: 

(define extrema 
(lambda ( l i s t ) 

( l i s t ( l i s t 'max (apply max l i s t ) ) 
( l i s t 'min (apply min l i s t ) ) ) ) ) 

The problem is that 1 i s t is an argument to the function extrema, and the argument 
shadows the global definition of 1 i s t as a function. Thus, the function will fail. One 
way around this dilemma is to have the macro-expansion use the global value of 1 i s t 
rather than the symbol 1 i s t itself. In other words, replace the ' l i s t in quasi -q with 
(get - gl oba 1 - va r ' l i s t ) . Then the expansion can be used even in an environment 
where 1 i s t is locally bound. One has to be careful, though: if this tack is taken, then 
comp - funcall should be changed to recognize function constants, and to do the right 
thing with respect to primitives. 

It is problems like these that made the designers of Scheme admit that they 
don't know the best way to specify macros, so there is no standard macro definition 
mechanism in Scheme. Such problems rarely come up in Common Lisp because 
functions and variables have different name spaces, and because local function 
definitions (with f 1 e t or 1 abel s ) are not widely used. Those who do define local 
functions tend not to use already estabUshed names like 1 i s t and append. 

23.6 History and References 
Guy Steele's 1 9 7 8 M I T master's thesis on the language Scheme, rewritten as Steele 
1 9 8 3 , describes an innovative and influential compiler for Scheme, called RABBFI.^ 
A good article on an "industrial-strength" Scheme compiler based on this approach 
is described in Kranz et al.'s 1 9 8 6 paper on ΟΚΒΓΓ, the compiler for the Τ dialect of 
Scheme. 

Abelson and Sussman's Structure and Interpretation of Computer Programs ( 1 9 8 5 ) 
contains an excellent chapter on compilation, using slightly different techniques and 
compiling into a somewhat more confusing machine language. Another good text 

^At the time, the MacLisp compiler dealt with something called "lisp assembly code" or 
LAP. The function to input LAP was called 1 api η. Those who know French will get the pun. 
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is John Allen's Anatomy of Lisp (1978). It presents a very clear, simple compiler, 
although it is for an older, dynamically scoped dialect of Lisp and it does not address 
tail-recursion or cal 1 / cc. 

The peephole optimizer described here is based on the one in Masinter and 
Deutsch 1980. 

23.7 Exercises 

@ Exercise 23.3 [h] Scheme's syntax for numbers is slightly different from Common 
Lisp's. In particular, complex numbers are written like 3+4i rather than #c(3 4 ) . 
How could you make scheme - read account for this? 

@ Exercise 23.4 [m] Is it possible to make the core Scheme language even smaller, 
by eliminating any of the five special forms (quote, begin , se t ! , i f , lambda) and 
replacing them with macros? 

@ Exercise 23.5 [m] Add the ability to recognize internal defines (see page 779). 

@ Exercise 23.6 [h] In comp-i f we included a special case for ( i f t χ y ) and ( i f 
n i l X y ) . But there are other cases where we know the value of the predicate. For 
example, ( i f ( * a b) χ y ) can also reduce to x. Arrange for these optimizations to 
be made. Note the prim -a 1 ways field of the prim structure has been provided for this 
purpose. 

@ Exercise 23.7 [m] Consider the following version of the quicksort algorithm for 
sorting a vector: 

(define (sort -vector vector test ) 
(define (sor t lo h i ) 

( i f (>= lo h i ) 
vector 
( let ( (p ivot (par t i t ion vector lo hi t es t ) ) ) 

(sor t lo pivot) 
(sor t (+ pivot 1) h i ) ) ) ) 

(sor t 0 (- (vector- length vector 1 ) ) ) ) 

Here the function pa r t i t i on takes a vector, two indices into the vector, and a com
parison function, t e s t . It modifies the vector and returns an index, pi vot, such that 
all elements of the vector below pi vot are less than all elements at pi vot or above. 
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It is well known that quicksort takes time proportional to η log η to sort a vector of 
η elements, if the pivots are chosen well. With poor pivot choices, it can take time 
proportional to TI?. 

The question is, what is the space required by quicksort? Besides the vector itself, 
how much additional storage must be temporarily allocated to sort a vector? 

Now consider the following modified version of quicksort. What time and space 
complexity does it have? 

(define (sor t -vector vector test ) 
(define (sor t lo h i ) 

( i f (>= lo h i ) 
vector 
( le t ( (p ivot (par t i t ion vector lo h i ) ) ) 

( i f (> (- hi p ivot) (- pivot l o ) ) 
(begin (sor t lo pivot) 

(sor t (+ pivot 1) h i ) ) 
(begin (sor t (+ pivot 1) h i ) 

(sor t lo p i vo t ) ) ) ) ) ) 
(sor t 0 (- (vector- length vector 1 ) ) ) ) 

The next three exercises describe extensions that are not part of the Scheme 
standard. 

[¿1 Exercise 23.8 [h] The se t ! special form is defined only when its first argument is 
a symbol. Extend se t l to work like s e t f when the first argument is a hst. That is, 
( s e t ! (car x) y) should expand into something like ( ( s e t t e r car) y χ), where 
( s e t t e r car) evaluates to the primitive procedure se t - ca r ! . You will need to add 
some new primitive functions, and you should also provide a way for the user to 
define new se t ! procedures. One way to do that would be with a s e t t e r function 
for se t ! , for example: 

(se t ! (setter th i rd) 
(lambda (val l i s t ) (se t -car ! (cdr (cdr l i s t ) ) va l ) ) ) 

[¿3 Exercise 23.9 [m] Itis a curious asymmetry of Scheme that there is a special notation 
for lambda expressions within def i ne expressions, but not within 1 et . Thus, we see 
the following: 

(define square (lambda (x) (* χ χ ) ) ) listhesameas 
(define (square χ) (* χ χ) ) 
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( le t ((square (lambda (x) (* χ χ ) ) ) ) . . . ) ; is not the same as 
( let (((square x) (* χ χ ) ) ) . . . ) : <=illegal! 

Do you think this last expression should be legal? If so, modify the macros for 
1 et, 1 et*, and 1 e t rec to allow the new syntax. If not, explain why it should not be 
included in the language. 

@ Exercise 23.10 [m] Scheme does not define f uncal 1 , because the normal function-
call syntax does the work of funcall. This suggests two problems. (1) Is it possible 
to define f uncal 1 in Scheme? Show a definition or explain why there can't be one. 
Would you ever have reason to use f uncal 1 in a Scheme program? (2) Scheme does 
define appl y, as there is no syntax for an application. One might want to extend the 
syntax to make (+ . numbers) equivalent to (apply + numbers). Would this be a 
good idea? 

t¿3 Exercise 23.11 [d] Write a compiler that translates Scheme to Common Lisp. This 
will involve changing the names of some procedures and special forms, figuring out 
a way to map Scheme's single name space into Common Lisp's distinct function and 
variable name spaces, and dealing with Scheme's continuations. One possibility is 
to translate a cal 1 / c c into a catch and throw, and disallow dynamic continuations. 

23.8 Answers 

Answer 23.2 We can save frames by making a resource for frames, as was done 
on page 337. Unfortunately, we can't just use the def resource macro as is, because 
we need a separate resource for each size frame. Thus, a two-dimensional array or 
a vector of vectors is necessary. Furthermore, one must be careful in determining 
when a frame is no longer needed, and when it has been saved and may be used again. 
Some compilers will generate a special calling sequence for a tail-recursive call where 
the environment can be used as is, without discarding and then creating a new frame 
for the arguments. Some compilers have varied and advanced representations for 
environments. An environment may never be represented explicitly as a list of 
frames; instead it may be represented implicitly as a series of values in registers. 
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Answer 23.3 We could read in Scheme expressions as before, and then convert any 
symbols that looked Hke complex numbers into numbers. The following routines do 
this without consing. 

(defun scheme-read (&optional (stream *standard- input*) ) 
( le t ( (*readtable* *scheme-readtable*)) 

(convert-numbers (read stream ni l eo f ) ) ) ) 

(defun convert-numbers (x) 
"Replace symbols that look l i ke Scheme numbers with thei r va lues . " 

Don't copy s t ructure, make changes in place, 
(typecase χ 

(cons (set f (car x) (convert-numbers (car x ) ) ) 
(set f (cdr x) (convert-numbers (cdr x ) ) ) 
X) 

(symbol (or (convert-number x) x ) ) 
(vector (dotimes ( i ( length x ) ) 

(set f (aref χ i ) (convert-numbers (aref χ i ) ) ) ) 
χ) 

(t χ ) ) ) 

(defun convert-number (symbol) 
" I f s t r looks l i ke a complex number, return the number." 
( le t * ( ( s t r (symbol-name symbol)) 

(pos (pos i t i on - i f # ' s i g n - p s t r ) ) 
(end (- ( length s t r ) 1 ) ) ) 

(when (and pos (char-equal (char s t r end) # \ i ) ) 
( let ( ( re (read-from-str ing s t r ni l n i l i s ta r t 0 :end pos)) 

(im (read-from-str ing s t r n i l n i l : s ta r t pos :end end))) 
(when (and (numberp re) (numberp im)) 

(complex re im) ) ) ) ) ) 

(defun s ign-p (char) ( f ind char " + - " ) ) 

Actually, that's not quite good enough, because a Scheme complex number can have 
multiple signs in it, as in 3 . 4e- 5+6. 7e-»-8i, and it need not have two numbers, as in 
31 or 4+i or just + i . The other problem is that complex numbers can only have a 
lowercase i , but read does not distinguish between the symbols 3+4i and 3+41. 
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Answer 23.4 Yes, it is possible to implement begi η as a macro: 

(setf (scheme-macro 'begin) 
#'(1ambda (&rest exps) '((lambda () . ,exps)))) 

With some work we could also eliminate quote. Instead of ' x , we could use 
( s t r i ng ->synibol " X") , and instead of ' (1 2 ) , we could use something like ( l i s t 1 
2 ) . The problem is in knowing when to reuse the same list. Consider: 

=> (define (one-two) ' ( 1 2)) 
ONE-TWO 

=> (eq? (one-two) (one-two)) 
Τ 

=> (eq? ' ( 1 2) ' ( 1 2)) 
NIL 

A clever memoized macro for quote could handle this, but it would be less efficient 
than having quote as a special form. In short, what's the point? 

It is also (nearly) possible to replace i f with alternate code. The idea is to replace: 

( i f test then-part else-part) 

with 

(iesHdelay then-part) ióe} ay else-part)) 

Now if we are assured that any test returns either # t or #f, then we can make the 
following definitions: 

(define #t (lambda (then-part else-part) (force then-part))) 
(define #f (lambda (then-part else-part) (force else-part))) 

The only problem with this is that any value, not just # t , counts as true. 
This seems to be a common phenomenon in Scheme compilers: translating 

everything into a few very general constructs, and then recognizing special cases of 
these constructs and compiling them specially. This has the disadvantage (compared 
to explicit use of many special forms) that compilation may be slower, because all 
macros have to be expanded first, and then special cases have to be recognized. It 
has the advantage that the optimizations will be applied even when the user did not 
have a special construct in mind. Common Lisp attempts to get the advantages of 
both by allowing implementations to play loose with what they implement as macros 
and as special forms. 
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Answer 23.6 We define the predicate a 1 ways and install it in two places in comp - i f: 

(defun always (pred env) 
"Does predicate always evaluate to true or f a l s e ? " 
(cond ((eq pred t) ' t rue) 

((eq pred n i l ) ' f a l s e ) 
((symbolp pred) n i l ) 
((atom pred) ' t rue) 
((scheme-macro ( f i r s t pred)) 

(always (scheme-macro-expand pred) env)) 
((case ( f i r s t pred) 

(QUOTE ( i f (null (second pred)) ' f a l s e ' t rue) ) 
(BEGIN ( i f (null ( rest pred)) ' f a l se 

(always ( l a s t l pred) env))) 
(SET! (always ( th i rd pred) env)) 
( IF ( le t ( ( tes t (always (second pred)) env) 

(then (always ( th i rd pred)) env) 
(e lse (always (fourth pred)) env)) 

(cond ((eq test ' t rue) then) 
((eq test ' f a l s e ) e lse) 
((eq then e lse) then)) ) ) 

(LAMBDA ' t rue) 
(t ( le t ((prim (pr imit ive-p ( f i r s t pred) env 

(length ( rest pred)) ) ) ) 
( i f prim (prim-always p r im) ) ) ) ) ) ) ) 

(defun comp-if (pred then else env va l? more?) 
(case (always pred env) 

(true ; ( i f n i l χ y ) = = > y ; * * * 
(comp then env va l? more?)) ; * * * 

( fa lse ; ( i f t χ y) = = > χ ; * * * 
(comp else env va l? more?)) ; * * * 

(otherwise 
( le t ((pcode (comp pred env t t ) ) 

(tcode (comp then env va l? more?)) 
(ecode (comp else env va l? more?))) 

(cond 
((and ( l i s t p pred) ; ( i f (not p) χ y) = = > ( i f p y x ) 

( length=l ( rest pred)) 
(pr imit ive-p ( f i r s t pred) env 1) 
(eq (prim-opcode (pr imit ive-p ( f i r s t pred) env 1)) 

'not ) ) 
(comp-if (second pred) e lse then env va l? more?)) 

((equal tcode ecode) ; ( i f ρ χ x) = = > (begin ρ χ) 
(seq (comp pred env ni l t ) ecode)) 

((nul l tcode) ; ( i f ρ ni l y) = = > ρ (TJUMP L2) y L2: 
( le t ((L2 (gen- labe l ) ) ) 

(seq pcode (gen 'TJUMP L2) ecode ( l i s t L2) 
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(unless more? (gen 'RETURN))))) 
( (nul l ecode) ; ( i f ρ χ) = = > ρ (FJUMP L I ) χ L I : 
( let ( ( L I (gen- labe l ) ) ) 

(seq pcode (gen TJUMP L I ) tcode ( l i s t L I ) 
(unless more? (gen 'RETURN))))) 

(t ; ( i f ρ X y) = = > ρ (FJUMP L I ) χ L I : y 
: or ρ (FJUMP L I ) χ (JUMP L2) L I : y L2: 

( let ( ( L I (gen- label ) ) 
(L2 ( i f more? (gen- labe l ) ) ) ) 

(seq pcode (gen 'FJUMP L I ) tcode 
( i f more? (gen 'JUMP L2)) 
( l i s t L I ) ecode ( i f more? ( l i s t L 2 ) ) ) ) ) ) ) ) ) ) 

Developnient note: originally, I had coded a 1 ways as a predicate that took a Boolean 
value as input and returned true if the expression always had that value. Thus, you 
had to ask first if the predicate was always true, and then if it was always false. Then 
I realized this was duplicating much effort, and that the duplication was exponential, 
not just linear: for a triply-nested conditional I would have to do eight times the 
work, not tw îce the work. Thus I switched to the above formulation, where always 
is a three-valued function, returning true, f al se, or ni 1 for none-of-the-above. But 
to demonstrate that the right solution doesn't always appear the first time, I give my 
original definition as well: 

(defun always (boolean pred env) 
"Does predicate always evaluate to boolean in env?" 
( i f (atom pred) 

(and (constantp pred) (equiv boolean pred)) 
(case ( f i r s t pred) 

(QUOTE (equiv boolean pred)) 
(BEGIN ( i f (null ( rest pred)) (equiv boolean n i l ) 

(always boolean ( l a s t l pred) env))) 
(SET! (always boolean ( th i rd pred) env)) 
( IF (or (and (always t (second pred) env) 

(always boolean ( th i rd pred) env)) 
(and (always ni l (second pred) env) 

(always boolean (fourth pred) env)) 
(and (always boolean ( th i rd pred) env) 

(always boolean (fourth pred) env) ) ) ) 
(LAMBDA (equiv boolean t ) ) 
(t ( le t ((prim (pr imit ive-p ( f i r s t pred) env 

(length ( rest pred) ) ) ) ) 
(and prim 

(eq (prim-always prim) 
( i f boolean ' t rue ' f a l s e ) ) ) ) ) ) ) ) 

(defun equiv (x y) "Boolean equivalence" (eq (not x) (not y ) ) ) 
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Answer 23.7 The original version requires 0 ( n ) stack space for poorly chosen 
pivots. Assuming a properly tail-recursive compiler, the modified version will never 
require more than O(logn) space, because at each step at least half of the vector is 
being sorted tail-recursively. 

Answer 23.10 (1) (defun ( funca l l fn . args) (apply fn a rgs)) 
(2) Suppose you changed the piece of code (+ . numbers) to (+ . (map s q r t 
numbers)). The latter is the same expression as (+ map s q r t numbers), which is 
not the intended result at all. So there would be an arbitrary restriction: the last 
argument in an apply form would have to be an atom. This kind of restriction goes 
against the grain of Scheme. 



CHAPTER 24 

ANSI Common Lisp 

τ I I 1 his chapter briefly covers some advanced features of Conunon Lisp that were not used 
in the rest of the book. The first topic, packages, is crucial in building large systems but 
was not covered in this book, since the programs are concise. The next four topics-error 

handling, pretty printing, series, and the loop macro—are covered in Common Lisp the Language, 
2d edition, but not in the first edition of the book. Thus, they may not be applicable to your Lisp 
compiler. The final topic, sequence functions, shows how to write efficient functions that work 
for either lists or vectors. 

24.1 Packages 

A package is a symbol table that maps from strings to symbols named by those strings. When 
read is confronted with a sequence of characters like 1 i s t , it uses the symbol table to determine 
that this refers to the symbol 1 i s t . The important point is that every use of the symbol name 
1 i s t refers to the same symbol. That makes it easy to refer to predefined symbols, but it also 
makes it easy to introduce unintended name conflicts. For example, if I wanted to hook up the 
emyci η expert system from chapter 16 with the parser from chapter 19, there would be a conflict 
because both programs use the symbol def rul e to mean different things. 
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Common Lisp uses the package system to help resolve such conflicts. Instead of 
a single symbol table. Common Lisp allows any number of packages. The function 
read always uses the current package, which is defined to be the value of the special 
variable ^package*. By default. Lisp starts out in the common-1 i sp-user package.^ 
That means that if we type a new symbol, like zxv@!?+qw, it will be entered into 
that package. Converting a string to a symbol and placing it in a package is called 
interning. It is done automatically by read, and can be done by the function i ntern 
if necessary. Name conflicts arise when there is contention for names within the 
common -1 i sp- user package. 

To avoid name conflicts, simply create your new symbols in another package, one 
that is specific to your program. The easiest way to implement this is to split each 
system into at least two files—one to define the package that the system resides in, and 
the others for the system itself. For example, the emyci η system should start with a 
file that defines the emyci η package. The following form defines the emyci η package 
to use the 1 i sp package. That means that when the current package is emyci n, you 
can still refer to all the built-in Lisp symbols. 

(make-package "EMYCIN" :use ' ( " L I S P " ) ) 

The file containing the package definition should always be loaded before the rest 
of the system. Those files should start with the following call, which insures that all 
new symbols will be interned in the emyci η package: 

(in-package "EMYCIN") 

Packages are used for information-hiding purposes as well as for avoiding name 
clashes. A distinction is made between internal and external symbols. External 
symbols are those that a user of a system would want to refer to, while internal 
symbols are those that help implement the system but are not needed by a user of the 
system. The symbol rul e would probably be internal to both the emyci η and parser 
package, but def rul e would be external, because a user of the emyci η system uses 
def rul e to define new rules. The designer of a system is responsible for advertising 
which symbols are external. The proper call is: 

(export '(emycin defrule defcontext defparm yes/no yes no i s ) ) 

Now the user who wants to refer to symbols in the emyci η package has four choices. 
First, he or she can use the package prefix notation. To refer to the symbol def rul e 
in the emycin package, type emycin: de f rule. Second, the user can make emycin 
be the current package with (in-package " E M Y C I N " ) . Then, of course, we need 

^Or in the user package in non-ANSI systems. 
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only type def rul e. Third, if we only need part of the functionahty of a system, we 
can import specific symbols into the current package. For example, we could call 
( i mport ' emyci η: def rul e ) . From then on, typing def rul e (in the current package) 
will refer to emyci η: def rul e. Fourth, if we want the full functionahty of the system, 
we call (use-package "EMYCIN"). This makes all the external symbols of the emyci η 
package accessible in the current package. 

While packages help eliminate name conflicts, import and use-package allow 
them to reappear. The advantage is that there will only be conflicts between external 
symbols. Since a carefully designed package should have far fewer external than 
internal symbols, the problem has at least been reduced. But if two packages both 
have an external def rul e symbol, then we cannot use - package both these packages, 
nor 1 mport both symbols without producing a genuine name conflict. Such conflicts 
can be resolved by shadowing one symbol or the other; see Common Lisp the Language 
for details. 

The careful reader may be confused by the distinction between "EMYCIN" and 
emycin. In Common Lisp the Language, it was not made clear what the argument 
to package functions must be. Thus, some implementations signal an error when 
given a symbol whose print name is a package. In ANSI Common Lisp, all package 
functions are specified to take either a package, a package name (a string), or a 
symbol whose print name is a package name. In addition, ANSI Common Lisp adds 
the convenient def package macro. It can be used as a replacement for separate calls 
to make-package, use-package, import, and export. Also note that ANSI renames 
the l i s p package as common - l i s p . 

(defpackage emycin 
(ruse common-lisp) 
(:export emycin defrule defcontext defparm yes/no yes no i s ) ) 

For more on packages and building systems, see section 25.16 or Common Lisp the 
Language. 

The Seven Name Spaces 

One important fact to remember about packages is that they deal with symbols, and 
only indirectly deal with the uses those symbols might have. For example, you may 
think of (export 'parse) as exporting the function parse, but really it is exporting 
the symbol parse, which may happen to have a function definition associated with 
it. However, if the symbol is put to another use—perhaps as a variable or a data 
type—then those uses are made accessible by the export statement as well. 

Common Lisp has at least seven name spaces. The two we think of most often 
are (1) for functions and macros and (2) for variables. We have seen that Scheme 
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conflates these two name spaces, but Common Lisp keeps them separate, so that in 
a function application like ( f ) the function/macro name space is consulted for the 
value of f, but in (+ f ) , f is treated as a variable name. Those who understand the 
scope and extent rules of Common Lisp know that (3) special variables form a distinct 
name space from lexical variables. So the f in (+ f ) is treated as either a special or 
lexical variable, depending on if there is an applicable spec ia l declaration. There 
is also a name space (4) for data types. Even if f is defined as a function and/or a 
variable, it can also be defined as a data type with d e f s t r u c t , deftype, or def cl a s s . 
It can also be defined as (5) a label for go statements within a tagbody or (6) a block 
name for return- f rom statements within a bl ock. Finally, symbols inside a quoted 
expression are treated as constants, and thus form name space (7). These symbols 
are often used as keys in user-defined tables, and in a sense each such table defines 
a new name space. One example is the tag name space, used by catch and throw. 
Another is the package name space. 

It is a good idea to limit each symbol to only one name space. Common Lisp will 
not be confused if a symbol is used in multiple ways, but the poor human reader 
probably will be. 

In the following example f , can you identify which of the twelve uses of f refer to 
which name spaces? 

(defun f ( f ) 
(block f 

(tagbody 
f (catch ' f 

( i f (typep f ' f ) 
(throw *f (go f ) ) ) 

(funcal l # ' f (get (symbol-value *f) ' f ) ) ) ) ) ) 

24.2 Conditions and Error Handling 

An extraordinary feature of ANSI Common Lisp is the facility for handling errors. 
In most languages it is very difficult for the programmer to arrange to recover from 
an error. Although Ada and some implementations of C provide functions for error 
recovery, they are not generally part of the repertoire of most programmers. Thus, 
we find C programs that exit with the ungraceful message Segmentat i on v i o l a t i o n : 
core dumped. 

Common Lisp provides one of the most comprehensive and easy-to-use error-
handling mechanism of any programming language, which leads to more robust 
programs. The process of error handling is divided into two parts: signaling an error, 
and handling it. 
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Signaling Errors 

An enor is a condition that the program does not know how to handle. Since the 
program does not know what to do, its only recourse is to announce the occurrence of 
the error, with the hope that some other program or user will know what to do. This 
announcement is called signaling an error. An error can be signaled by a Common 
Lisp built-in function, as when ( / 3 0) signals a divide-by-zero error. Errors can also 
be signaled explicitly by the programmer, as in a call to (error "111 egal val u e . " ) . 

Actually, it is a bit of a simplification to talk only of signaling errors. The precise 
term is signaling a condition. Some conditions, like end-of-file, are not considered 
errors, but nevertheless they are unusual conditions that must be dealt with. The 
condition system in Conunon Lisp allows for the definition of all kinds of conditions, 
but we will continue to talk about errors in this brief discussion, since most conditions 
are in fact error conditions. 

Handling Errors 

By default, signaling an error invokes the debugger. In the following example, the » 
prompt means that the user is in the debugger rather than at the top level. 

> ( / 3 0) 
Er ror : An attempt was made to d iv ide by zero. 
» 

ANSI Common Lisp provides ways of changing this default behavior. Conceptually, 
this is done by setting up an error handler which handles the error in some way. Error 
handlers are bound dynamically and are used to process signaled errors. An error 
handler is much like a catch, and signaling an error is like a throw. In fact, in many 
systems catch and throw are implemented with the error-condition system. 

Thesimplestwayof handling an error is with the macro i gnore-errors. If noerror 
occurs, i gnore-errors is just like progn. But if an error does occur, i gnore-errors 
will retiu-n n i l as its first value and t as its second, to indicate that an error has 
occurred but without doing anything else: 

> ( ignore-errors ( / 3 D ) 3 NIL 

> ( ignore-errors ( / 3 0)) ^ NIL Τ 

i gnore-errors isavery coarse-grain tool. Inaninteractiveinterpreter, i gnore-errors 
can be used to recover from any and all errors in the response to one input and get 
back to the read-process-print loop for the next input. If the errors that are ignored 
are not serious ones, this can be a very effective way of transforming a buggy program 
into a useful one. 
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But some errors are too important to ignore. If the error is rurming out of memory, 
then ignoring it will not help. Instead, we need to find some way of freeing up memory 
and continuing. 

The condition-handling system can be used to handle only certain errors. The 
macro handl e r - c a s e , is a convenient way to do this. Like case, its first argument is 
evaluated and used to determine what to do next. If no error is signaled, then the 
value of the expression is returned. But if an error does occtu:, the following clauses 
are searched for one that matches the type of the error. In the following example, 
handl er - case is used to handle division by zero and other arithmetic errors (perhaps 
floating-point underflow), but it allows all other errors to pass unhandled. 

(defun div (x y) 
(handler-case ( / χ y) 

(d iv is ion-by-zero () most-posit ive-f ixnum) 
(ar i thmetic-error () 0 ) ) ) 

> (div 8 2) 4 

> (div 3 0 ) = ^ 16777215 

> (div 'xyzzy 1) 
Error : The value of NUMBER, XYZZY, should be a number 

Through judicious use of handl er - case, the programmer can create robust code that 
reacts well to unexpected situations. For more details, see chapter 29 of Common Lisp 
the Language, 2d edition. 

24.3 Pretty Printing 
ANSI Common Lisp adds a facility for user-controlled pretty printing. In general, 
pretty printing refers to the process of printing complex expressions in a format that 
uses indentation to improve readability. The function ppr 1 nt was always available, 
but before ANSI Common Lisp it was left unspecified, and it could not be extended 
by the user. Chapter 27 of Common Lisp the Language, 2d edition presents a pretty-
printing facility that gives the user fine-grained control over the printing of all types 
of objects. In addition, the facility is integrated with the format function. 

24.4 Series 
The functional style of programming with higher-order functions is one of the at
tractions of Lisp. The following expression to sum the square roots of the positive 
numbers in the list nums is clear and concise: 
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(reduce #*+ (mapcar # ' sq r t ( f i n d - a l l - i f #*plusp nums))) 

Unfortunately, it is inefficient: both f i nd - a 11 - i f and ma pea r cons up intermediate 
Hsts that are not needed in the final sum. The following two versions using 1 oop and 
dol i s t are efficient but not as pretty: 

; ; Using Loop ; ; Using do l i s t 
(loop for num in nums ( le t ((sum 0)) 

when (plusp num) (do l i s t (num nums sum) 
sum (sqrt num)) (when (plusp num) 

( incf sum num)))) 

A compromise between the two approaches is provided by the series faciUty, defined 
in appendix A of Common Lisp the Language, 2d edition. The example using series 
would look like: 

(col lect-sum (#Msqrt (choose- i f # 'p lusp nums))) 

This looks very much like the functional version: only the names have been changed. 
However, it compiles into efficient iterative code very much like the dol i s t version. 

Like pipes (see section 9.3), elements of a series are only evaluated when they 
are needed. So we can write (scan - range : from 0) to indicate the infinite series of 
integers starting from 0, but if we only use, say, the first five elements of this series, 
then only the first five elements will be generated. 

The series facility offers a convenient and efficient alternative to iterative loops 
and sequence functions. Although the series proposal has not yet been adopted as an 
official part of ANSI Common Lisp, its inclusion in the reference manual has made 
it increasingly popular. 

24.5 The Loop Macro 

The original specification of Common Lisp included a simple 1 oop macro. The body 
of the loop was executed repeatedly, until a return was encountered. ANSI Common 
Lisp officially introduces a far more complex 1 oop macro, one that had been used in 
ZetaLisp and its predecessors for some time. This book has occasionally used the 
complex 1 oop in place of alternatives such as do, dotimes, dol i s t , and the mapping 
functions. 

If your Lisp does not include the complex 1 oop macro, this chapter gives a defini
tion that will run all the examples in this book, although it does not support all the 
features of 1 oop. This chapter also serves as an example of a complex macro. As with 
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any macro, the first thing to do is to look at some macro calls and what they might 
expand into. Here are two examples: 

(loop for i from 1 to η do (pr int (sqrt i ) ) ) Ξ 
(LET* ( ( I 1) 

(TEMP N)) 
(TAGBODY 

LOOP 
( IF (> I TEMP) 

(GO END)) 
(PRINT (SQRT I ) ) 
(SETF I (+ I D ) 
(GO LOOP) 

END)) 

(loop for V in l i s t do (pr int v ) ) = 
(LET* ( ( IN LIST) 

(V (CAR IN) ) ) 
(TAGBODY 

LOOP 
( IF (NULL IN) 

(GO END)) 
(PRINT V) 
(SETF IN (CDR IN)) 
(SETF V (CAR IN)) 
(GO LOOP) 

END)) 

Each loop initializes some variables, then enters a loop with some exit tests and a 
body. So the template is something like: 

( le t * (variables...) 
(tagbody 
loop 

( i f exit-tests 
(go end)) 

body 
(go loop) 

end)) 

Actually, there's more we might need in the general case. There may be a prologue 
that appears before the loop but after the variable initialization, and similarly there 
may be an epilogue after the loop. This epilogue may involve returning a value, and 
since we want to be able to return from the loop in any case, we need to wrap a bl ock 
around it. So the complete template is: 



842 ANSI COMMON LISP 

( le t * (variables.,.) 
(block name 

prologue 
(tagbody 
loop 

body 
(go loop) 

end 
epilogue 
(return result)))) 

To generate this template from the body of a 1 oop form, we will employ a structure 
with fields for each of the parts of the template: 

(defstruct loop 
"A structure to hold parts of a loop as i t i s bu i l t . " 
(vars n i l ) (prologue n i l ) (body n i l ) (steps n i l ) 
(epilogue n i l ) ( resu l t n i l ) (name n i l ) ) 

Now the 1 oop macro needs to do four things: (1) decide if this is a use of the simple, 
non-keyword 1 oop or the complex ANSI 1 oop. If it is the latter, then (2) make an 
instance of the 1 oop structure, (3) process the body of the loop, filling in apprpriate 
fields of the structure, and (4) place the filled fields into the template. Here is the 
1 oop macro: 

(defmacro loop (&rest exps) 
"Supports both ANSI and simple LOOP. 
Warning: Not every loop keyword i s supported." 
( i f (every # ' l i s t p exps) 

No keywords implies simple loop: 
' (b lock ni l (tagbody loop ,®exps (go loop)) ) 
; ; otherwise process loop keywords: 
( le t ((1 (make-loop))) 

(parse-loop-body 1 exps) 
( f i l l - loop- template 1) ) ) ) 

(defun f i l l - loop- tempi ate (1) 
"Use a loop-structure instance to f i l l the template." 
' ( l e t * .(nreverse ( loop-vars 1)) 

(block ,(loop-name 1) 
.©(nreverse (loop-prologue 1)) 
(tagbody 
loop 

.©(nreverse (loop-body 1)) 

.©(nreverse ( loop-steps D ) 
(go loop) 
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end 
,©(nreverse ( loop-epi logue D ) 
(return , ( loop- resu l t 1 ) ) ) ) ) ) 

Most of the work is in writing parse-1 oop-body, which takes a Ust of expressions 
and parses them into the proper fields of a loop structure. It will use the following 
auxiliary functions: 

(defun add-body (1 exp) (push exp (loop-body 1))) 

(defun add-test (1 tes t ) 
"Put in a test for loop terminat ion." 
(push * ( i f . test (go end)) (loop-body 1))) 

(defun add-var (1 var i n i t Äoptional (update ni l update?)) 
"Add a var iab le , maybe including an update s tep . " 
(unless (assoc var ( loop-vars 1)) 

(push ( l i s t var i n i t ) ( loop-vars 1))) 
(when update? 

(push ' (se tq .var .update) ( loop-steps 1) ) ) ) 

There are a number of alternative ways of implementing this kind of processing. One 
would be to use special variables: *pro l ogue*, *body* , *epi 1 ogue*, and so on . This 
would mean we wouldn't have to pass around the loop structure 1 , but there would 
be significant clutter in having seven new special variables. Another possibility is to 
use local variables and close the definitions of 1 oop, along with the add - functions in 
that local environment: 

( le t (body prologue epilogue steps vars name resu l t ) 
(defmacro loop . . . ) 
(defun add-body . . . ) 
(defun add-test . . . ) 
(defun add-var . . . ) ) 

This is somewhat cleaner style, but some early Common Lisp compilers do not 
support embedded def uns, so I chose to write in a style that I knew would work in 
all implementations. Another design choice would be to return multiple values for 
each of the components and have pa rse - loop-body put them all together. This is in 
fact done in one of the Lisp Machine implementations of 1 oop, but I think it is a poor 
decision: seven components are too many to keep track of by positional notation. 

Anatomy of a Loop 

All this has just been to set up for the real work: parsing the expressions that make 
up the loop with the function pa rse -1 oop - body. Every loop consists of a sequence of 
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clauses, where the syntax of each clause is determined by the first expression of the 
clause, which should be a known symbol. These symbols are called loop keywords, 
although they are not in the keyword package. 

The loop keywords will be defined in a data-driven fashion. Every keyword has 
a function on its property list under the 1 oop-f η indicator. The function takes three 
arguments: the 1 oop structure being built, the very next expression in the loop body, 
and a hst of the remaining expressions after that. The function is responsible for up
dating the 1 oop structure (usually by making appropriate calls to the add - functions) 
and then returning the unparsed expressions. The three-argument calling conven
tion is used because many of the keywords only look at one more expression. So 
those functions see that expression as their first argument, and they can conveniently 
return their second argument as the unparsed remainder. Other functions will want 
to look more carefully at the second argument, parsing some of it and returning 
the rest. 

The macro def 1 oop is provided to add new loop keywords. This macro enforces 
the three-argument calling convention. If the user supplies only two arguments, then 
a third argument is automatically added and returned as the remainder. Also, if the 
user specifies another symbol rather than a list of arguments, this is taken as an alias, 
and a function is constructed that calls the function for that keyword: 

(defun parse-loop-body (1 exps) 
"Parse the exps based on the f i r s t exp being a keyword. 
Continue unti l a l l the exps are parsed." 
(unless (null exps) 

(parse-loop-body 
1 (ca l l - loop- fn 1 ( f i r s t exps) ( rest exps) ) ) ) ) 

(defun ca l l - l oop- fn (1 key exps) 
"Return the loop parsing function for t h i s keyword." 
( i f (and (symbolp key) (get key Ί ο ο ρ - f n ) ) 

(funcall (get key Ί ο ο ρ - f n ) 1 ( f i r s t exps) ( rest exps)) 
(error "Unknown loop key: ~a" key))) 

(defmacro defloop (key args &rest body) 
"Define a new LOOP keyword." 
; ; I f the args do not have a th i rd a rg . one i s suppl ied. 

A l s o , we can define an a l i as with (defloop key other-key) 
' ( se t f (get ' . key Ί ο ο ρ - f n ) 

.(cond ((and (symbolp args) (null body)) 
'#'( lambda (1 χ y) 

(ca l l - loop- fn 1 ' . a r g s (cons χ y ) ) ) ) 
((and ( l i s t p args) (= ( length args) 2)) 

*#'(lambda (.®args -exps-) .®body -exps- ) ) 
(t '#'( lambda .args .©body))))) 

Now we are ready to define some 1 oop keywords. Each of the following sections 



24.5 THE LOOP MACRO 845 

refers to (and implements the loop keywords in) a section of chapter 26 of Common 
Lisp the Language, 2d edition. 

Iteration Control (26.6) 

Here we define keywords for iterating over elements of a sequence and for stopping 
the iteration. The following cases are covered, where uppercase words represent 
loop keywords: 

(LOOP REPEAT η . . . ) 
(LOOP FOR i FROM s TO e BY inc . . . ) 
(LOOP FOR V IN 1 . . . ) 
(LOOP FOR V ON 1 . . . ) 
(LOOP FOR V = expr [THEN step] . . . ) 

The implementation is straightforward, although somewhat tedious for complex 
keywords like for. Take the simpler keyword, repeat. To handle it, we generate a 
new variable that will count down the number of times to repeat. We call add - va r to 
add that variable, with its initial value, to the loop structure. We also give this variable 
an update expression, which decrements the variable by one each time through the 
loop. Then all we need to do is call add-test to insert code that will exit the loop 
when the variable reaches zero: 

(defloop repeat (1 times) 
"(LOOP REPEAT η . . . ) does loop body η t imes." 
( let ( ( i (gensym "REPEAT"))) 

(add-var 1 i times * ( - J D ) 
(add-test 1 * « = ,i 0 ) ) ) ) 

The loop keyword for is more compUcated, but each case can be analyzed in the 
same way as repeat: 

(defloop as for) ; ; AS i s the same as FOR 

(defloop for (1 var exps) 
"4 of the 7 cases for FOR are covered here: 
(LOOP FOR i FROM s TO e BY inc . . . ) does arithemtic i tera t ion 
(LOOP FOR V IN 1 . . . ) i terates for each element of 1 
(LOOP FOR V ON 1 . . . ) i terates for each ta i l of 1 
(LOOP FOR V = expr [THEN step]) i n i t i a l i z e s and i terates v" 
( let ((key ( f i r s t exps)) 

(source (second exps)) 
( rest (rest2 exps))) 

(ecase key 
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((from downfrom upfrom to downto upto by) 
( loop-for-ar i thmet ic 1 var exps)) 

( in ( let ( ( V (gensym " I N " ) ) ) 
(add-var 1 ν source *(cdr . v ) ) 
(add-var 1 var ' (car ,v) ' (car ,v ) ) 
(add-test 1 ' (nu l l , v ) ) 
res t ) ) 

(on (add-var 1 var source ' (cdr .var ) ) 
(add-test 1 ' (nu l l .var ) ) 
rest) 

(= ( i f (eq ( f i r s t rest ) ' then) 
(progn 

(pop rest) 
(add-var 1 var source (pop res t ) ) ) 

(progn 
(add-var 1 var n i l ) 
(add-body 1 ' (se tq .var .source) ) ) ) 

rest) 
; ; ACROSS. BEING clauses omitted 
) ) ) 

(defun loop-for-ar i thmet ic (1 var exps) 
"Parse loop expressions of the form: 
(LOOP FOR var [FROMIDOWNFROMIUPFROM expl] [TOIDOWNTOIUPTO exp2] 

[BY exp3]" 
; ; The preposi t ions BELOW and ABOVE are omitted 
( let ((expl 0) 

(exp2 n i l ) 
(exp3 1) 
(down? n i l ) ) 

Parse the keywords: 
(when (member ( f i r s t exps) '( from downfrom upfrom)) 

(set f expl (second exps) 
down? (eq ( f i r s t exps) 'downfrom) 
exps (rest2 exps))) 

(when (member ( f i r s t exps) ' ( to downto upto)) 
(set f exp2 (second exps) 

down? (or down? (eq ( f i r s t exps) 'downto)) 
exps (rest2 exps))) 

(when (eq ( f i r s t exps) 'by) 
(set f exp3 (second exps) 

exps (rest2 exps))) 
; ; Add var iables and t e s t s : 
(add-var 1 var expl 

' ( . ( i f down? ' - '+ ) .var .(maybe-temp 1 exp3))) 
(when exp2 

(add-test 1 ' ( . ( i f down? ' < '> ) .var .(maybe-temp 1 exp2)))) 
and return the remaining express ions: 
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exps)) 

(defun maybe-temp (1 exp) 
"Generate a temporary var iab le , i f needed." 
( i f (constantp exp) 

exp 
( let ((temp (gensym "TEMP"))) 

(add-var 1 temp exp) 
temp))) 

End-Test Control (26.7) 

In this section we cover the following clauses: 

(LOOP UNTIL test . . . ) 
(LOOP WHILE test . . . ) 
(LOOP ALWAYS condit ion . . . ) 
(LOOP NEVER condit ion . . . ) 
(LOOP THEREIS condit ion . . . ) 
(LOOP . . . (LOOP-FINISH) . . . ) 

Each keyword is quite simple: 

(defloop unti l (1 test ) (add-test 1 tes t ) ) 

(defloop while (1 tes t ) (add-test 1 ' (not , t es t ) ) ) 

(defloop always (1 tes t ) 
(set f ( loop-resu l t 1) t ) 
(add-body 1 ' ( i f (not , tes t ) (return n i l ) ) ) ) 

(defloop never (1 tes t ) 
(set f ( loop-resu l t 1) t ) 
(add-body 1 ' ( i f , test (return n i l ) ) ) ) 

(defloop thereis (1 tes t ) (add-body 1 ' ( r e tu rn - i f , t es t ) ) ) 

(defmacro re turn- i f ( test ) 
"Return TEST i f i t i s non -n i l . " 
(once-only ( test ) 

' ( i f , test (return , t es t ) ) ) ) 

(defmacro loop- f in i sh () ' (go end)) 
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Value Accumulation (26.8) 

The col 1 ec t keyword poses another challenge. How do you collect a list of expres
sions presented one at a time? The answer is to view the expressions as a queue, one 
where we add items to the rear but never remove them from the front of the queue. 
Then we can use the queue functions defined in section 10.5. 

Unlike the other clauses, value accumulation clauses can communicate with each 
other. There can be, say, two col 1 ec t and an append clause in the same loop, and 
they all build onto the same list. Because of this, I use the same variable name for the 
accumulator, rather than gensyming a new variable for each use. The name chosen 
is stored in the global variable *acc*. In the official 1 oop standard it is possible for 
the user to specify the variable with an i nto modifier, but I have not implemented 
that option. The clauses covered are: 

(LOOP COLLECT item . . . ) 
(LOOP NCONC item . . . ) 
(LOOP APPEND item . . . ) 
(LOOP COUNT item . . . ) 
(LOOP SUM item . . . ) 
(LOOP MAXIMIZE item . . . ) 
(LOOP MINIMIZE item . . . ) 

The implementation is: 

(defconstant *acc* (gensym "ACC") 
"Variable used for value accumulation in LOOP.") 

; ; ; INTO preposi t ion i s omitted 

(defloop col lect (1 exp) 
(add-var 1 *acc* *(make-queue)) 
(add-body 1 '(enqueue ,exp , *acc* ) ) 
(set f ( loop-resul t 1) '(queue-contents , *acc* ) ) ) 

(defloop nconc (1 exp) 
(add-var 1 *acc* '(make-queue)) 
(add-body 1 '(queue-nconc , *acc* .exp)) 
(set f ( loop-resu l t 1) '(queue-contents , *acc* ) ) ) 

(defloop append (1 exp exps) 
(ca l l - loop- fn 1 'nconc ' ( ( c o p y - l i s t .exp) . . exps ) ) ) 

(defloop count (1 exp) 
(add-var 1 *acc* 0) 
(add-body 1 '(when ,exp ( incf , *acc* ) ) ) 
(set f ( loop-resu l t 1) *acc* ) ) 
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(defloop sum (1 exp) 
(add-var 1 *acc* 0) 
(add-body 1 ' ( i n c f , *acc* .exp)) 
(set f ( loop-resu l t 1) *acc* ) ) 

(defloop maximize (1 exp) 
(add-var 1 *acc* n i l ) 
(add-body 1 ' ( se t f , *acc* 

( i f , *acc* 
(max . *acc* ,exp) 
.exp))) 

(set f ( loop-resu l t 1) *acc* ) ) 

(defloop minimize (1 exp) 
(add-var 1 *acc* n i l ) 
(add-body 1 ' ( s e t f , *acc* 

( i f . *acc* 
(min . *acc* ,exp) 
.exp))) 

(set f ( loop-resu l t 1) *acc* ) ) 

(defloop co l lect ing co l lec t ) 
(defloop nconcing nconc) 
(defloop appending append) 
(defloop counting count) 
(defloop summing sum) (derIoop summing sum; 
(defloop maximizing maximize) 
(defloop minimizing minimize) 

Exercise 24.1 1 oop lets us build aggregates (lists, maximums, sums, etc.) over the 
body of the loop. Sometimes it is inconvenient to be restricted to a single-loop body. 
For example, we might want a list of all the nonzero elements of a two-dimensional 
array. One way to implement this is with a macro, wi th - col 1 ec t i on, that sets up and 
returns a queue structure that is built by calls to the function col 1 ect . For example: 

> ( let ((A ' #2a( ( l 0 0) (0 2 4) (0 0 3 ) ) ) ) 
(wi th-col lect ion 

(loop for i from 0 to 2 do 
(loop for j from 0 to 2 do 

( i f (> (aref a i j ) 0) 
(co l lect (aref A i j ) ) ) ) ) ) ) 

( 1 2 4 3) 

Implement wi th - col 1 ec t i on and col 1 ect . 
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Variable Initialization (26.9) 

The w i th clause allows local variables—I have included it, but recommend using a 
1 e t instead. I have not included the and preposition, which allows the variables to 
nest at different levels. 

26 .9 . Variable I n i t i a l i z a t i o n s ("and" omitted) 

(defloop with (1 var exps) 
( let ( ( i n i t n i l ) ) 

(when (eq ( f i r s t exps) ' = ) 
(set f i n i t (second exps) 

exps (rest2 exps)) ) 
(add-var 1 var i n i t ) 
exps)) 

Conditional Execution (2610) 

1 oop also provides forms for conditional execution. These should be avoided when
ever possible, as Lisp already has a set of perfectly good conditional macros. How
ever, sometimes you want to make, say, a col 1 ec t conditional on some test. In that 
case, loop conditionals are acceptable. The clauses covered here are: 

(LOOP WHEN test . . . [ELSE . . . ] ) ; I Pis a synonym for WHEN 
(LOOP UNLESS test . . . [ELSE . . . ] ) 

Here is an example of when: 

> (loop for X from 1 to 10 
when (oddp x) 

co l lect X 
else co l lect (- x ) ) 

(1 - 2 3 - 4 5 - 6 7 - 8 9 -10) 

Of course, we could have said col l ec t ( i f (oddp x) χ ( - χ)) and done without 
the conditional. There is one extra feature in loop's conditionals: the value of the test 
is stored in the variable i t for subsequent use in the THEN or ELSE parts. (This is 
just the kind of feature that makes some people love 1 oop and others throw up their 
hands in despair.) Here is an example: 
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> (loop for X from 1 to 10 
when (second (assoc χ ' ( ( 1 one) (3 three) ( 5 f i v e ) ) ) ) 
co l lect i t ) 

(ONE THREE FIVE) 

The conditional clauses are a little tricky to implement, since they involve parsing 
other clauses. The idea is that cal 1 -1 oop- fη parses the THEN and ELSE parts, 
adding whatever is necessary to the body and to other parts of the loop structure. 
Then add-body is used to add labels and go statements that branch to the labels as 
needed. This is the same technique that is used to compile conditionals in chapter 23; 
see the function comp - i f on page 787. Here is the code: 

(defloop when (1 test exps) 
( loop-unless 1 ' (not , (maybe-set- i t test exps)) exps)) 

(defloop unless (1 test exps) 
( loop-unless 1 (maybe-set-i t test exps) exps)) 

(defun maybe-set-i t ( test exps) 
"Return value, but i f the var iable IT appears in exps, 
then return code that sets IT to va lue. " 
( i f (find-anywhere ' i t exps) 

' (se tq i t , tes t ) 
tes t ) ) 

(defloop i f when) 

(defun loop-unless (1 test exps) 
( let (( label (gensym " L " ) ) ) 

(add-var 1 ' i t n i l ) 
Emit code for the test and the THEN part 

(add-body 1 ' ( i f , test (go , l abe l ) ) ) 
(set f exps (ca l l - loop- fn 1 ( f i r s t exps) ( rest exps))) 
; ; Opt ional ly emit code for the ELSE part 
( i f (eq ( f i r s t exps) ' e l se ) 

(progn 
( le t ( ( label2 (gensym " L " ) ) ) 

(add-body 1 ' (go , labe l2) ) 
(add-body 1 label) 
(set f exps (ca l l - l oop- fn 1 (second exps) ( rest2 exps)) ) 
(add-body 1 labe l2) ) ) 

(add-body 1 labe l ) ) ) 
exps) 
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Miscellaneous Features (26.12) 

Finally, the miscellaneous features include the keywords i n i t i a l l y and f i n a l l y , 
which define the loop prologue and epilogue, and the keyword named, which gives 
a name to the loop for use by a return- from form. I have omitted the data-type 
declarations and destructuring capabilities. 

(defloop i n i t i a l l y (1 exp exps) 
(push exp (loop-prologue 1)) 
(loop ( i f (symbolp ( f i r s t exps)) (RETURN exps)) 

(push (pop exps) ( loop-prologue 1) ) ) ) 

(defloop f i na l l y (1 exp exps) 
(push exp ( loop-epi logue 1)) 
(loop ( i f (symbolp ( f i r s t exps)) (RETURN exps)) 

(push (pop exps) ( loop-epi logue 1) ) ) ) 

(defloop named (1 exp) (set f (loop-name 1) exp)) 

24.6 Sequence Functions 

Common Lisp provides sequence functions to make the programmer's life easier: 
the same function can be used for lists, vectors, and strings. However, this ease of 
use comes at a cost. Sequence functions must be written very carefully to make sure 
they are efficient. There are three main sources of indeterminacy that can lead to 
inefficiency: (1) the sequences can be of different types; (2) some functions have 
keyword arguments; (3) some functions have a &rest argument. Careful coding 
can limit or eliminate these sources of inefficiency, by making as many choices as 
possible at compile time and making the remaining choices outside of the main loop. 

Unconditional Execution (26.11) 

The unconditional execution keywords are do and return: 

(defloop do (1 exp exps) 
(add-body 1 exp) 
(loop ( i f (symbolp ( f i r s t exps)) (RETURN exps)) 

(add-body 1 (pop exps) ) ) ) 

(defloop return (1 exp) (add-body 1 ' ( re turn ,exp))) 
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In this section we see how to implement the new ANSI sequence function 
map- in to and the updated function reduce efficiently. This is essential for those 
without an ANSI compiler. Even those who do have access to an ANSI compiler will 
benefit from seeing the efficiency techniques used here. 

Before defining the sequence functions, the macro once - onl y is introduced. 

Once-only: A Lesson in Macrology 

The macro once - onl y has been around for a long time on various systems, although 
it didn't make it into the Common Lisp standard. I include it here for two reasons: 
first, it is used in the following f unca 11 - i f macro, and second, if you can understand 
how to write and when to use once -on l y , then you truly understand macro. 

First, you have to understand the problem that once -on l y addresses. Suppose 
we wanted to have a macro that multiplies its input by itself:^ 

(defmacro square (x) *(* .x ,x)) 

This definition works fine in the following case: 

> (macroexpand '(square z)) => (* Ζ Z) 

But it doesn't work as well here: 

> (macroexpand '(square (print (incf i ) ) ) ) 
(* (PRINT (INCF I ) ) (PRINT (INCF I ) ) ) 

The problem is that i will get incremented twice, not once, and two different values 
will get printed, not one. We need to bind ( p r i n t ( i n c f i ) ) to a local variable before 
doing the multiplication. On the other hand, it would be superfluous to bind ζ to a 
local variable in the previous example. This is where once-on l y comes in. It allows 
us to write macro definitions like this: 

(defmacro square (x) (once-only (x) *(* ,x .x))) 

and have the generated code be just what we want: 

> (macroexpand '(square z)) 
(* Ζ Ζ) 

^As was noted before, the proper way to do this is to proclaim squa re as an inline function, 
not a macro, but please bear with the example. 
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> (macroexpand ' (square (pr int ( incf i ) ) ) ) 
(LET ((G3811 (PRINT (INCF I ) ) ) ) 

(* G3811 G3811)) 

You have now learned lesson number one of once - on 1 y: you know how macros differ 
from functions when it comes to arguments with side effects, and you now know how 
to handle this. Lesson number two comes when you try to write (or even understand) 
a definition of once - on 1 y—only when you truly understand the nature of macros will 
you be able to write a correct version. As always, the first thing to determine is what 
a call to once-only should expand into. The generated code should test the variable 
to see if it is free of side effects, and if so, generate the body as is; otherwise it should 
generate code to bind a new variable, and use that variable in the body of the code. 
Here's roughly what we want: 

> (macroexpand ' (once-only (x) * ( * ,x . x ) ) ) 
( i f (s ide-ef fect - f ree-p x) 

* ( * .x .x) 
•( let ((gOOl .x ) ) 

. ( le t ((x ' gOOD) 
' ( * .x . X ) ) ) ) 

where gOOl is a new symbol, to avoid conflicts with the χ or with symbols in the 
body. Normally, we generate macro bodies using backquotes, but if the macro body 
itself has a backquote, then what? It is possible to nest backquotes (and appendix C of 
Common Lisp the Language, 2d edition has a nice discussion of doubly and triply nested 
backquotes), but it certainly is not trivial to understand. I recommend replacing the 
inner backquote with its equivalent using 1 i s t and quote: 

( i f (s ide-ef fect - f ree-p x) 
' ( * .x .x) 
( l i s t ' l e t ( l i s t ( l i s t 'gOOl x ) ) 

( let ((x ' gOOD) 
' ( * ,x . x ) ) ) ) 

Now we can write once - onl y. Note that we have to account for the case where there 
is more than one variable and where there is more than one expression in the body. 

(defmacro once-only (var iab les &rest body) 
"Returns the code bu i l t by BODY. I f any of VARIABLES 
might have side e f fec ts , they are evaluated once and stored 
in temporary var iables that are then passed to BODY." 
(asser t (every #'symbolp var iab les) ) 
( let ((temps (loop repeat ( length var iab les) co l lect (gensym)))) 

' ( i f (every # 's ide-e f fec t - f ree-p ( l i s t . , va r i ab les ) ) 
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(progn ..body) 
( l i s t Me t 

. ' ( l i s t .©(mapcar #'(lambda (tmp var) 
' ( l i s t '.tmp .var ) ) 

temps var iab les) ) 
( le t .(mapcar #'(lambda (var tmp) ' ( . v a r ' . tmp)) 

var iables temps) 
. .body) ) ) ) ) 

(defun s ide-ef fect - f ree-p (exp) 
" I s exp a constant, var iab le , or funct ion, 
or of the form (THE type x) where χ i s s ide-e f fec t - f ree?" 
(or (constantp exp) (atom exp) (s tar ts -wi th exp ' funct ion) 

(and (s tar ts-wi th exp ' the) 
(s ide-ef fect - f ree-p ( th i rd exp) ) ) ) ) 

Here we see the expansion of the call to once - on 1 y and a repeat of the expansions of 
two calls to square: 

> (macroexpand ' (once-only (x) ' ( * .x . x ) ) ) 
( IF (EVERY #'SIDE-EFFECT-FREE-P (LIST X)) 

(PROGN 
' ( * .X .X) ) 

(LIST 'LET (LIST (LIST 'G3763 X)) 
(LET ((X 'G3763)) 

' ( * .X .X ) ) ) ) 

> (macroexpand ' (square z) ) 
(* Ζ Ζ) 

> (macroexpand ' (square (pr int ( incf i ) ) ) ) 
(LET ((G3811 (PRINT (INCF I ) ) ) ) 

(* G3811 G3811)) 

This output was produced with *pri nt-gensym* set to ni 1. When this variable 
is non-nil, uninterned symbols are printed with a prefix # : , a s i n #:G3811. This 
insures that the symbol will not be interned by a subsequent read. 

It is worth noting that Common Lisp automatically handles problems related to 
multiple evaluation of subforms in s e t f methods. See page 884 for an example. 

Avoid Overusing Macros 

A word to the wise: don't get carried away with macros. Use macros freely to 
represent your problem, but shy away from new macros in the implementation of 
your solution, unless absolutely necessary. So, it is good style to introduce a macro. 
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say, def rul e, which defines rules for your application, but adding macros to the 
code itself may just make things harder for others to use. 

Here is a story. Before i f was a standard part of Lisp, I defined my own version of 
i f. Unlike the simple i f, my version took any number of test/result pairs, followed 
by an optional el se result. In general, the expansion was: 

( i f abcd,.,x) => (cond iab) icd) ... iJx)) 

My i f also had one more feature: the symbol ' tha t ' could be used to refer to the value 
of the most recent test. For example, I could write: 

( i f (assoc item a - l i s t ) 

(process (cdr that ) ) ) 

which would expand into: 

(LET (THAT) 

(COND 

((SETQ THAT (ASSOC ITEM A-L IST) ) (PROCESS (CDR THAT))))) 

This was a convenient feature (compare it to the => feature of Scheme's cond, as 
discussed on page 778), but it backfired often enough that I eventually gave up on 
my version of i f. Here's why. I would write code like this: 

( i f ( to ta l -score x) 

(pr int ( / that number-of - t r ia ls) ) 

(error "No sco res " ) ) 

and then make a small change: 

( i f ( to ta l -score x) 

( i f *p r i n t - sco res* (pr int ( / that number-of - t r ia ls ) ) ) 

(error "No scores" ) ) 

Theproblemis thatthevariablethatnowrefers to *print-scores*,not( t o t a l - sco re 
x ) , as it did before. My macro violates referential transparency. In general, that's 
the whole point of macros, and it is why macros are sometimes convenient. But in 
this case, violating referential transparency can lead to confusion. 
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MAP-INTO 

The function map-i nto is used on page 632. This function, added for the ANSI 
version of Common Lisp, is like map, except that instead of building a new sequence, 
the first argument is changed to hold the results. This section describes how to write 
a fairly efficient version of map-i nto, using techniques that are applicable to any 
sequence function. We'll start with a simple version: 

(defun map-into (result-sequence function &rest sequences) 
"Destruct ively set elements of RESULT-SEQUENCE to the resu l ts 
of applying FUNCTION to respective elements of SEQUENCES." 
(replace result-sequence (apply #'map ' l i s t function sequences))) 

This does the job, but it defeats the purpose of ma ρ - i η to, which is to avoid generating 
garbage. Here's a version that generates less garbage: 

(defun map-into (result-sequence function &rest sequences) 
"Destruct ively set elements of RESULT-SEQUENCE to the resu l ts 
of applying FUNCTION to respective elements of SEQUENCES." 
( le t ((n (loop for seq in (cons result-sequence sequences) 

minimize (length seq) ) ) ) 
(dotimes (i n) 

(set f (e l t result-sequence i ) 
(apply function 

(mapcar #*(lambda (seq) (e l t seq i ) ) 
sequences))) ) ) ) 

There are three problems with this definition. First, it wastes space: mapcar creates 
a new argument list each time, only to have the list be discarded. Second, it wastes 
time: doing a s e t f of the ith element of a list makes the algorithm O(n^) instead of 
0 ( n ) , where η is the length of the list. Third, it is subtly wrong: if result-sequence 
is a vector with a fill pointer, then map - i nto is supposed to ignore res ul t - sequence's 
current length and extend the fill pointer as needed. The following version fixes 
those problems: 

(defun map-into (result-sequence function &rest sequences) 
"Destruct ively set elements of RESULT-SEQUENCE to the resu l ts 
of applying FUNCTION to respective elements of SEQUENCES." 
( le t ( ( a r g l i s t (make-l ist ( length sequences))) 

(n ( i f ( l i s t p result-sequence) 
most-posit ive-f ixnum 
(array-dimension result-sequence 0 ) ) ) ) 

a r g l i s t i s made into a l i s t of args for each cal l 
η i s the length of the longest vector 
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(when sequences 
(set f η (min η (loop for seq in sequences 

minimize (length seq) ) ) ) ) 
Define some shared funct ions: 

( f le t 
((do-one-cal l ( i ) 

(loop for seq on sequences 
for arg on a r g l i s t 
do ( i f ( l i s t p ( f i r s t seq)) 

(set f ( f i r s t arg) 
(pop ( f i r s t seq)) ) 

(set f ( f i r s t arg) 
(aref ( f i r s t seq) i ) ) ) ) 

(apply function a r g l i s t ) ) 
(do-resul t ( i ) 

( i f (and (vectorp result-sequence) 
(a r ray-has- f i l1 -po in te r -p result-sequence)) 

(set f ( f i l l - po in te r result-sequence) 
(max i ( f i l l - po in te r resu l t -sequence)) ) ) ) ) 

(declare ( in l ine do-one-ca l l ) ) 
Decide i f the resul t i s a l i s t or vector, 
and loop through each element 

( i f ( l i s t p result-sequence) 
(loop for i from 0 to (- η 1) 

for r on result-sequence 
do (set f ( f i r s t r) 

(do-one-cal l i ) ) ) 
(loop for i from 0 to (- η 1) 

do (set f (aref result-sequence i ) 
(do-one-cal l i ) ) 

f i na l l y (do-resul t n ) ) ) ) 
result-sequence)) 

There are several things worth noticing here. First, I split the main loop into two 
versions, one where the result is a Hst, and the other where it is a vector. Rather 
than duplicate code, the local functions d o - o n e - c a l l and d o - r e s u l t are defined. 
The former is declared inline because it it called often, while the latter is not. The 
arguments are computed by looking at each sequence in turn, taking the ith element 
if it is a vector, and popping the sequence if it is a list. The arguments are stored 
into the Hst argl i s t , which has been preallocated to the correct size. All in aH, we 
compute the answer fairly efficiently, without generating unnecessary garbage. 

The application could be done more efficiently, however. Think what apply 
must do: scan down the argument list, and put each argument into the location 
expected by the function-calling conventions, and then branch to the function. Some 
implementations provide a better way of doing this. For example, the TI Lisp Machine 
provides two low-level primitive functions, %pus h and %ca 11 , that compile into single 
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instructions to put the arguments into the right locations and branch to the function. 
With these primitives, the body of do - one - ca 11 would be: 

(loop for seq on sequences 
do ( i f d i s t p ( f i r s t seq)) 

(%push (pop ( f i r s t seq)) ) 
(%push (aref ( f i r s t seq) i ) ) ) ) 

(%call function length-sequences) 

There is a remaining inefficiency, though. Each sequence is type-checked each time 
through the loop, even though the type remains constant once it is determined the 
first time. Theoretically, we could code separate loops for each combination of types, 
just as we coded two loops depending on the type of the result sequence. But that 
would mean 2^ loops for η sequences, and there is no limit on how large η can be. 

It might be worth it to provide specialized functions for small values of n, and 
dispatch to the appropriate function. Here's a start at that approach: 

(defun map-into ( resu l t function &rest sequences) 
(apply 

(case (length sequences) 
(0 ( i f d i s t p resu l t ) # 'map- in to - l i s t -0 # 'map- into-vect-0)) 
(1 ( i f d i s t p resu l t ) 

( i f d i s t p ( f i r s t sequences)) 
# ' m a p - i n t o - l i s t - l - l i s t # 'map- in to - l i s t - l - vec t ) 

( i f d i s t p ( f i r s t sequences)) 
# 'map- in to -vec t - l - l i s t # 'map- in to-vect - l -vect ) ) ) 

(2 ( i f d i s t p resu l t ) 
( i f d i s t p ( f i r s t sequences)) 

( i f d i s t p (second sequences)) 
# ' m a p - i n t o - l i s t - 2 - l i s t - l i s t 
# 'map - i n to - l i s t - 2 - l i s t - vec t ) 

. . . ) ) ) 
(t ( i f d i s t p resu l t ) # 'map- in to - l i s t -n #*map-into-vect-n))) 

resul t function sequences)) 

The individual functions are not shown. This approach is efficient in execution 
time, but it takes up a lot of space, considering that map - i nto is a relatively obscure 
function. If map- i nto is declared i nl i ne and the compiler is reasonably good, then 
it will produce code that just calls the appropriate function. 

REDUCE with :key 

Another change in the ANSI proposal is to add a : key keyword to reduce. This is a 
useful addition-in fact, for years I had been using a r ed uce - by function that provided 
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just this functionahty. In this section we see how to add the : key keyword. 
At the top level, I define reduce as an interface to the keywordless function 

reduce*. They are both proclaimed inline, so there will be no overhead for the 
keywords in normal uses of reduce. 

(proclaim ' ( i n l i n e reduce reduce*)) 

(defun reduce* (fn seq from-end s tar t end key i n i t i n i t -p ) 
(funcall ( i f ( l i s t p seq) # ' reduce- l i s t # ' reduce-vect) 

fn seq from-end (or s tar t 0) end key i n i t i n i t - p ) ) 

(defun reduce (function sequence &key from-end s tar t end key 
( i n i t i a l - va lue ni l i n i t i a l - va lue -p ) ) 

(reduce* function sequence from-end s tar t end 
key i n i t i a l - va lue i n i t i a l - va lue -p ) ) 

The easier case is when the sequence is a vector: 

(defun reduce-vect (fn seq from-end s tar t end key i n i t i n i t - p ) 
(when (null end) (set f end ( length seq)) ) 
(assert (<= 0 s tar t end (length seq)) (s tar t end) 

" I l l ega l subsequence of ~a - - - i s ta r t ~d :end ~d" 
seq s tar t end) 

(case (- end s tar t ) 
(0 ( i f i n i t -p i n i t ( funcal l f n ) ) ) 
(1 ( i f i n i t -p 

(funcall fn i n i t ( f unca l l - i f key (aref seq s ta r t ) ) ) 
( f unca l l - i f key (aref seq s t a r t ) ) ) ) 

(t ( i f (not from-end) 
( le t ( ( resu l t 

( i f i n i t -p 
(funcall 

fn i n i t 
( f unca l l - i f key (aref seq s ta r t ) ) ) 

( funcal l 
fn 
( f unca l l - i f key (aref seq s ta r t ) ) 
( f unca l l - i f key (aref seq (+ s ta r t 1 ) ) ) ) ) ) ) 

(loop for i from (+ s tar t ( i f i n i t -p 1 2)) 
to (- end 1) 
do (set f resu l t 

( funcal l 
fn resul t 
( f unca l l - i f key (aref seq i ) ) ) ) ) 

resu l t ) 
( le t ( ( resu l t 

( i f i n i t -p 
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(funcal l 
fn 
( f unca l l - i f key (aref seq (- end 1) ) ) 
i n i t ) 

(funcal l 
fn 
( f unca l l - i f key (aref seq (- end 2 ) ) ) 
( f unca l l - i f key (aref seq (- end 1 ) ) ) ) ) ) ) 

(loop for i from (- end ( i f i n i t -p 2 3)) downto s tar t 
do (set f resu l t 

( funcal l 
fn 
( f unca l l - i f key (aref seq i ) ) 
r esu l t ) ) ) 

r e s u l t ) ) ) ) ) 

When the sequence is a list, we go to some trouble to avoid computing the length, 
since that is an 0{n) operation on lists. The hardest decision is what to do when the 
list is to be traversed from the end. There are four choices: 

• recurse. We could recursively walk the list until we hit the end, and then 
compute the results on the way back up from the recursions. However, some 
implementations may have fairly small bounds on the depths of recursive calls, 
and a system function like reduce should never run afoul of such limitations. 
In any event, the amount of stack space consumed by this approach would nor
mally be more than the amount of heap space consumed in the next approach. 

• reverse. Wecouldreversethelistandthenconsider from-end true. The only 
drawback is the time and space needed to construct the reversed list. 

• nreverse. We could destructively reverse the list in place, do the reduce compu
tation, and then destructively reverse the list back to its original state (perhaps 
with an unwind-protect added). Unfortunately, this is just incorrect. The list 
may be bound to some variable that is accessible to the function used in the 
reduction. If that is so, the function will see the reversed list, not the original 
Hst. 

• coerce. We could convert the Ust to a vector, and then use reduce-vect. This 
has an advantage over the reverse approach in that vectors generally take only 
half as much storage as lists. Therefore, this is the approach I adopt. 

(defmacro f unca l l - i f (fn arg) 
(once-only ( fn) 

• ( i f ,fn (funcall .fn ,arg) ,a rg ) ) ) 
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(defun reduce- l is t (fn seq from-end s tar t end key i n i t i n i t -p ) 
(when (null end) (set f end most-posi t ive-f ixnum)) 
(cond ( (> s tar t 0) 

( reduce- l is t fn (nthcdr s ta r t seq) from-end 0 
(- end s ta r t ) key i n i t i n i t - p ) ) 

((or (nul l seq) (eql s ta r t end)) 
( i f i n i t -p i n i t ( funcal l f n ) ) ) 

( (= (- end s tar t ) 1) 
( i f i n i t -p 

(funcal l fn i n i t ( f unca l l - i f key ( f i r s t seq)) ) 
( f unca l l - i f key ( f i r s t seq) ) ) ) 

(from-end 
(reduce-vect fn (coerce seq 'vector) t s tar t end 

key i n i t i n i t - p ) ) 
( (nul l ( rest seq)) 
( i f i n i t -p 

(funcal l fn i n i t ( f unca l l - i f key ( f i r s t seq)) ) 
( f unca l l - i f key ( f i r s t seq) ) ) ) 

(t ( le t ( ( resu l t 
( i f i n i t -p 

(funcal l 
fn i n i t 
( f unca l l - i f key (pop seq)) ) 

( funcal l 
fn 
( f unca l l - i f key (pop seq)) 
( f unca l l - i f key (pop seq ) ) ) ) ) ) 

( i f end 
(loop repeat (- end ( i f i n i t -p 1 2)) while seq 

do (set f resu l t 
( funcal l 

fn resu l t 
( f unca l l - i f key (pop seq ) ) ) ) ) 

(loop while seq 
do (set f resu l t 

( funcal l 
fn resu l t 
( f unca l l - i f key (pop seq ) ) ) ) ) 

r e s u l t ) ) ) ) ) 
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24.7 Exercises 

@ Exercise 24.2 [m] The function reduce is a very useful one, especially with the key 
keyword. Write nonrecursive definitions for append and 1 ength using reduce. What 
other common functions can be written with reduce? 

S Exercise 24.3 The so-called loop keywords are not symbols in the keyword package. 
The preceding code assumes they are all in the current package, but this is not quite 
right. Change the definition of 1 oop so that any symbol with the same name as a loop 
keyword acts as a keyword, regardless of the symbol's package. 

@ Exercise 24.4 Can there be a value for exp for which the following expressions are 
not equivalent? Either demonstrate such an exp or argue why none can exist. 

(loop for X in l i s t co l lect exp) 
(mapcar #'(lambda (x) exp) l i s t ) ) 

ξ ] Exercise 24.5 The object-oriented language Eiffel provides two interesting 1 oop 
keywords: i nvar i ant and var i ant. The former takes a Boolean-valued expression 
that must remain true on every iteration of the loop, and the latter takes a integer-
valued expression that must decrease on every iteration, but never becomes negative. 
Errors are signaled if these conditions are violated. Use def 1 oop to implement these 
two keywords. Make them generate code conditionally, based on a global flag. 

24.8 Answers 

Answer 24.1 

(defvar *queue*) 

(defun col lect (item) (enqueue item *queue*)) 

(defmacro wi th-col lect ion (&body body) 
' ( l e t ((*queue* (make-queue))) 

,@body 
(queue-contents *queue*))) 

Here's another version that allows the collection variable to be named. That way, 
more than one collection can be going on at the same time. 
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(defun col lect (item Äoptional (queue *queue*)) 
(enqueue item queue)) 

(defmacro wi th-col lect ion ((Äoptional (queue '*queue*)) 
Äbody body) 

' ( l e t ((.queue (make-queue))) 
.©body 
(queue-contents .queue))) 

Answer 24.2 

(defun append-r (x y) 
(reduce #*cons χ . - in i t ia l -value y :from-end t ) ) 

(defun length-r ( l i s t ) 
(reduce # ' + l i s t :key #'(lambda (x) 1 ) ) ) 

Answer 24.4 The difference between 1 oop and ma pea r is that the former uses only 
one variable x, while the latter uses a different χ each time. If x's extent is no bigger 
than its scope (as it is in most expressions) then this makes no difference. But if any 
X is captured, giving it a longer extent, then a difference shows up. Consider exp = 
#'(lambda ( ) x ) . 

> (mapcar # ' funcal l (loop for χ in ' ( 1 2 3) co l lect 
#'(lambda () x ) ) ) 

(3 3 3) 

> (mapcar #*funcal1 (mapcar #*(lambda (x) #*(lambda O x ) ) 
• (1 2 3 ) ) ) 

(1 2 3) 

Answer 24.5 

(defvar *check- invar iants* t 
"Should VARIANT and INVARIANT clauses in LOOP be checked?") 

(defloop invar iant (1 exp) 
(when *check- invar iants* 

(add-body 1 ' ( asse r t .exp () " Invar iant v i o l a ted . " ) ) ) ) 

(defloop var iant (1 exp) 
(when *check- invar iants* 

( le t ((var (gensym " INV" ) ) ) 
(add-var 1 var n i l ) 
(add-body 1 ' ( se t f .var (update-variant .var .exp) ) ) ) ) ) 
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(defun update-variant (old new) 
(asser t (or (null old) (< new o ld) ) () 

"Variant i s not monotonically decreasing") 
(asser t (> new 0) () "Variant i s no longer pos i t i ve " ) 
new) 

Here's an example: 

(defun gcd2 (a b) 
"Greatest common d i v i s o r . For two pos i t ive integer arguments." 
(check-type a ( integer 1)) 
(check-type b ( integer 1)) 
(loop with χ = a with y = b 

invar iant (and (> χ 0) (> y 0)) (= (gcd χ y) (gcd a b)) 
var iant (max χ y) 
unti l (= X y ) 
do ( i f (> X y) (decf χ y) (decf y χ) ) 
f i na l l y (return χ ) ) ) 

Here the invariant is written semi-informally. We could include the calls to gcd, but 
that seems to be defeating the purpose of gcd2, so that part is left as a comment. 
The idea is that the comment should help the reader prove the correctness of the 
code, and the executable part serves to notify the lazy reader when something is 
demonstrably wrong at run time. 



CHAPTER 25 

Troubleshooting 

Perhaps if we wrote programs from childhood on, 
as adults we'd be able to read them. 

—Alan Peril's 

w hen you buy a new appUance such as a television, it comes with an instruction 
booklet that lists troubleshooting hints in the following form: 

PROBLEM: Nothing works. 

Diagnosis: Power is off. 

Remedy: Plug in outlet and turn on power switch. 

If your Lisp compiler came without such a handy instruction booklet, this chapter may be of 
some help. It lists some of the most common difficulties that Lisp programmers encounter. 
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25.1 Nothing Happens 

PROBLEM: You type an expression to Lisp's read-eval-print loop and get no re
sponse—no result, no prompt. 

Diagnosis: There are two likely reasons why output wasn't printed: either Lisp is still 
doing read or it is still doing eva l . These possibilities can be broken down further 
into four cases: 

Diagnosis: If the expression you type is incomplete. Lisp will wait for more input 
to complete it. An expression can be incomplete because you have left off a right 
parenthesis (or inserted an extra left parenthesis). Or you may have started a string, 
atom, or comment without finishing it. This is particularly hard to spot when the error 
spans multiple lines. A string begins and ends with double-quotes: " s t r i n g " ; an 
atom containing unusual characters can be delimited by vertical bars: I AN ATOM I; 
and a comment can be of the form # I a comment I #. Here are four incomplete 
expressions: 

(+ (* 3 (sqrt 5) 1) 
(format t "~&X=''a, Y=~a. χ y) 
(get Ίstrange-atom 'prop) 
( i f (= X 0) #1 test i f X i s zero 

y 
X) 

Remedy: Add a ) , ", I, and I #, respectively. Or hit the interrupt key and type the 
input again. 

Diagnosis: Your program may be waiting for input. 

Remedy: Never do a (read) without first printing a prompt of some kind. If the 
prompt does not end with a newline, a call to f i ni sh -output is also in order. In fact, 
it is a good idea to call a function that is at a higher level than read. Several systems 
define the function prompt-and- read. Here is one version: 

(defun prompt-and-read ( c t l - s t r i ng &rest args) 
"Pr int a prompt and read a rep ly . " 
(apply #'format t c t l - s t r i ng args) 
( f in ish-output) 
(read)) 

Diagnosis: The program may be caught in an infinite loop, either in an explicit 1 oop 
or in a recursive function. 
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Remedy: Interrupt the computation, get a back trace, and see what functions are 
active. Check the base case and loop variant on active functions and loops. 

Diagnosis: Even a simple expression like (mapc # ' s q r t 1 i s t ) or (length l i s t ) 
will cause an infinite loop if 1 i s t is an infinite list—that is, a list that has some tail 
that points back to itself. 

Remedy: Be very careful any time you modify a structure with nconc, del e te , se t f , 
and so forth. 

PROBLEM: You get a new prompt from the read-eval-print loop, but no output was 
printed. 

Diagnosis: The expression you evaluated must have returned no values at all, that 
is, the resuh (values). 

25.2 Change to Variable Has No Effect 

PROBLEM: You redefined a variable, but the new value was ignored. 

Diagnosis: Altering a variable by editing and re-evaluating a defvar form will not 
change the variable's value, def va r only assigns an initial value when the variable is 
unbound. 

Remedy: Use s e t f to update the variable, or change the defvar to a defparameter. 

Diagnosis: Updating a locally bound variable will not affect a like-named variable 
outside that binding. For example, consider: 

(defun check-ops (*ops*) 
( i f (nul l *ops* ) 

(set f * ops * *defau l t -ops*) ) 
(mapcar #'check-op *ops* ) ) 

If check - ops is called with a null argument, the * o p s * that is a parameter of check - ops 
will be updated, but the global * o p s * will not be, even if it is declared special. 

Remedy: Don't shadow variables you want to update. Use a different name for the 
local variable. It is important to distinguish special and local variables. Stick to the 
naming convention for special variables: they should begin and end with asterisks. 
Don't forget to introduce a binding for all local variables. The following excerpt from 
a recent textbook is an example of this error: 
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(defun test () 
(setq X ' tes t -data) ; Warning! 
(sol ve-probl em x) ) ; Don't do this. 

This function should have been written: 

(defun test () 
( let ((x ' tes t -data) ) ; Do this instead. 

(solve-problem x ) ) ) 

25.3 Change to Function Has No Effect 

PROBLEM: You redefined a function, but the change was ignored. 

Diagnosis: When you change a macro, or a function that has been declared inline, 
the change will not necessarily be seen by users of the changed function. (It depends 
on the implementation.) 

Remedy: Recompile after changing a macro. Don't use inline functions until every
thing is debugged. (Use (declare (not i nl i ne f ) ) to cancel an inline declaration). 

Diagnosis: If you change a normal (non-inline) function, that change will be seen by 
code that refers to the function by name, but not by code that refers to the old value 
of the function itself. Consider: 

(defparameter *scorer * # ' sco re - fn ) 
(defparameter *pr in ter* *pr int - fn) 

(defun show (values) 
(funcall Sprinter* 

(funcall *scorer * values) 
(reduce #'better va lues) ) ) 

Now suppose that the definitions of score - fn, pri nt - f n, and be t te r are all changed. 
Does any of the prior code have to be recompiled? The variable *pri nter* can stay 
as is. When it is funcalled, the symbol pri n t - f η will be consulted for the current 
functional value. Within show, the expression # ' be t te r is compiled into code that 
will get the current version of bet te r, so it too is safe. However, the variable *s co r e r* 
must be changed. Its value is the old definition of score - fn. 

Remedy: Re-evaluate the definition of *scorer*. It is unfortunate, but this problem 
encourages many programmers to use symbols where they really mean functions. 
Symbols will be coerced to the global function they name when passed to f uncal 1 
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or apply, but this can be the source of another error. In the following example, the 
symbol local - fn will not refer to the locally bound function. One needs to use 
#'local - fn to refer to it. 

( f la t ( d o c a l - f n (x) . . . ) ) 
(mapcar * loca l - fn l i s t ) ) 

Diagnosis: If you changed the name of a function, did you change the name every
where? For example, if you decide to change the name of pr 1 nt - f η to pr i nt - f uncti on 
but forget to change the value of *pri nter*, then the old function will be called. 

Remedy: Use your editor's global replace command. To be even safer, redefine 
obsolete functions to call error. The following function is handy for this purpose: 

(defun make-obsolete (fn-name) 
"Pr int an error i f an obsolete function i s ca l l ed . " 
(set f (symbol-function fn-name) 

#*(lambda (&rest args) 
(declare ( ignore a rgs ) ) 
(error "Obsolete func t i on . " ) ) ) ) 

Diagnosis: Are you using 1 abel s and f 1 e t properly? Consider again the function 
repl ace-?-vars, which was defined in section 11.3 to replace an anonymous logic 
variable with a unique new variable. 

(defun rep lace-?-vars (exp) 
"Replace any ? within exp with a var of the form ? 1 2 3 . " 
(cond ((eq exp * ? ) (gensym " ? " ) ) 

((atom exp) exp) 
(t (cons ( rep lace-?-vars ( f i r s t exp)) 

( rep lace-?-vars ( rest exp) ) ) ) ) ) 

It might occur to the reader that gensyming a different variable each time is wasteful. 
The variables must be unique in each clause, but they can be shared across clauses. 
So we could generate variables in the sequence ?1, ?2, intern them, and thus 
reuse these variables in the next clause (provided we warn the user never to use 
such variable names). One way to do that is to introduce a local variable to hold the 
variable number, and then a local function to do the computation: 
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(defun replace-?-vars (exp) 
"Replace any ? within exp with a var of the form ?123." 
. . Buggy Version *** 
(let ((n 0)) 

(f let 
((replace-?-vars (exp) 

(cond ((eq exp *?) (symbol '? (incf n))) 
((atom exp) exp) 
(t (cons (replace-?-vars ( f i rs t exp)) 

(replace-?-vars (rest exp))))))) 
(replace-?-vars exp)))) 

This version doesn't work. The problem is that f 1 et , like 1 et , defines a new function 
within the body of the f 1 et but not within the new function's definition. So two 
lessons are learned here: use 1 abel s instead of f 1 e t to define recursive functions, 
and don't shadow a function definition with a local definition of the same name (this 
second lesson holds for variables as well). Let's fix the problem by changing 1 abel s 
to f 1 et and naming the local function recurse: 

(defun replace-?-vars (exp) 
"Replace any ? within exp with a var of the form ?123." 
. . Buggy Version *** 
(let ((n 0)) 

(labels 
((recurse (exp) 

(cond ((eq exp ' ? ) (symbol '? (incf n))) 
((atom exp) exp) 
(t (cons (replace-?-vars ( f i rs t exp)) 

(replace-?-vars (rest exp))))))) 
(recurse exp)))) 

Annoyingly, this version still doesn't work! This time, the problem is carelessness; 
we changed the repl ace-? - vars to recurse in two places, but not in the two calls in 
the body of recurse. 

Remedy: In general, the lesson is to make sure you call the right function. If there 
are two functions with similar effects and you call the wrong one, it can be hard to 
see. This is especially true if they have similar names. 

PROBLEM: Your closures don't seem to be working. 

Diagnosis: You may be erroneously creating a lambda expression by consing up 
code. Here's an example from a recent textbook: 
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(defun make-specialization (c) 
(let (pred newc) 

(setf (get newc 'predicate) 
'(lambda (obj) ; Warning! 

(and ,(cons pred ' (obj) ) ; Don't do this. 
(apply ' . (get c 'predicate) ( l i s t obj ) ) ) ) ) 

. . . ) ) 

Strictly speaking, this is legal according to Common Lisp the Language, although in 
ANSI Common Lisp it will not he legal to use a list beginning with 1 ambda as a function. 
But in either version, it is a bad idea to do so. A list beginning with 1 ambda is just that: 
a list, not a closure. Therefore, it cannot capture lexical variables the way a closure 
does. 

Remedy: The correct way to create a closure is to evaluate a call to the special form 
f uncti on, or its abbreviation, # ' . Here is a replacement for the code beginning with 
* (1 ambda Note that it is a closure, closed over pred and c. Also note that it gets 
the predi cate each time it is called; thus, it is safe to use even when predicates are 
being changed dynamically. The previous version would not work when a predicate 
is changed. 

#'(lambda (obj) ; Do this instead. 
(and (funcall pred obj) 

(funcall (get c 'predicate) obj))) 

It is important to remember that f uncti on (and thus # ' ) is a special form, and thus 
only returns the right value when it is evaluated. A common error is to use # ' notation 
in positions that are not evaluated: 

(defvar *obscure-fns* ' ( # ' c i s #'cosh #'ash # 'b i t -o rc2) ) ; wrong 

This does not create a list of four functions. Rather, it creates a list of four sublists; 
the first subUst is ( f uncti on e i s ) . It is an error to funcall or apply such an object. 
The two correct ways to create a Ust of functions are shown below. The first assures 
that each function special form is evaluated, and the second uses function names 
instead of functions, thus relying on funcal 1 or apply to coerce the names to the 
actual functions. 

(defvar *obscure-fns* ( l i s t # ' c i s #'cosh #'ash # 'b i t -o rc2) ) 
(defvar *obscure-fns* ' (e i s cosh ash bi t -orc2)) 

Another common error is to expect # ' i f or # O r to return a function. This is an error 
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because special forms are just syntactic markers. There is no function named i f or 
or; they should be thought of as directives that tell the compiler what to do with a 
piece of code. 

By the way, the function ma ke - speci a 1 i zat i on above is bad not only for its lack of 
f uncti on but also for its use of backquote. The following is a better use of backquote: 

'(lambda (obj) 
(and (,pred obj) 

( , (get c 'predicate) obj ) ) ) 

25.4 Values Change "by Themselves'' 

PROBLEM: You deleted/removed something, but it didn't take effect. For example: 

> (set f numbers ' ( 1 2 3 4 5)) ^ (1 2 3 4 5) 

> (remove 4 numbers) (1 2 3 5) 

> numbers ^ ( 1 2 3 4 5 ) 

> (delete 1 numbers) = ^ ( 2 3 4 5) 

> numbers = ^ ( 1 2 3 4 5 ) 

Remedy: Use ( s e t f numbers (delete 1 numbers)). Note that remove is a non
destructive function, so it will never alter its arguments, del ete is destructive, but 
when asked to delete the first element of a list, it returns the rest of the list, and thus 
does not alter the list itself. That is why s e t f is necessary. Similar remarks hold for 
nconc, sort, and other destructive operations. 

PROBLEM: You created a hundred different structures and changed a field in one of 
them. Suddenly, all the other ones magically changed! 

Diagnosis: Different structures may share identical subfields. For example, suppose 
you had: 

(defstruct block 
(poss ib le -co lo rs ' ( red green blue)) 
. . . ) 
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(set f bl (make-block)) 
(set f b2 (make-block)) 

(delete 'green (b lock-poss ib le -co lors b l ) ) 

Both bl and b2 share the initial Hst of possible colors. The del ete function modifies 
this shared list, so green is deleted from b2's possible colors Hst just as surely as it is 
deleted from bl's. 

Remedy: Don't share pieces of data that you want to alter individually. In this case, 
either use remove instead of delete, or allocate a different copy of the Hst to each 
instance: 

(defstruct block 
(poss ib le -co lo rs ( l i s t ' red 'green 'b lue) ) 
. . . ) 

Remember that the initial value field of a defstruct is an expression that is evaluated 
anew each time make-bl ock is called. It is incorrect to think that the initial form is 
evaluated once when the defstruct is defined. 

25.5 Built-in Functions Don't Find Elements 

PROBLEM: You tried ( f i n d i t e m 1 i s t ) , and you know it is there, but it wasn't 
found. 

Diagnosis: By default, many built-in functions use eq l as an equality test, f i nd is 
one of them. If i tern is, say, a list that is equa l but not eq l to one of the elements of 
l i s t , it will not be found. 

Remedy: Use ( f i n d I t e m l i s t : t e s t # ' e q u a l ) 

Diagnosis: If the i tern is nil, then nil will be returned whether it is found or not. 

Remedy: Use member or p o s i t i on instead of f i nd whenever the item can be nil. 

25.6 Multiple Values Are Lost 

PROBLEM: You only get one of the multiple values you were expecting. 

Diagnosis: In certain contexts where a value must be tested by Lisp, multiple values 
are discarded. For example, consider: 



2 5 . 7 DECLARATIONS ARE IGNORED 875 

(or (mv-1 x) (mv-2 x) ) 
(and (mv-1 x) (mv-2 x) ) 
(cond ((mv-1 x) ) 

(t (mv-2 X ) ) ) 

In each case, if mv - 2 returns multiple values, they will all be passed on. But if mv -1 
returns multiple values, only the first value will be passed on. This is true even in 
the last clause of a cond. So, while the final clause ( t (mv-2 χ)) passes on multiple 
values, the final clause ((mv - 2 χ)) would not. 

Diagnosis: Multiple values can be inadvertently lost in debugging as well. Suppose 
I had: 

(mult iple-value-bind (a b c) 
(mv-1 x) 
. . . ) 

Now, if I become curious as to what mv -1 returns, I might change this code to: 

(mult iple-value-bind (a b c) 
(pr int (mv-1 x) ) debugging output 
. . . ) 

Unfortunately, print will see only the first value returned by mv-1, and will return 
only that one value to be bound to the variable a. The other values will be discarded, 
and b and c will be bound to ni 1. 

25.7 Declarations Are Ignored 

PROBLEM: Your program uses 1024 χ 1024 arrays of floating-point numbers. But 
you find that it takes 15 seconds just to initialize such an array to zeros! Imagine how 
inefficient it is to actually do any computation! Here is your function that zeroes an 
array: 

(defun zero-array (arr ) 
"Set the 1024x1024 array to al l ze ros . " 
(declare (type (array f loa t ) a r r ) ) 
(dotimes (i 1024) 

(dotimes (j 1024) 
(set f (aref arr i j ) 0 . 0 ) ) ) ) 

Diagnosis: The main problem here is an ineffective declaration. The type (array 
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f 1 oat) does not help the compiler, because the array could be displaced to an array 
of another type, and because f 1 oat encompasses both single- and double-precision 
floating-point numbers. Thus, the compiler is forced to allocate storage for a new 
copy of the number 0.0 for each of the million elements of the array. The function is 
slow mainly because it generates so much garbage. 

Remedy: The following version uses a much more effective type declaration: a 
simple array of single-precision numbers. It also declares the size of the array and 
turns safety checks off. It runs in under a second on a SPARCstation, which is slower 
than optimized C, but faster than unoptimized C. 

(defun zero-array (arr ) 
"Set the array to al l ze ros . " 
(declare (type (simple-array s i ng le - f l oa t (1024 1024)) ar r ) 

(optimize (speed 3) (safety 0 ) ) ) 
(dotimes ( i 1024) 

(dotimes (j 1024) 
(set f (aref arr i j ) 0 . 0 ) ) ) ) 

Another common error is to use something like (s imple -vec to r f ixnum) asa type 
specifier. It is a quirk of Common Lisp that the simpl e-vector type specifier only 
accepts a size, not a type, while the array, vector and s imple -a r ray specifiers all 
accept an optional type followed by an optional size or list of sizes. To specify a 
simplevectoroffixnums,use (s imple -a r ray fixnum ( * ) ) . 

To be precise, s imple -vec tor means (simple -a r ray t ( * ) ) . This means that 
simple -vec tor cannot be used in conjunction with any other type specifier. A 
commonmistakeis to think that the type (and simple -vec to r (vector f ixnum)) 
is equivalent to (s imple -a r ray f ixnum ( * ) ) , a simple, one-dimensional vector 
of fixnums. Actually, it is equivalent to (s imple -a r ray t ( * ) ) , a simple one-
dimensional array of any type elements. To eliminate this problem, avoid simpl e-
vector altogether. 

25.8 My Lisp Does the Wrong Thing 

When all else fails, it is tempting to shift the blame for an error away from your own 
code and onto the Common Lisp implementation. It is certainly true that errors are 
found in existing implementations. But it is also true that most of the time. Common 
Lisp is merely doing something the user did not expect rather than something that is 
in error. 

For example, a common "bug report" is to complain about read - from- s t r 1 ng. A 
user might write: 
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(read-from-string "a b c" :start 2) 

expecting the expression to start reading at position 2 and thus return b. In fact, this 
expression returns a. The angry user thinks the implementation has erroneously 
ignored the : s t a r t argument and files a bug report,^ only to get back the following 
explanation: 

The function read-from-string takes two optional arguments, eof-errorp and 
eof-val ue, in addition to the keyword arguments. Thus, in the expression above, 
: s t a r t is taken as the value of eof-errorp, with 2 as the value of eof-val ue. The 
correct answer is in fact to read from the start of the string and return the very first 
form, a. 

The functions read-from-string and parse-namestring are the only built-in 
functions that have this problem, because they are the only ones that have both 
optional and keyword arguments, with an even number of optional arguments. 
The functions wr i t e -1 i ne and wri te-s t r ing have keyword arguments and a single 
optional argument (the stream), so if the stream is accidently omitted, an error will 
be signaled. (If you type (write-1 ine s t r : s t a r t 4 ) , the system will complain 
either that: s ta r t is not a stream or that 4 is not a keyword.) 

The moral is this: functions that have both optional and keyword arguments 
are confusing. Take care when using existing functions that have this problem, and 
abstain from using both in your own functions. 

25.9 How to Find the Function You Want 

Veteran Common Lisp programmers often experience a kind of software deja vu: 
they believe that the code they are writing could be done by a built-in Common Lisp 
function, but they can't remember the name of the function. 

Here's an example: while coding up a problem I realized I needed a function that, 
given the lists ( a b e d ) and ( c d ) , would return (a b) , that is, the part of the first 
list without the second list. I thought that this was the kind of function that might 
be in the standard, but I didn't know what it would be called. The desired function 
is similar to se t -di f ference, so I looked that up in the index of Common Lisp the 
Language and was directed to page 429. I browsed through the section on "using lists 
as sets" but found nothing appropriate. However, I was reminded of the function 
but! ast, which is also similar to the desired function. The index directed me to 
page 422 for butl ast , and on the same page I found 1 di f f, which was exactly the 
desired function. It might have been easier to find (and remember) if it were called 
1 i st-di f f erence, but the methodology of browsing near similar functions paid off. 

^This misunderstanding has shown up even in published articles, such as Baker 1991. 
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If you think you know part of the name of the desired function, then you can 
use apropos to find it. For example, suppose I thought there was a function to push 
a new element onto the front of an array. Looking under array, push-ar ray , and 
a rray- push in the index yields nothing. But I can turn to Lisp itself and ask: 

> (apropos "push") 
PUSH Macro (VALUE PLACE), pi i s t 
PUSHNEW Macro (VALUE PLACE &KEY . . . ) . pi i s t 
VECTOR-PUSH function (NEW-ELEMENT VECTOR), pi i s t 
VECTOR-PUSH-EXTEND function (DATA VECTOR ÄOPTIONAL . . . ) , pi i s t 

This should be enough to remind me that vector -push is the answer. If not, I can get 
more information from the manual or from the online functions documentati on or 
descr ibe: 

> (documentation 'vector-push ' funct ion) 
"Add NEW-ELEMENT as an element at the end of VECTOR. 
The f i l l pointer (leader element 0) i s the index of the next 
element to be added. I f the array i s f u l l , VECTOR-PUSH returns 
NIL and the array i s unaffected; use VECTOR-PUSH-EXTEND instead 
i f you want the array to grow automatical ly." 

Another possibility is to browse through existing code that performs a similar pur
pose. That way, you may find the exact function you want, and you may get additional 
ideas on how to do things differently. 

25.10 Syntax of LOOP 
1 oop by itself is a powerful programming language, one with a syntax quite different 
from the rest of Lisp. It is therefore important to exercise restraint in using 1 oop, lest 
the reader of your program become lost. One simple rule for limiting the complexity 
of loops is to avoid the with and and keywords. This eliminates most problems 
dealing with binding and scope. 

When in doubt, macro-expand the loop to see what it actually does. But if you 
need to macro-expand, then perhaps it would be clearer to rewrite the loop with more 
primitive constructs. 

25.11 Syntax of COND 
For many programmers, the special form cond is responsible for more syntax errors 
than any other, with the possible exception of 1 oop. Because most cond-clause start 
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with two left parentheses, beginners often come to the conclusion that every clause 
must. This leads to errors like the following: 

( le t ((entry (assoc item l i s t ) ) ) 
(cond ((entry (process entry) ) ) 

. . . ) ) 

Here entry is a variable, but the urge to put in an extra parenthesis means that the 
cond-clause attempts to call entry as a function rather than testing its value as a 
variable. 

The opposite problem, leaving out a parenthesis, is also a source of error: 

(cond (lookup item l i s t ) 
(t n i l ) ) 

In this case, 1 ookup is accessed as a variable, when the intent was to call it as a 
function. In Common Lisp this will usually lead to an unbound variable error, but in 
Scheme this bug can be very difficult to pin down: the value of 1 ookup is the function 
itself, and since this is not null, the test will succeed, and the expression will return 
l i s t without complaining. 

The moral is to be careful with cond, especially when using Scheme. Note that 
i f is much less error prone and looks just as nice when there are no more than two 
branches. 

25.12 Syntax of CASE 

In a case special form, each clause consists of a key or list of keys, followed by the 
value of that case. The thing to watch out for is when the key is t , otherwi se, or ni 1. 
For example: 

(case let ter 
(s . . . ) 
(t . . . ) 
(u . . . ) ) 

Here the t is taken as the default clause; it will always succeed, and all subsequent 
clauses will be ignored. Similarly, using a ( ) or ni 1 as a key will not have the desired 
effect: it will be interpreted as an empty key hst. If you want to be completely safe, 
you can use a list of keys for every clause.^ This is a particularly good idea when you 

^Scheme requires a list of keys in each clause. Now you know why. 
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write a macro that expands into a case. The following code correctly tests for t and 
n i l keys: 

(case let ter 
( ( s ) . . . ) 
( ( t ) . . . ) 
((u) . . . ) 
( ( n i l ) . . . ) ) 

25.13 Syntax of LET and LET* 
A common error is leaving off a layer of parentheses in 1 et , just like in cond. Another 
error is to refer to a variable that has not yet been bound in a 1 et . To avoid this 
problem, use 1 et* whenever a variable's initial binding refers to a previous variable. 

25.14 Problems with Macros 
In section 3.2 we described a four-part approach to the design of macros: 

• Decide if the macro is really necessary. 

• Write down the syntax of the macro. 

• Figure out what the macro should expand into. 

• Use defmacro to implement the syntax/expansion correspondence. 

This section shows the problems that can arise in each part, starting with the first: 

• Decide if the macro is really necessary. 

Macros extend the rules for evaluating an expression, while function calls obey the 
rules. Therefore, it can be a mistake to define too many macros, since they can make 
it more difficult to understand a program. A common mistake is to define macros 
that do not violate the usual evaluation rules. One recent book on AI programming 
suggests the following: 

(defmacro binding-of (binding) ; Warning! 
' (cadr .b inding)) ; Don't do this. 

The only possible reason for this macro is an unfounded desire for efficiency. Always 
use an i n l ine function instead of a macro for such cases. That way you get the 
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efficiency gain, you have not introduced a spurious macro, and you gain the ability to 
apply or map the function # ' bi ndi n g - o f , something you could not do with a macro: 

(proclaim ' ( i n l i n e b ind ing-of ) ) 
(defun binding-of (binding) ; Do this instead. 

(second binding)) 

• Write down the syntax of the macro. 

Try to make your macro follow conventions laid down by similar macros. For ex
ample, if your macro defines something, it should obey the conventions of defvar, 
d e f s t r u c t , def ma c r o, and the rest: start with the letters def, take the name of the thing 
to be defined as the first argument, then a lambda-list if appropriate, then a value or 
body. It would be nice to allow for optional declarations and documentation strings. 

If your macro binds some variables or variablelike objects, use the conventions 
laid down by 1 et , 1 e t * , and 1 abel s: allow for a list of variable or (variable init-val) 
pairs. If you are iterating over some kind of sequence, follow dotimes and dol i s t . 
For example, here is the syntax of a macro to iterate over the leaves of a tree of conses: 

(defmacro dotree ((var tree Äoptional resu l t ) &body body) 
"Perform body with var bound to every leaf of t ree, 
then return resu l t . Return and Go can be used in body." 
. . . ) 

• Figure out what the macro should expand into. 

• Use defmacro to implement the syntax/expansion correspondence. 

There are a number of things to watch out for in figuring out how to expand a macro. 
First, make sure you don't shadow local variables. Consider the following definition 
for pop - end, a function to pop off and return the last element of a list, while updating 
the list to no longer contain the last element. The definition uses 1 a s t l , which was 
defined on page 305 to return the last element of a list, and the built-in function 
nbutl a s t returns all but the last element of a list, destructively altering the list. 

(defmacro pop-end (place) ; Warning!Buggy! 
"Pop and return las t element of the l i s t in PLACE." 
' ( l e t ( ( resu l t ( l a s t l .p lace)) ) 

(set f .place (nbut last .p lace)) 
resu l t ) ) 

This will do the wrong thing for (pop-end r e s u l t ) , or for other expressions that 
mention the variable resul t . The solution is to use a brand new local variable that 
could not possibly be used elsewhere: 
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(defmacro pop-end (place) ; Lessbuggy 
"Pop and return l as t element of the l i s t in PLACE." 
( le t ( ( resu l t (gensym))) 

• ( let ( ( . r esu l t ( l a s t l .p lace)) ) 
(set f .place (nbut last .p lace)) 
. r esu l t ) ) ) 

There is still the problem of shadowing local functions. For example, a user who 
writes: 

( f le t ( ( l a s t l (x) (sqr t x ) ) ) 
(pop-end l i s t ) 
. . . ) 

will be in for a surprise, pop-end will expand into code that calls 1 a s t l , but since 
l a s t l has been locally defined to be something else, the code won't work. Thus, the 
expansion of the macro violates referential transparency. To be perfectly safe, we 
could try: 

(defmacro pop-end (place) ; Lessbuggy 
"Pop and return l as t element of the l i s t in PLACE." 
( le t ( ( resu l t (gensym))) 

• ( le t ( ( . r esu l t ( funcal l . # ' l a s t l .p lace)) ) 
(set f .place (funcal l .# 'nbut las t .p lace)) 
. r esu l t ) ) ) 

This approach is sometimes used by Scheme programmers, but Common Lisp pro
grammers usually do not bother, since it is rarer to define local functions in Common 
Lisp. Indeed, in Common Lisp the Language, 2d edition, it was explicitly stated (page 
260) that a user function cannot redefine or even bind any built-in function, variable, 
or macro. Even if it is not prohibited in your implementation, redefining or binding 
a built-in function is confusing and should be avoided. 

Common Lisp programmers expect that arguments will be evaluated in left-to-
right order, and that no argument is evaluated more than once. Our definition of 
pop-end violates the second of these expectations. Consider: 

(pop-end (aref l i s t s ( incf i ) ) ) = 
(LET ((#:G3096 (LASTl (AREF LISTS (INCF I ) ) ) ) ) 

(SETF (AREF LISTS (INCF I ) ) (NBUTLAST (AREF LISTS (INCF I ) ) ) ) 
#:G3096) 

This increments i three times, when it should increment it only once. We could fix 
this by introducing more local variables into the expansion: 
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( le t * ((tempi ( inc f i ) ) 
(temp2 (AREF LISTS tempi)) 
(temp3 (LASTl temp2))) 

(set f (aref l i s t s tempi) (nbut last temp2)) 
temp3) 

This kind of left-to-right argument processing via local variables is done automatically 
by the Common Lisp s e t f mechanism. Fortunately, the mechanism is easy to use. 
We can redefine pop-end to call pop directly: 

(defmacro pop-end (place) 
"Pop and return las t element of the l i s t in PLACE." 
'(pop ( l as t .p lace)) ) 

Now all we need to do is define the s e t f method for 1 as t. Here is a simple definition. 
It makes use of the function 1 as t2 , which returns the last two elements of a list. In 
ANSI Common Lisp we could use ( l a s t l i s t 2) , but with a pre-ANSI compiler we 
need to define l a s t 2 : 

(defsetf l as t (place) (value) 
' ( se t f (cdr ( las t2 .p lace)) .value)) 

(defun las t2 ( l i s t ) 
"Return the las t two elements of a l i s t . " 
( i f (null ( rest2 l i s t ) ) 

l i s t 
( las t2 ( rest l i s t ) ) ) ) 

Here are some macro-expansions of calls to pop-end and to the s e t f method for 
l a s t . Different compilers will produce different code, but they will always respect 
the left-to-right, one-evaluation-only semantics: 

> (pop-end (aref (foo l i s t s ) ( inc f i ) ) ) = 
(LET ((G0128 (AREF (FOO LISTS) (SETQ I (+ I 1 ) ) ) ) ) 

(PR061 
(CAR (LAST G0128)) 
(SYSiSETCDR (LAST2 G0128) (CDR (LAST G0128))))) 

> (set f ( l as t (append χ y ) ) 'end) = 
(SYSiSETCDR (LAST2 (APPEND X Y)) 'END) 

Unfortunately, there is an error in the s e t f method for 1 a s t . It assumes that the 
list will have at least two elements. If the Ust is empty, it is probably an error, but if 
al isthasexactlyoneelement, then ( s e t f ( l a s t list) val) should have the same 
effect as ( s e t f list val). But there is no way to do that with d e f s e t f , because the 
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s e t f method defined by def s e t f never sees list itself. Instead, it sees a local variable 
that is automatically bound to the value of list. In other words, def s e t f evaluates the 
list and val for you, so that you needn't worry about evaluating the arguments out of 
order, or more than once. 

To solve the problem we need to go beyond the simple def s e t f macro and delve 
into the complexities of def i ne-set f -method, one of the trickiest macros in all of 
Common Lisp, def i ne-setf -method defines a s e t f method not by writing code 
directly but by specifying five values that will be used by Common Lisp to write the 
code for a call to se t f . The five values give more control over the exact order in 
which expressions are evaluated, variables are bound, and results are returned. The 
five values are: (1) a list of temporary, local variables used in the code; (2) a list of 
values these variables should be bound to; (3) a list of one variable to hold the value 
specified in the call to se t f ; (4) code that will store the value in the proper place; (5) 
code that will access the value of the place. This is necessary for variations of s e t f 
like i ncf and pop, which need to both access and store. 

In the following s e t f method for l a s t , then, we are defining the meaning of 
( s e t f ( l a s t p lace) va lue) . We keep track of all the variables and values needed 
to evaluate pi ace, and add to that three more local variables: 1 ast2-var will hold 
the last two elements of the list, 1 a s t 2 - p will be true only if there are two or more 
elements in the list, and 1 a s t - va r will hold the form to access the last element of the 
list. We also make up a new variable, resul t , to hold the val ue. The code to store 
the value either modifies the cdr of 1 ast2-var , if the list is long enough, or it stores 
directly into pi ace. The code to access the value just retrieves 1 diSt-\/ar. 

(define-setf-method las t (place) 
(mult iple-value-bind (temps va ls stores store-form access-form) 

(get-setf-method place) 
( let ( ( resu l t (gensym)) 

( las t2-var (gensym)) 
( las t2-p (gensym)) 
( l as t -va r (gensym))) 

Return 5 v a l s : temps va ls stores store-form access-form 
(values 

'(.©temps J a s t 2 - v a r . l as t2 -p . l as t - va r ) 
' ( .®va ls ( las t2 .access-form) 

(= (length . l as t2 -va r ) 2) 
( i f . l as t2 -p ( rest . l as t2 -va r ) .access-form)) 

( l i s t resu l t ) 
' ( i f . l as t2 -p 

(set f (cdr . l as t2 -va r ) . resu l t ) 
( le t ( ( . ( f i r s t s tores) . resu l t ) ) 

.store-form)) 
l a s t - v a r ) ) ) ) 
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It should be mentioned that s e t f methods are very useful and powerful things. It 
is often better to provide a s e t f method for an arbitrary function, f, than to define 
a special setting function, say, s e t - f . The advantage of the s e t f method is that it 
can be used in idioms like inc f and pop, in addition to s e t f itself. Also, in ANSI 
Common Lisp, it is permissible to name a function with # ' ( s e t f f ) , so you can also 
use map or apply the s e t f method. Most s e t f methods are for functions that just 
access data, but it is permissible to define s e t f methods for functions that do any 
computation whatsoever. As a rather fanciful example, here is a s e t f method for the 
square-root function. It makes ( s e t f ( sqr t x) 5) be almost equivalent to ( s e t f χ 
(* 5 5 ) ) ; the difference is that the first returns 5 while the second returns 25. 

(define-setf-method sqrt (num) 
(mult iple-value-bind (temps va ls stores store-form access-form) 

(get-setf-method num) 
( le t ( (s tore (gensym))) 

(values temps 
va ls 
( l i s t store) 
• ( le t ( ( . ( f i r s t s tores) (* .s tore . s to re ) ) ) 

.store-form 

.s tore) 
' ( sq r t .access- form)) ) ) ) 

Turning from s e t f methods back to macros, another hard part about writing portable 
macros is anticipating what compilers might warn about. Let's go back to the dotree 
macro. Its definition might look in part like this: 

(defmacro dotree ((var tree Äoptional resu l t ) Äbody body) 
"Perform body with var bound to every leaf of t ree, 
then return resu l t . Return and Go can be used in body." 
• ( le t ( ( . va r ) ) 

.©body)) 

Now suppose a user decides to count the leaves of a tree with: 

( le t ((count 0)) 
(dotree ( leaf tree count) 

( incf count))) 

The problem is that the variable l e a f is not used in the body of the macro, and 
a compiler may well issue a warning to that effect. To make matters worse, a 
conscientious user might write: 
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( le t ((count 0)) 
(dotree (leaf tree count) 

(declare (ignore leaf)) 
(incf count))) 

The designer of a new macro must decide if declarations are allowed and must make 
sure that compiler warnings will not be generated unless they are warranted. 

Macros have the full power of Lisp at their disposal, but the macro designer must 
remember the purpose of a macro is to translate macro code into primitive code, 
and not to do any computations. Consider the following macro, which assumes that 
transí ate - rul e-body is defined elsewhere: 

(defmacro defrule (name &body body) ; Warning! buggy! 
"Define a new rule with the given name." 
(setf (get name 'rule) 

*#*(lambda () ,(translate-rule-body body)))) 

The idea is to store a function under the rul e property of the rule's name. But this 
definition is incorrect because the function is stored as a side effect of expanding the 
macro, rather than as an effect of executing the expanded macro code. The correct 
definition is: 

(defmacro defrule (name &body body) 
"Define a new rule with the given name." 
•(setf (get '.name 'rule) 

#'(lambda () .(translate-rule-body body)))) 

Beginners sometimes fail to see the difference between these two approaches, be
cause they both have the same result when interpreting a file that makes use of 
def rul e. But when the file is compiled and later loaded into a different Lisp image, 
the difference becomes clear: the first definition erroneously stores the function 
in the compiler's image, while the second produces code that correctly stores the 
function when the code is loaded. 

Beginning macro users have asked, "How can I have a macro that expands into 
code that does more than one thing? Can I splice in the results of a macro?" 

If by this the beginner wants a macro that just does two things, the answer is 
simply to use a progn. There will be no efficiency problem, even if the progn forms 
are nested. That is, if macro-expansion results in code like: 

(progn (progn (progn a b) c) (progn d e)) 

the compiler will treat it the same as (progn abode). 
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On the other hand, if the beginner wants a macro that returns two values, the 
proper form is val ues, but it must be understood that the calling function needs to 
arrange specially to see both values. There is no way around this limitation. That is, 
there is no way to write a macro-or a function for that matter-that will "splice in" its 
results to an arbitrary call. For example, the function f 1 oor returns two values (the 
quotient and remainder), as does i ntern (the symbol and whether or not the symbol 
already existed). But we need a special form to capture these values. For example, 
compare: 

> ( l i s t ( f loor 11 5) ( intern · χ ) ) = ^ ( 2 X) 

> (mul t ip le-value-cal l # * l i s t 
( f loor 11 5) ( intern ' x ) ) = ^ ( 2 1 X -.INTERNAL) 

25.15 A Style Guide to Lisp 

In a sense, this whole book is a style guide to writing quality Lisp programs. But this 
section attempts to distill some of the lessons into a set of guidelines. 

When to Define a Function 

Lisp programs tend to consist of many short functions, in contrast to some languages 
that prefer a style using fewer, longer functions. New functions should be introduced 
for any of the following reasons: 

1. For a specific, easily stated purpose. 

2. To break up a function that is too long. 

3. When the name would be useful documentation. 

4. When it is used in several places. 

In (2), it is interesting to consider what "too long" means. Charniak et al. (1987) 
suggested that 20 lines is the limit. But now that large bit-map displays have replaced 
24-line terminals, function definitions have become longer. So perhaps one screenful 
is a better limit than 20 lines. The addition of f 1 e t and 1 abel s also contributes to 
longer function definitions. 
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When to Define a Special Variable 

In general, it is a good idea to minimize the use of special variables. Lexical variables 
are easier to understand, precisely because their scope is limited. Try to limit special 
variables to one of the following uses: 

1. For parameters that are used in many functions spread throughout a program. 

2. For global, persistant, mutable data, such as a data base of facts. 

3. For infrequent but deeply nested use. 

An example of (3) might be a variable like ^standard-output*, which is used by 
low-level priniting functions. It would be confusing to have to pass this variable 
around among all your high-level functions just to make it available to pri nt. 

When to Bind a Lexical Variable 

In contrast to special variables, lexical variables are encouraged. You should feel free 
to introduce a lexical variable (with a 1 et , 1 ambda or defun) for any of the following 
reasons: 

1. To avoid typing in the same expression twice. 

2. To avoid computing the same expression twice. 

3. When the name would be useful documentation. 

4. To keep the indentation manageable. 

How to Choose a Name 

Your choice of names for functions, variables, and other objects should be clear, 
meaningful, and consistent. Some of the conventions are listed here: 

1. Use mostly letters and hyphens, and use full words: del e te - f i l e . 

2. You can introduce an abbreviation if you are consistent: get-dtree, dtree-
fetch. For example, this book uses f η consistently as the abbreviation for 
"function." 

3. Predicates end in -p (or ? in Scheme), unless the name is already a predicate: 
variable-p, occurs-in. 

4. Destructive functions start with η (or end in ! in Scheme): nreverse. 
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5. Generalized variable-setting macros end in f: s e t f , inc f . (Push is an excep
tion.) 

6. Slot selectors created by d e f s t r u c t are of the form type-slot. Use this for 
non-def s t r uct selectors as well: cha r - bi t s . 

7. Many functions have the form action-object: copy -1 i s t , del e te - f i 1 e. 

8. Other functions have the form object-modifier: 1 i s t - l e n g t h , c h a r - l e s s p . Be 
consistent in your choice between these two forms. Don't have pr i nt -edge 
and ve r tex -pr i nt in the same system. 

9. A function of the form modulename-functionname is an indication that packages 
are needed. Use pa rse r : pr i n t - t ree instead of p a r s e r - p r i n t - t r e e . 

10. Special variables have asterisks: * d b * , * p r i n t - l e n g t h * . 

11. Constants do not have asterisks: p i , m o s t - p o s i t i v e - f i x n u m . 

12. Parameters are named by type: (defun length (sequence) . . . ) or by pur
pose: (defun subsetp (subset superset ) . . . ) or both: (defun / (number 
&rest denominator-numbers) . . . ) 

13. Avoid ambiguity. A variable named 1 as t -node could have two meanings; use 
previ ous - node or f i nal - node instead. 

14. A name like p r o p a g a t e - c o n s t r a i n t s - t o - n e i g h b o r i n g - v e r t e x e s is too long, 
while prp-con is too short. In deciding on length, consider how the name will 
be used: p r o p a g a t e - c o n s t r a i n t s is just right, because a typical call will be 
(p ropagate -cons t ra i nts ver tex) , so it will be obvious what the constraints 
are propagating to. 

Deciding on the Order of Parameters 

Once you have decided to define a function, you must decide what parameters it will 
take, and in what order. In general, 

1. Put important parameters first (and optional ones last). 

2. Make it read like prose if possible: (push element s tack) . 

3. Group similar parameters together. 

Interestingly, the choice of a parameter list for top-level functions (those that the 
user is expected to call) depends on the environment in which the user will function. 
In many systems the user can type a keystroke to get back the previous input to the top 
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level, and can then edit that input and re-execute it. In these systems it is preferable 
to have the parameters that are likely to change be at the end of the parameter list, so 
that they can be easily edited. On systems that do not offer this kind of editing, it is 
better to either use ke3word parameters or make the highly variable parameters first 
in the list (with the others optional), so that the user will not have to type as much. 

Many users want to have required keyword parameters. It turns out that all 
keyword parameters are optional, but the following trick is equivalent to a required 
keyword parameter. First we define the function requi red to signal an error, and 
then we use a call to requi red as the default value for any keyword that we want to 
make required: 

(defun required () 
(error "A required keyword argument was not supp l i ed . " ) ) 

(defun fn (x &key (y ( required))) 
. . . ) 

25.16 Dealing with Files, Packages, and Systems 

While this book has covered topics that are more advanced than any other Lisp text 
available, it is still concerned only with programming in the small: a single project at 
a time, capable of being implemented by a single programmer. More challenging is 
the problem of programming in the large: building multiproject, multiprogranuner 
systems that interact well. 

This section briefly outlines an approach to organizing a larger project into man
ageable components, and how to place those components in files. 

Every system should have a separate file that defines the other files that comprise 
the system. I recommend defining any packages in that file, although others put 
package definitions in separate files. 

The following is a sample file for the mythical system Project-X. Each entry in the 
file is discussed in turn. 

1. The first line is a comment known as the mode line. The text editor emacs will 
parse the characters between delinüters to discover that the file contains 
Lisp code, and thus the Lisp editing commands should be made available. The 
dialect of Lisp and the package are also specified. This notation is becoming 
widespread as other text editors emulate emacs's conventions. 

2. Each file should have a description of its contents, along with information on 
the authors and what revisions have taken place. 
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3. Comments with four semicolons ( ; ; ; ; ) denote header lines. Many text editors 
supply a command to print all such lines, thus achieving an outline of the major 
parts of a file. 

4. The first executable form in every file should be an i n-package. Here we use 
the user package. We will soon create the pro j e c t -x package, and it will be 
used in all subsequent files. 

5. We want to define the Project-X system as a collection of files. Unfortunately, 
Common Lisp provides no way to do that, so we have to load our own system-
definition functions explicitly with a call to 1 oad. 

6. The call to def i ne - system specifies the files that make up Project-X. We provide 
a name for the system, a directory for the source and object files, and a list of 
modules that make up the system. Each module is a list consisting of the module 
name (a symbol) followed by a one or more files (strings or pathnames). We 
have used keywords as the module names to eliminate any possible name 
conflicts, but any symbol could be used. 

7. The call to def package defines the package pro j ec t -x . For more on packages, 
see section 24.1. 

8. The final form prints instructions on how to load and run the system. 

Mode: L i sp ; Syntax: Common-Lisp; Package: User 

(Br ie f descr ipt ion of system here.) 

; ; Define the Project-X system, 

(in-package "USER") 

( load " / u s r / n o r v i g / d e f s y s . l i s p " ) ; load define-system 

(define-system ; ; Define the system Project-X 
:naaje :project-x 
:source-d i r " / u s r / n o r v i g / p r o j e c t - x / * . l i s p " 
:object-dir " / us r / no rv i g /p ro j ec t - x / * . b i n " 
:modules •((:macros "header" "macros") 

(:main "parser" "transformer" "optimizer" 
"commands" "database" "output") 

(:windows "xwindows" "c lx" " c l i en t " ) ) ) 

(defpackage :project-x ; ; Define the package Project-X 
(:export "DEFINE-X" "DO-X" "RUN-X") 
(:nicknames "PX") 
(:use common-lisp)) 
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(format *debug- io* "~& To load the Project-X system, type 
(make-system :name :project-x) 

To run the system, type 
(pro jec t -x : run-x) " ) 

Each of the files that make up the system will start like this: 

; ; : - * - Mode: L i s p ; Syntax: Common-Lisp; Package: Project-X - * -

(in-package "PROJECT-X") 

Now we need to provide the system-definition functions, def ine-system 
and make-system. The idea is that def ine-system is used to define the files that 
make up a system, the modules that the system is comprised of, and the files that 
make up each module. It is necessary to group files into modules because some 
files may depend on others. For example, all macros, special variables, constants, 
and inline functions need to be both compiled and loaded before any other files that 
reference them are compiled. In Project-X, all defvar, defparameter, defconstant, 
and defstruct^ forms are put in the file header, and all defmacro forms are put in the 
file macros. Together these two files form the first module, named : mac ros, which 
will be loaded before the other two modules (: ma i η and : wi ndows) are compiled and 
loaded. 

define-system also provides a place to specify a directory where the source 
and object files will reside. For larger systems spread across multiple directories, 
def i ne-system will not be adequate. 

Here is the first part of the file defsys . l i sp , showing the definition of 
def i ne-system and the structure sys. 

; ; ; - * - Mode: L i s p ; Syntax: Common-Lisp; Package: User - * -

; ; ; ; A Fac i l i t y for Defining Systems and their Components 

(in-package "USER") 

(defvar ^systems* n i l " L i s t of al l systems def ined." ) 

(defstruct sys 
"A system containing a number of source and object f i l e s . " 
name source-dir object-dir modules) 

^defstruct forms are put here because they may create inline functions. 
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(defun define-system (&key name source-d i r object-dir modules) 
"Define a new system." 
; ; Delete any old system of th i s name, and add the new one. 
(set f *systems* (delete name *systems* : test #*str ing-equal 

:key # 'sys-name)) 
(push (make-sys 

:name (s t r ing name) 
:source-d i r (pathname source-d i r ) 
:object-dir (pathname object-d i r ) 
:modules * ( ( :a l l (mapcar # ' f i r s t modules)) . .modules)) 

*systems*) 
name) 

The function ma ke - sy s t em is used to compile and/or load a previously defined system. 
The name supplied is used to look up the definition of a system, and one of three 
actions is taken on the system. The keyword : c l oad means to compile and then load 
files. : 1 oad means to load files; if there is an object (compiled) file and it is newer than 
the source file, then it will be loaded, otherwise the soiu-ce file will be loaded. Finally, 
: update means to compile just those source files that have been changed since their 
corresponding source files were last altered, and to load the new compiled version. 

(defun make-system (&key (module : a l l ) (act ion :cload) 
(name (sys-name ( f i r s t *sys tems* ) ) ) ) 

"Compile and/or load a system or one of i t s modules." 
( le t ((system ( f ind name *systems* :key #'sys-name 

: test # ' s t r i ng -equa l ) ) ) 
(check-type system (not nu l l ) ) 
(check-type act ion (member :cload -.update -.load)) 
(with-compilat ion-unit () (sys-ac t ion module system act ion)) 

(defun sys-ac t ion (x system act ion) 
"Perform the spec i f ied act ion to χ in t h i s system. 
X can be a module name (symbol), f i l e name (s t r i ng ) 
or a l i s t . " 
(typecase χ 

(symbol ( le t ( ( f i l e s ( rest (assoc χ (sys-modules system))) ) ) 
( i f (nul l f i l e s ) 

(warn "No f i l e s for module " a " x) 
(sys -ac t ion f i l e s system ac t ion ) ) ) ) 

( l i s t (do l i s t ( f i l e x) 
(sys-ac t ion f i l e system act ion) ) ) 

( ( s t r i ng pathname) 
( le t ((source (merge-pathnames 

X ( sys -source -d i r system))) 
(object (merge-pathnames 

X (sys-ob jec t -d i r system)))) 
(case action 
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(reload (compi le- f i le source) (load object)) 
(lupdate (unless (newer-f i le-p object source) 

(compi le- f i le source)) 
( load object)) 

(.-load ( i f (newer-f i le-p object source) 
(load object) 
(load source ) ) ) ) ) ) 

(t (warn "Don' t know how to ~a "a in system " a " 
action X system)))) 

To support this, we need to be able to compare the write dates on files. This is not 
hard to do, since Common Lisp provides the function f i 1 e-wri te-date. 

(defun newer-f i le-p ( f i l e l f i l e 2 ) 
" I s f i l e l newer than (written later than) f i l e 2 ? " 
(>-num ( i f (probe- f i le f i l e l ) ( f i le -wr i te-date f i l e l ) ) 

( i f (probe- f i le f i l e2 ) ( f i le -wr i te-date f i l e 2 ) ) ) ) 

(defun >-num (x y) 
"True i f X and y are numbers, and χ > y . " 
(and (numberp x) (numberp y) (> χ y ) ) ) 

25.17 Portability Problems 
Programming is difficult. All programmers know the frustration of trpng to get a 
program to work according to the specification. But one thing that really defines the 
professional programmer is the ability to write portable programs that will work on 
a variety of systems. A portable program not only must work on the computer it 
was tested on but also must anticipate the difference between your computer and 
other ones. To do this, you must understand the Common Lisp specification in the 
abstract, not just how it is implemented on your particular machine. 

There are three ways in which Common Lisp systems can vary: in the treatment 
of "is an error" situations, in the treatment of unspecified results, and in extensions 
to the language. 

Common Lisp the Language specifies that it "is an error" to pass a non-number to 
an arithmetic function. For example, it is an error to evaluate (+ nil 1 ) . However, 
it is not specified what should be done in this situation. Some implementations may 
signal an error, but others may not. An implementation would be within its right to 
return 1, or any other number or non-number as the result. 

An unsuspecting programmer may code an expression that is an error but still 
computes reasonable results in his or her implementation. A common example is 
applying get to a non-symbol. This is an error, but many implementations will 
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just return nil, so the programmer may write (get χ * prop) when ( i f (symbol ρ 
χ) (get χ 'prop) n i l ) is actually needed for portable code. Another common 
problem is with subseq and the sequence functions that take : end keywords. It is an 
error if the : end parameter is not an integer less than the length of the sequence, but 
many implementations will not complain if : end is nil or is an integer greater than 
the length of the sequence. 

The Common Lisp specification often places constraints on the result that a 
function must compute, without fully specifying the result. For example, both of the 
following are valid results: 

> (union '(a b c) '(b c d)) =i> (A Β C D) 
> (union *(a b c) '(b c d)) (D A Β C) 

A program that relies on one order or the other will not be portable. The same warning 
applies to i n te rsec t i on and set-di f f erence. Many functions do not specify how 
much the result shares with the input. The following computation has only one 
possible printed result: 

> (remove 'x '(a b c d)) ^ (A Β C D) 

However, it is not specified whether the output is eq or only equal to the second 
input. 

Input/output is particularly prone to variation, as different operating systems 
can have very different conceptions of how I/O and the file system works. Things 
to watch out for are whether read-char echoes its input or not, the need to include 
finish-output, andvariationinwherenewlines are needed, particularly with respect 
to the top level. 

Finally, many implementations provide extensions to Common Lisp, either by 
adding entirely new functions or by modifying existing functions. The programmer 
must be careful not to use such extensions in portable code. 

25.18 Exercises 

t¿] Exercise 25.1 Pi] On your next programming project, keep a log of each bug you 
detect and its eventual cause and remedy. Classify each one according to the taxon
omy given in this chapter. What kind of mistakes do you make most often? How 
could you correct that? 

t¿3 Exercise 25.2 [s-d] Take a Common Lisp program and get it to work with a different 
compiler on a different computer. Make sure you use conditional compilation read 
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macros (#+ and #-) so that the program will work on both systems. What did you 
have to change? 

@ Exercise 25.3 [m] Write a s e t f method for i f that works like this: 

(set f ( i f test ( f i r s t x) y ) (+ 2 3)) = 
( let ((temp (+ 2 3 ) ) ) 

( i f test 
(set f ( f i r s t x) temp) 
(set f y temp))) 

You will need to use def i ne-setf-method, not defsetf . (Why?) Make sure you 
handle the case where there is no else part to the i f. 

@ Exercise 25.4 [h] Write a s e t f method for 1 ookup, a function to get the value for a 
key in an association list. 

(defun lookup (key a l i s t ) 
"Get the cdr of key 's entry in the assoc ia t ion l i s t . " 
(cdr (assoc key a l i s t ) ) ) 

25.19 Answers 
Answer 25.4 Here is the s e t f method for 1 ookup. It looks for the key in the a-list, 
and if the key is there, it modifies the cdr of the pair containing the key; otherwise it 
adds a new key/value pair to the front of the a-list. 

(define-setf-method lookup (key a l i s t -p lace ) 
(mult ip le-value-bind (temps va ls s tores store-form access-form) 

(get-setf-method a l i s t -p lace ) 
( le t ( (key-var (gensym)) 

(pa i r -var (gensym)) 
( resu l t (gensym))) 

(values 
' ( . key -va r .©temps .pa i r -var ) 
' ( . key .©vals (assoc .key-var .access-form)) 
' ( . r e s u l t ) 
• ( i f .pa i r -var 

(set f (cdr .pa i r -var ) . resu l t ) 
( le t ( ( . ( f i r s t s tores) 

(aeons .key-var . resu l t .access-form))) 
.store-form 
. resu l t ) ) 

' (cdr . pa i r - va r ) ) ) ) ) 



Appendix: 
Obtaining the Code 
in this Book 

FTP: The File Transfer Protocol 

FTP is a ftle transfer protocol that is widely accepted by computers around the world. FTP 
makes it easy to transfer hies between two computers on which you have accounts. But more 
importantly, it also allows a user on one computer to access hies on a computer on which he or 
she does not have an account, as long as both computers are connected to the Internet. This is 
known as anonymous FTP. 

All the code in this book is available for anonymous FTP from the computer mkp. com in ñles 
in the directory pub/norvi g. The ftle README in that directory gives further instructions on using 
theftles. 

In the session below, the user smith retrieves the ftles from mkp.com. Smith's input is in 
slanted font. The login name must be anonymous, and Smith's own mail address is used as the 
password. The conunand cd pub/norvig changes to that directory, and the command Is lists 
all the ftles. The command mget * retrieves all ftles (the m stands for "multiple"). Normally, 
there would be a prompt before each ftle asking if you do indeed want to copy it, but the prompt 
command disabled this. The command bye ends the FTP session. 

% ftpmkp.com i or ftp 199182.55.2) 
Name (mkp.comismith): anonymous 
331 Guest log in ok. send ident as password 
Password: smith@cs.stateu.edu 
230 Guest log in ok. access res t r i c t ions apply 
f tp> cd pub/norvig 

http://mkp.com
http://ftpmkp.com
mailto:smith@cs.stateu.edu
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250 CWD command success fu l . 
f tp> Is 

f tp> prompt 
Interact ive mode of f . 
f tp> mget * 

f tp> bye 
% 

Anonymous FTP is a privilege, not a right. The site administrators at mkp. com and 
at other sites below have made their systems available out of a spirit of sharing, but 
there are real costs that must be paid for the cormections, storage, and processing 
that makes this sharing possible. To avoid overloading these systems, do not FTP 
from 7:00 a.m. to 6:00 p.m. local time. This is especially true for sites not in yoiu: 
country. If you are using this book in a class, ask your professor for a particular piece 
of software before you try to FTP it; it would be wasteful if everybody in the class 
transferred the same thing. Use common sense and be considerate: none of us want 
to see sites start to close down because a few are abusing their privileges. 

If you do not have FTP access to the Internet, you can still obtain the nles from 
this book by contacting Morgan Kaufmann at the following: 

Morgan Kaufmann Publishers, Inc. 
340 Pine Street, Sbcth Floor 
San Francisco, CA 94104-3205 
USA 
Telephone 415/392-2665 
Facsimile 415/982-2665 
Internet mkp@mkp.com 
(800) 745-7323 

Make sure to specify which format you want: 

Macintosh diskette ISBN 1-55860-227-5 
DOS 5.25 diskette ISBN 1-55860-228-3 
DOS 3.5 diskette ISBN 1-55860-229-1 

Available Software 
In addition to the program from this book, a good deal of other software is available. 
The tables below list some of the relevant AI/Lisp programs. Each entry lists the 
name of the system, an address, and some comments. The address is either a 
computer from which you can FTP, or a mail address of a contact. Unless it is stated 
that distribution is by email or Roppy or requires a license, then you can FTP from the 
contact's home computer. In some cases the host computer and/or directory have 

mailto:mkp@mkp.com
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been provided in italics in the comments field. However, in most cases it should 
be obvious what files to transfer. First do an 1 s command to see what files and 
directories are available. If there is a file called README, follow its advice: do a ge t 
README and then look at the file. If you still haven't found what you are looking for, 
be aware that most hosts keep their public software in the directory pub. Do a cd pub 
and then another 1 s, and you should find the desired files. 

If a file ends in the suffix . Z, then you should give the FTP command bi na ry before 
transferring it, and then give the UNIX command uncompress to recover the original 
file. Files with the suffix . t a r contain several files that can be unpacked with the 
t a r command. If you have problems, consult your local documentation or system 
administrator. 

Knowledge Representation 
System Address Comments 
Babbler rsfl@ra.msstate.edu email; Markov chains/NLP 
BACK peltason@tubvm.cs.tu-berlin.de 3.5''floppy; KL-ONE family 
Belief almond@stat.washington.edu belief networks 
Classic dlm@research.att.com license; KL-ONE family 
FolGetfol fausto@irst.it tape; Weyrauch's FOL system 
Framekit ehn-^^cs.cmu.edu floppy; frames 
FrameWork mkant+@cs.cmu.edu a.gp.cs.cmu.edu:/usr/mkant/Public; ir dimes 
Frobs kessler@cs.utah.edu frames 
Knowbel kramer@ai.toronto.edu sorted/temporal logic 
MVL ginsberg@t. stanford.edu multivalued logics 
OPS slisp-group@b.gp.cs.cmu.edu Forgy's OPS-5 language 
PARKA spector@cs.umd.edu frames (designed for connection machine) 
Parmenides pshell@cs.cmu.edu frames 
Rhetorical miller@cs.rochester.edu planning, time logic 
SB-ONE kobsa@cs.uni-sb.de license; in German; KL-ONE family 
SNePS shapiro@cs.buffalo.edu license; semantic net/NLP 
SPI cs.orst.edu Probabilistic inference 
YAK franconi@irst.it KL-ONE family 

mailto:rsfl@ra.msstate.edu
mailto:peltason@tubvm.cs.tu-berlin.de
mailto:almond@stat.washington.edu
mailto:dlm@research.att.com
mailto:fausto@irst.it
http://cmu.edu
mailto:kessler@cs.utah.edu
mailto:kramer@ai.toronto.edu
http://stanford.edu
mailto:slisp-group@b.gp.cs.cmu.edu
mailto:spector@cs.umd.edu
mailto:pshell@cs.cmu.edu
mailto:miller@cs.rochester.edu
mailto:kobsa@cs.uni-sb.de
mailto:shapiro@cs.buffalo.edu
http://cs.orst.edu
mailto:franconi@irst.it
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Planning and Learning 
System Address Comments 
COBWEB/3 cobweb@ptolemy.arc.nasa.gov email; concept formation 
MATS kautz@research.att.com license; temporal constraints 
MICRO-xxx waander@cs.ume.edu case-based reasoning 
Nonlin nonlin-users-request@cs.umd.edu Tate's planner in Common Lisp 
Prodigy prodigy@cs.cmu.edu license; planning and learning 
PROTOS porter@cs.utexas.edu knowledge acquisition 
SNLP weld@cs.washington.edu nonlinear planner 
SOAR soar-requests/@cs.cmu.edu license; integrated architecture 
THEO tom.mitchell@cs.cmu.edu frames, learning 
Tileworld pollack@ai.sri.com planning testbed 
TileWorld tileworld@ptolemy.arc.nasa.gov planning testbed 

Mathematics 
System Address Comments 
JACAL 
Maxima 
MMA 
XLispStat 

jaffer@altdorf.ai.mit.edu 
rascal.ics.utexas.edu 
f ateman@cs .berkeley.edu 
umnstat.stat.umn.edu 

algebraic manipulation 
version of Macsyma; also proof-checker, nqthm 
peoplesparc.berkeley.edu^ub/mma, *; algebra 
Statistics; also S Bayes 

Compüers and Utüities 
System Address Comments 
AKCL rascal.ics.utexas.edu Austin Koyoto Common Lisp 
CLX, CLUE export.lcs.mit.edu Common Lisp interface to X Windows 
Gambit gambit@cs .brandéis .edu acom.cs.brandeis.edu:dist/gambit*; Scheme compiler 
ISI Grapher isi.edu Graph displayer; also NLP word lists 
PCL arisia.xerox.com Implementation of CLOS 
Prolog aisunl.ai.uga.edu Prolog-based utilities and NLP programs 
PYTHON ram+@cs.cmu.edu a.gp.cs.cmu.edu: Common Lisp Compiler and tools 
SBProlog arizona.edu Stony Brook Prolog, Icon, Snobol 
Scheme altdorf.ai.mit.edu Scheme utilities and compilers 
Scheme scheme@nexus.yorku.ca Scheme utilities and programs 
SIOD bu.edu users/gjc; small scheme interpreter 
Utilities a.gp.cs.cmu.edu /usr/mkant/Public; profiling, def system, etc. 
XLisp cs.orst.edu Lisp interpreter 
XScheme tut.cis.ohio-state.edu Also mitscheme compiler; sbprolog 

mailto:cobweb@ptolemy.arc.nasa.gov
mailto:kautz@research.att.com
mailto:waander@cs.ume.edu
mailto:nonlin-users-request@cs.umd.edu
mailto:prodigy@cs.cmu.edu
mailto:porter@cs.utexas.edu
mailto:weld@cs.washington.edu
mailto:tom.mitchell@cs.cmu.edu
mailto:pollack@ai.sri.com
mailto:tileworld@ptolemy.arc.nasa.gov
mailto:jaffer@altdorf.ai.mit.edu
http://rascal.ics.utexas.edu
http://berkeley.edu
http://umnstat.stat.umn.edu
http://rascal.ics.utexas.edu
http://export.lcs.mit.edu
http://isi.edu
http://arisia.xerox.com
http://aisunl.ai.uga.edu
http://arizona.edu
http://altdorf.ai.mit.edu
mailto:scheme@nexus.yorku.ca
http://bu.edu
http://cs.orst.edu
http://tut.cis.ohio-state.edu
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Newell, Alan, 109,147,596 
newer - f i l e -p ,894 
newline, 804 
n e x t - i n s t r , 795,819 
next - to - pi ay, 602,606 
nextto, 374 
NIL, 821 
n i l , 1 0 
Nilsson, Nils, 147,214,503 
nim, 311 
n i n t e r s e c t i o n , 8 0 
n l / 0 , 4 1 3 
n l i s t , 475 
n l i s t - l i s t , 4 7 6 
n l i s t - n , 4 7 6 
n l i s t - p u s h , 476 
n o - b i n d i n g s , 157 
n o - s t a t e s - p , 449 
no-unknown, 228 
node, 623,631 
noise-word-p , 225 
nominative case, 717 
non-Horn clauses, 504 
NONLIN, 147 

nonlocal exit, 768 
nonrestrictive clauses, 750 
normalize, 518 
normal ize -poly , 513,518 
Norvig, Peter, 384 
not, 415,424 
not-numberp,246 
not /1 ,415 
notation 

0 ( / ( n ) ) , 2 7 4 
dotted pair, 69 
infix, 240 
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package prefix, 835 
prefix, 228,240 

Noun, 36,695,698,701 
noun, 716,731,742 
noun-phrase, 36,38 
NP,660 
NP, 687, 688, 692, 694, 698, 701, 703, 

716,717 
NP-hard, 146,461 
NP2,716, 718 
nreverse,80 
nset-difference, 80 
nsubst, 80 
nth, 69,73 
NU-Prolog, 383 
nul l ,69 
number-and-negation,20 
number-of-labelings,569,570 
numberp/1,745 
numbers-and-negations,20 
nunion,80 
Nygaard, Krysten, 456 

O'Keefe, Richard, 383,423 
object, 3,436 
object-oriented 

programming, 434 
objective case, 717 
occurs check, 356,471 
occurs - check, 356,361 
omniscience, 464 
once-only, 854 
one-of, 36,275 
one-unknown, 229 
op, 114,126,127 
op?, 302 
opcode, 795,812 
open, 83 
opening book, 649 
operator precedence, 240 
operators -and- i nverses,228 
opponent, 601,602 

OPS5,266 
opt-rel-pronoun,721 
opt-word, 729 
optimize, 795,818 
optimize-1,818 
optimizing arithmetic operations, 793 
or, 53 ,415,429,764 
ORBFT, 825 
orderings,139 
ordinal, 716,732 
Othello, 597 
Othello 

bracketing piece, 605 
cheat, 606 
corner squares, 608 
current mobility, 637 
edge squares, 608 
edge stability, 637 
end game, 649 
legal move, 604 
mobility, 637 
plausible move generator, 647 
potential mobility, 637 
stable, 643 
unstable, 643 
valid move, 604 

othel 10,605,624 
semistable, 643 
othel 10- seri es, 623,626,628 
outer, 601,602 

P,660 
p-add-into!,525 
p-lists, 74 
package, 754,834,889-890 
package prefix notation, 835 
pair?, 756 
parameter 

keyword, 98 
optional, 98 
order, 889 
rest, 778 
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parameter list, 12 
parm, 533,541 
parm-type, 533,541 
PARRY, 153,154,167 
parse, 658,659,668,671,680,681 
parse-condition,547 
parse-lhs, 658 
parse-loop-body, 844 
parse-namestring, 877 
parse-reply,533,540 
parser, 658,662,680,681 
partial evaluation, 267 
pa r t i t i on - i f , 256 
Pascal, ix, 26-29,51,55,57,66,98,176, 

266,434, 623 
passivize-sense,743 
passivize-subcat,743 
password-account,441 
past participles, 720 
past tense, 722 
pat-match, 155,156,158,160,181 
pat-match-1,332 
pat-match-abbrev,187 
path, 200 
path-states ,210 
Patil, Ramesh, 663 
pattern matcher, 509 
pattern matching and unification, 352 
Pearl, Judea, 558,559,648, 652 
peephole optimizer, 805,818 
Pereira, Fernando, 383,426, 711, 748 
Pereira, Luis, 426 
Perils, Alan, 3 ,265,348,866 
Perlmutter, Barak Α., 458 
permutations, 150 
permute, 675,680,682 
permute-vector 1,682 
Peters, Stanley, 711 
piece, 601,602 
p i ece - s t ab i l i t y ,644 
pipe, 281 
pipe-el t , 282 

pipes, 840 
place, 55 
Plaisted, David Α., 504 
PLANNER, 382 
Plauger, J., viii 
play-game, 313 
pi ay-games, 312 
poiuyt, 582 
poly, 513,514 
poly*poly, 513,517 
poly*$ame, 513,517 
pol y+, 513,515 
poly+poly, 513,516 
poly+same, 513,516 
poly-, 513,515 
poly/poly, 529 
poly^2,523 
poly^n,513,518,523,524 
polyhedra, 565 
polynomial, 512,513 
polynomials, 510 
polysemous, 730 
POP, 785,814 
pop, 56 
pop-end,881,882 
pop-state,449 
posi t ion,62 
pos i t ion- i f , 60 
possible worlds, 485,496,497 
possi bl e-edge-move, 641 
possi bl e-edge-moves-value,641 
poss ib le- label ings ,569 
postdeterminers, 721 
PP,660 
PP, 38, 716, 720 
PP* , 38 
pprint, 839 
Prade, Henri, 558 
preconditions, 112 
precycling, 634 
predeterminers, 721 
predicate, 888 
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calculus, 463 
equality, 70 
recognizer, 81 

predi cate, 360,361 
predicative adjectives, 749 
prefer-dis jo int , 674 
prefer-not-si ngleton, 674 
prefer-subset, 674 
prefer<,674 
preferences, 670 
prefix notation, 4 ,228,240 
prefix->canon, 513,515 
pref i x - > i n f ix, 229,242,519,520 
Prep, 38 
prep, 716,732 
prepend,192 
prepositional phrases, 720 
prepositions, 739 
prerequisite clobbers siblinggoal, 120, 

139 
present participles, 720 
present tense, 722 
pretty printing, 839 
p r i ce - i s - r igh t ,195 
PRIM, 815 
prim, 795,804 
primitive operation, 803 
primitive-p, 795,804 
pr inl ,83 
princ, 83 
pri nt-board, 602,603,625 
pri nt - condi t i on, 533,551 
pri nt-condi t i ons,533,551 
pri nt-equati ons, 228,236 
print-fn, 786,790 
pr in t - label ings ,569,571 
print-path, 203 
print-proc, 757,768 
print-rule, 533,545,551 
pr int-sqrt-abs, 771 
pr in t - table , 771 
print-vari able,340 

print-vertex, 569,573 
pri nt-why, 533,552 
print-world,501 
priority queue, 459 
Pro, 660 
probability theory, 557 
problem 

(find item l i s t ) failed,874 
change to function ignored, 869 
closures don't v^ork, 871 
deletion didn't take effect, 873 
leaping before you look, 121 
line-diagram labling, 565 
multiple values lost, 874 
no response, 867 
prerequisite clobbers siblinggoal, 

120,139 
recursive subgoal, 123 

problem, 449 
problem-combi ner, 450,452 
problem-combiner -.around,452 
problem-successors,451,453 
proc, 757 
procedural attachment, 463 
procedure?, 756 
prof i le , 290 
profi le-count ,289 
prof i le -enter ,293 
p ro f i l e - ex i t , 293 
prof i le-report , 289,294 
profi le- t ime, 294 
p ro f i l e l , 289 ,291 
profiled-fn, 289,293 
profiling, 288 
prog, 767 
progn, 64 
programming 

data-driven, 182 
functional style, 435,839 
idioms, 60 
imperative style, 434 
in the large, 890 
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logic, 435 
object-oriented style, 434 
procedural style, 434 
rule-based, 435 

Project MAC, 239 
Prolog, ix, xii, XV, 63, 144, 155, 287, 

348-351, 355, 356, 358-360, 
364, 366-368, 371-374, 376, 
378, 380-382, 384-386, 388, 
389, 391, 407, 408, 411-413, 
415-421, 423-428, 431, 435, 
455, 462, 464-472, 480-482, 
489, 497, 504, 505, 531, 532, 
536, 538, 541-544, 684, 685, 
690, 691, 693, 697, 708, 7 1 1 -
713, 732, 745 

Prolog II, 355 
Prolog III, 383 
pro! og - compi 1 e, 390,391 
prol og - compi 1 e - symbol s , 391,409 
prolog-compi1er-macro, 391,395 
Prolog-In-Lisp, 360,424 
prompt, 4 
prompt-and-read,867 
prompt-and-read-vals ,533,539 
prompt-generator,178 
pronoun, 716,731 
pronouns, 736 
propagate -const ra i nts,569,571,590 
p roper - l i s tp ,391 ,396 
property lists, 74 
prototypes, 469 
prove, 361,362,367,368,380,483 
prove-al 1 ,361,362,367,380,483 
punctuat ion-p,709 
push, 56 
put-db, 533,537 
put-diagram, 576 
p u t - f i r s t , 623,636 
put -opt imizer , 819 
pu t - ru le , 533,545 
p u t - t r i e , 344 

Pygmalion, 152 

q u a s i - q , 795,824 
quasiquote, 822 
Quayle, Dan, 735 
query-bind,482 
query-user , 677 
questions, 725, 726 
queue, 341 
queue-contents,342 
queue-nconc, 343 
Quillian, M. Ross, 503 
Quirk, Randolph, 748 
quote, 427, 754 
quote mark( ' ) , 6 

r l 5 - t e s t , 522 
Rabbit, 825 
Ramsey, Allan, xv, 594, 748 
random-choice,773 
random-el t, 36,166,276,322,602 
random-mem, 322 
random-ordering strategy, 630 
random-othe l1o-ser i es ,623,627 
random-strategy,602,607 
rapid-prototyping, 265 
r a t * r a t , 513,529 
ra t+ra t , 513,529 
rat-denominator,513,527 
rat-numerator,513,527 
r a t / r a t , 513,529 
rational number, 526 
read, 83 
read-char , 83,895 
read-eval-print loop, 176,821 
r e a d - f r o m - s t r i n g , 8 7 6 
r e a d - l i n e , 8 3 
read- t ime-case , 313 
read/1,413 
reading, 24 
readtable, 712,821 
reasoning with uncertainty, 531 
recursion, 62 
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recursive,17 
recursive subgoal, 123 
REDUCE, 259 
reduce, 62,860 
reduce*, 860 
reduce-l is t , 862 
reduce-vect, 860 
referential transparency, 423,856 
regression testing, 90 
re j ec t - premi se, 533,547 
re l , 485,491 
rel -cl ause, 698,701,703,716,720 
rel-pro, 716 
re la t ion-a r i ty ,390 ,391 
relations, 485 
relative clauses, 720 
remhash, 74 
remove, 61,62 
remove-if, 61 
remove - i f- not, 61,100 
remove-punctuation,709 
remq, 334 
rename-vari abl es, 361,363 
repeat, 423,674,845 
repeat/0,423 
repeat/fail loop, 423 
replace, 624,634 
repl a ce - ? - va rs, 373,496,870,871 
report-f i ndi ngs,533,550 
representation 

boxed, 317 
knowledge, 461 
printed, 52 
unboxed, 317 

reset , 773 
resource, 336 
rest , 10,69 
restrictive clauses, 750 
ret-addr, 795,813 
re t r ieve, 480,488 
retrieve-bagof, 489 
retrieve-bagof-in-world, 501 

re t r i eve-conjuncti on,487 
re t r i eve- fac t ,487 
re t r i eve-i η-world, 501 
retrieve-matches, 480 
re t r i eve -se to f ,489 
RETURN, 785,798,814,816,820 
return, 65,754,852 
return-from, 837 
re turn- i f ,847 
reuse-cons,333,361 
rev, 411 
rev-funcal1,674 
rev-scorer ,674 
reverse, 69,411 
reverse-1abel, 569,573 
Reversi, 597 
Rich, Elaine, 594 
Riesbeck, Christopher, xv 
RISC, 811 
Risch,R., 239,528,260 
Robinson, J. Α., 382 
Robinson, Peter J., 504 
robotics, 564 
Rose, Brian, 637 
Rosenbloom, Paul, 637,645,652 
round-robin, 623,628 
Roussel, Jacqueline, 382 
Ruf, Erik, 777 
rul e, 242,533,545,658,666,671,690 
rule-based programming, 435 
rule-based translation, 509 
rule-based translator, 224 
rule-based-transíator ,189 
rule-Ihs, 275 
rule-pattern,163 
rule-responses, 163 
rule-rhs, 275 
rules, 350 

examples, 705 
left-recursive, 705 

rul es-for , 298,682 
ru les-s ta r t i ng-wi th, 658 
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run-a t tached- fn , 490 
run-examples, 709 
run-pro log , 391,409 
Russell, Bertrand, 20 
Russell, Steve, 777 
Russell, Stuart, 504,650 

S, 660 
S, 686-688,692,699,701,703,716,725, 

726 
Sacerdoti, Earl, 147 
Sager, Naomi, 749 
SAINT, 239,259 
same-shape - t ree , 76 
Samuel, A. L., 651 
Sangal, Rajeev, xiv 
satisficing, 146 
s a t i s f y - p r e m i s e s , 5 3 3 , 5 4 6 
SAVE, 814 
s b i t , 73 

Schank, Roger C , 655 
Scheme, ix, xii, 63, 91, 280, 372, 425, 

753, 755-757, 759-760, 763-
764, 766-768, 770-774, 776-
780, 790, 795, 799, 810-811, 
816, 821-830, 833, 836, 856, 
879,882,888 

spelling conventions, 755 
Τ dialect, 825 

scheme, 757, 760, 774, 795 
scheme-macro, 757,763 
scheme-macro-expand,757,763 
scheme-read, 822 
scheme-top- level ,816 
Schmölze, J .G. , 503 
scope, 93 
search, 140,572 

A*, 208,459 
ahead, 610 
aspiration, 648 
beam, 195 
best-first, 194 

breadth-first, 192,544 
brute-force, 620 
degrades gracefully, 647 
depth-first, 191,544 
heuristic, 204 
hill-climbing, 197,651 
ply, 610 
tools, 448 
zero-window, 648 

s e a r c h - a l l , 2 1 1 
s e a r c h - g p s , 212 
search-n ,218 
s e a r c h - s o l u t i o n s , 569,572 
searcher , 449 
searcher :before,450 
second, 10,69 
segment-match,161,162,185 
segment-match+, 186 
segment-match-fn,183 
segment-match?, 186 
segment-matcher, 183 
segment-pat tern-p,183 
s e l f - a n d - d o u b l e , 1 9 
sem, 674 
semantics, 656 
semipredicates, 127 
semi -s tab le ,643 
send, 438 
sentence,36 
seq, 786, 789 
series facility, 840 
set, 346 
se t , 95 
s e t ! , 754,756 
s e t - b i n d i n g l , 3 7 8 , 3 7 9 
s e t - c a r l , 756 
SET-CC, 810,815 
s e t - d i f f , 670 
s e t - d i f f e r e n c e , 895 
s e t - g l o b a l - v a r ! , 7 5 7 , 7 5 9 
se t -macro-character , 714 
s e t - s i m p - f n , 252 



942 INDEX 

se t -var l ,757 ,759 
set-worid-current, 500 
se t f , 8,55,514 

methods, 514 
se tof /3 ,417 
seven name spaces, 836 
shadow, 825,836 
Shafer, Glenn, 557,559 
Shakespeare, William, 597 
Shannon, Claude E., 652 
Shapiro, Ehud, 382 
Shapiro, Stuart, 213 
Shaw, George Bernard, 315 
Shaw,J. C , 596 
Shieber, Stuart, 383, 711,748 
Shortliffe, Edward H., 531,553, 

557,558 
show-city-path,203 
show-diagram, 569,574 
show-fn, 786,791,813 
show-prolog-soluti ons,361,365 
show-prolog-vars, 361,365,369,484 
show-prolog-vars/2,410 
show-vertex, 569,573 
side effect, 802,886 
s ide-ef fec t - f ree-p ,855 
sieve, 285 
Simon, Herbert, 109,146,147,596 
simp, 244 
simp-fn,252 
simp-rule, 246 
s i mpl e - a r ray, 321,876 
simple-equal,155 
simple-vector, 321,876 
s impl i f ier , 244 
simplify, 244 
simpl1fy-by-fn,252 
simpl i fy-exp, 244,252,297,306 
Simula, 456 
SIN, 239,259 
s ing le - f loa t ,320 
single-matcher,183 

single-pattern-p,183 
Skolem constant, 467,485,493 
Skolem function, 467 
Skolem, Thoralf, 467 
Slagle, James, 239,259 
s lo t -cons t i tuent ,728 
slot-number, 743 
Smalltalk, 457 
Software Tools in Pascal viii 
solve, 226 
solve-ar i thmetic ,229 
some, 62 
sort , 69 
sort*, 312 
sor t -vector , 826 
sorter , 194,217 
span-length,674 
sparse polynomials, 511 
specia l ,837 
special form, 9 

expression, 9,22 
operator, 9 

spelling corrector, 560 
sqrt, 885 
stack, 56 
STANDARD LISP, ix 
Staples, John, 504 
star ts-with, 126,317 
state space, 190 
statements, 5 
s t a t i c - edge - s t ab i l i t y , 644 
static-ordering strategy, 631 
Steele, Guy L., Jr., xiii, 48, 457, 777, 

781,810,825 
Stefik, Mark, 458 
step, 85 
step-daughter, 385 
Stepanov, Alexander Α., 27 
Sterling, Leon, 234,382 
Steve's Ice Cream, 457 
Stickel, Mark, 426,504 
storage management, 25 
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strategy 
generate-and-test, 376 
random-ordering, 630 
static-ordering, 631 

stream, 281 
s t r i n g - > l i s t , 709 
s t r ing - se t ! , 756 
strings, 22 
strip-vowel, 743 
STRIPS, 112 

Stroustrup, Bjarne, 459 
structure sharing, 425 
Stubblefield, William Α., 558 
student,224 
sub, 485,491 
subcategories, 693 
subject, 716, 724 
subject-predicate agreement, 724 
subjective case, 717 
subl i s , 156,356 
subseq, 69,895 
subst, 68, 76,333 
subst-bindings,357,361 
substances, 469 
subst i tu te ,62 
subtypep,82 
success continuation, 389,425 
successors,203 
sum, 674,849 
sum-squares,316 
summing, 849 
Sussman Anomaly, 142 
Sussman, Gerald, 142, 213, 307, 367, 

383,511, 777, 781,810,825 
Svartik,Jan,748 
svref, 73,512 
swi tch-s t ra tegies ,602,623,627 
swi tch-vi ewpoi nt, 165 
symbol, 23 

external, 835 
internal, 835 
uninterned, 855 

symbol, 302,391,623 
symbol-pi i s t , 75 
symbol-value, 94 
symbolic differentiation, 249 
Symbolics, 458 
syntax, 656 

frame-based, 485 
uniform, 28 

sys-action, 893 

T, 820 
table, 343 
tag bits, 811 
tagbody, 767,837 
ta i 1,282,284 
tail-recursive, 766 
tail-recursive call, 323 
Tanimoto, Steven, 259,594 
target , 795,819 
Tatar, Deborah G,, xiv 
Tate, Austin, 147,148 
tax-bracket ,54 
tconc, 341,342 
Teiresias, 549 
tense, 722 
tense-sem, 731 
terminal- tree-p,668 
t e rp r i ,84 
tes t -bears ,492 
t e s t -ex , 90 
test- index, 477 
t e s t - i t , 2 9 5 
test-unknown-word,745 
the, 512 
thematic fronting, 725 
theorem proving, 460 
there is ,847 
think-ahead, 649 
third, 10,69 
Thomason, Rich, 711 
Thoreau, Henry David, 238 
throw, 624, 754,769,837 
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thunks, 307 
TI Explorer Lisp Machine, 292,321 
TI Lisp Machine, 858 
time, 90 
t i m e - s t r i n g , 623,626 
TJUMP, 785,814,820 
tone language, 755 
top, 813 
top-down parser, 679 
top-edge,640 
top - leve l - prove, 361, 364, 368, 391, 

409,484 
Touretzky, David, x, xiv 
tower, 584 
t race, 16 
tracing, 427 
t r a c i n g , 16 
tractability, 464 
transitive verbs, 693 
t rans la te -exp ,495 
t r a n s í a t e - p a i r , 2 2 4 
t r a n s í a te - t o -express ion ,224 
tree, 76,649 
t ree , 666,671 
t r e e -equal ,76 
t r e e - l h s , 6 5 8 
t r e e - rhs ,658 
tree-score-or-O, 673 
t r e e - search , 191,217 
trie, 343,472 
t r i e , 344 

t r i e -de le ted ,344 
trihedral vertices, 565 
t r i p , 199,200 
t r ip -problem,453 
true, 76,430,532,533 
t rue-p , 533,536 
truly amazing, wonderful thing, 771 
truth maintenance system (TMS), 

497,504 
assumption-based (ATMS), 504 

try, 744 

t ry -dcg ,744 
Tversky, Amos, 558 
TWEAK , 148 
Twenty Questions, 80 
two-dimensional array, 599 
type declaration, 876 
type-checking, 316 
type-of , 82 
typep, 82 

uappend, 335 
ucons, 334 
u l i s t , 335 
Ullman,J. D., 307 
unbound, 377 
unbound-var-p,418 
uncertainty, 464 
undebug, 124 
u n d o - b i n d i n g s ! , 379,397 
unfac tor i ze , 254 
unification, 349,352, 684 

and pattern matching, 352 
u n i f i e r , 357 
un i fy , 354,356,361 
u n i f y ! , 378,391,397 
un i f y - Va r i a b 1 e, 354-356,361 
un ion* , 670 
unique, 335,345 
unique name assumption, 467 
unique-cons,335 
un i que - f i nd-anywhere- i f ,361,363 
unity path, 560 
unknown, 532,533 
unknown words, 664 
unknown-p,228 
u n l e s s , 53,851 
u n p r o f i l e , 290 
unpro f i l e l , 289 ,291 
untrace,16 
unwind-protect , 294 
update-cf , 533,537 
use, 130,663,671 
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use-el i za - rul es , 164,188,189 
use-new-world, 500 
use-package,836 
u s e - r u l e , 533,546 
use-ru l es , 533,545 
use-wor ld , 500 

V,660 
v -d -ne ighbors ,576 
v a l , 485,491 
v a l i d - p , 602,604 
val ues, 364 
van Emden, Maarten H . , 504 
var, 377-379,391 
var /1 ,418 
var=,513,515 
var>,513,515 
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class, 436 
generalized, 55 
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lexical, 93,888 
logic, 349,352,541 
meta-, 697 
renaming, 481 
segment, 159 
special, 93,888,889 

v a r i a b l e , 340,361 
var i abl e -p, 156,241,339,340,361 
v a r i a b l e s - i n , 361,363 
vec to r -set ! , 756 
Verb, 36 
verb, 716,730,734,742 
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V e r b / i n t r , 694,699,701 
Verb / t r , 694,699,701 
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vividness, 504 
vowel-p, 743 
V P , 660 

VP, 687-689, 693, 694, 699, 701, 703, 
716, 722, 723 
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walk, 400 
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Waltz filtering, 594 
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WARPLAN, 144,147,148 
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Warren, David, 144, 147, 383, 425 -

426, 711 
Waterman, David Α., 558 
Wefald, Eric, 637,650 
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